首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have examined the chromosomes from a case of sporadic Wilms' tumor using in situ hybridization to determine whether the Ha-ras (c-Ha-ras 1) oncogene had been deleted as the result of a reciprocal chromosomal translocation between the short arm of chromosome 11 (breakpoint 11p13) and the long arm of chromosome 12 (breakpoint 12q13). Neither the derivative 11 nor derivative 12 chromosome hybridized significantly to the Ha-ras probe, which indicated that this cellular oncogene was deleted as a consequence of the translocation. This conclusion is supported by a Southern blot analysis which demonstrates loss of a Harvey-ras allele. These results support the view that the Ha-ras oncogene may be functionally involved in Wilms' tumor development.  相似文献   

2.
Sonta S 《Mutation research》2002,504(1-2):193-202
Using 14 Chinese hamster stocks with various reciprocal translocations, chromosomally unbalanced gametes were produced and used to investigate the participation of the unbalanced gametes in fertilization and the development of unbalanced embryos. The selection of chromosomally abnormal gametes during fertilization was investigated by the chromosomal analysis of meiotic cells in heterozygotes for the 14 reciprocal translocations and pronuclei of fertilized ova obtained from crossing these heterozygotes. Compared with the expected frequencies from meiotic metaphase II (MII) scoring, the frequencies of male pronuclei having commonly a deficiency of chromosome 1 (q14-->q42) or chromosome 3 (p23-->q31) in one-cell embryos decreased significantly. However, the frequencies of male pronuclei with other abnormalities were all consistent with those expected from MII scoring. In contrast, the frequencies of female pronuclei with any karyotype including the same ones, as those decreased in male pronuclei from the translocation heterozygotes were all consistent with those estimated from MII scoring. These results suggest that gametes with nullisomies as well as disomies for any chromosomal segments may mostly participate in fertilization, whereas some sperm nullisomic for the specific segments of chromosomes 1 and 3 may fail to fertilize. On the other hand, the zygotic selection of chromosomal imbalance was investigated by direct analyses of pre-implantation embryos from crosses between chromosomally normal females and male heterozygotes from the 14 stocks with various reciprocal translocations. The chromosomal and morphological analysis revealed that some embryos were arrested in development at the two-cell stage and their common abnormality was partial monosomy for chromosome 1 or 2. Embryos with partial monosomy including chromosomes 1, 3 and 4 showed arrested development at four-eight-cell stages. Among day 4 embryos, some chromosomally unbalanced embryos, mainly with a deficiency of other segments, such as chromosomes 1p, 2q, 5q and 8, had fewer blastomeres than karyotypically normal and balanced embryos. The homology between the mouse and the Chinese hamster chromosomes relating to the developmental abnormalities at early stages was partially confirmed.  相似文献   

3.
《Genomics》2020,112(1):494-500
Balanced reciprocal translocation carriers are usually phenotypically normal but are at an increased risk of infertility, recurrent miscarriage or having affected children. Preimplantation genetic testing on chromosomal structural rearrangement (PGT-SR) offers a way to screen against unbalanced embryos. Here, we demonstrated a new method to distinguish carrier from noncarrier embryos. Translocation breakpoints were first delineated by nanopore sequencing followed by polymerase chain reaction (PCR) across breakpoints. High-resolution breakpoint mapping was successful in all (9/9) balanced reciprocal translocation carriers. Retrospective analysis of their embryo biopsies with breakpoint PCR showed 100% concordant results with PGT-SR on trophectoderm biopsies (40/40) and 53% concordance on blastomere biopsies (8/15). The low concordant rate in blastomeres was due to failure in the amplification of derivative chromosomes involving large deletions. Breakpoint PCR also showed 100% concordant results with prenatal/postnatal outcomes on 5 pregnancies, indicating that our new method can accurately distinguish carrier from noncarrier embryos.  相似文献   

4.
Mitotic analyses, directed at the problem of detection of chromosomal alterations in the somatic karyotype, were performed using six reciprocal interchanges of Zea mays L., all involving chromosome 9S. In addition, two normal stocks, a homozygous inbred and a commercial hybrid were examined. The minimum chromosome alteration in 9S detected in somatic metaphase was a decrement measured as 50% of the pachytene chromosome; an increment to 9S measured as 40% of the pachytene chromosome was not detected. However, a 10% meiotic increment to 5L was observed. Ascertainment in mitotic metaphase of chromosomal alterations in maize, of the type that change chromosome length and/or centromere position, appears to be dependent upon centromere position (metacentric, aerocentric) in addition to the nature of the alteration (increment or decrement). Relatively short alterations may be detected in metacentric, but not in the submetacentric or acrocentric chromosomes. A decrement rather than an addition segment in a non-metacentric chromosome appears more readily detectable in somatic metaphase.  相似文献   

5.
6.
Chinese hamster stocks with various structurally abnormal chromosomes have been produced by X irradiation. Among these stocks, 18 with various reciprocal translocations were used to investigate the participation of unbalanced gametes in fertilization and the development of unbalanced embryos. Among males as well as females heterozygous for the same translocation, there is no difference in the frequency of each disjunctional class. The participation of chromosomally unbalanced gametes in fertilization was investigated by chromosomal analysis of meiotic cells in heterozygotes for the 18 reciprocal translocations and pronuclei of fertilized ova obtained from crossing these heterozygotes. Compared with the expected frequencies from MII scoring, the frequencies of male pronuclei having a common deficiency of chromosome 1 (1q17-->1q42) or chromosome 3 (3p23-->3q31) decreased significantly in one-cell embryos. However, the frequencies of male pronuclei with other abnormalities were all consistent with those expected from MII scoring. In contrast, the frequencies of female pronuclei with any karyotype including the same abnormalities as those decreased in male pronuclei from the translocation heterozygotes were all consistent with those estimated from MII scoring. These results revealed clearly that most gametes with nullisomies as well as disomies for any chromosomal segments may participate in fertilization, whereas only male gametes nullisomic for certain segments of chromosomes 1 and 3 failed to participate in fertilization. The zygotic selection of chromosomal imbalance was also investigated by direct chromosomal and morphological analyses of preimplantation embryos from crosses between karyotypically normal females and male heterozygotes from the 18 stocks with various reciprocal translocations. These analyses revealed that some embryos were arrested in development at the two-cell stage. The karyotype of these two-cell embryos had a common deficiency in a segment of chromosome 1 or chromosome 2. Embryos with partial monosomy including chromosomes 1, 3, 4 and 5 showed arrested development at four- to eight-cell stages. Among day 4 embryos, some chromosomally unbalanced embryos, mainly with a deficiency of segments of chromosomes 1p, 1q, 2q, 5q, 7q and 8, had fewer blastomeres than karyotypically normal and balanced embryos. The homology between Chinese hamster and mouse chromosomes relating to abnormal embryogenesis at early stages has been partially confirmed from reported maps of chromosomes. The Chinese hamster is useful for further cytogenetic studies during the stages of meiosis and early embryogenesis.  相似文献   

7.
The existence of an apomorphic reciprocal chromosomal translocation in the gorilla lineage has been asserted or denied by various cytogeneticists. We employed a new molecular cytogenetic strategy (chromosomal in situ suppression hybridization) combined with high-resolution banding, replication sequence analysis, and fluorochrome staining to demonstrate that a reciprocal translocation between ancestral chromosomes homologous to human chromosome 5 and 17 has indeed occurred.  相似文献   

8.
The t(4;8)(p16;p23) is the second most common constitutional chromosomal translocation and is caused by an ectopic meiotic recombination between the olfactory receptor gene clusters (ORGC), located on chromosome 4p and 8p. Given that ORGCs are scattered across the genome and make-up about 0.1% of the human genome we reasoned that translocations between 4p16 and other chromosomes might be mediated by ectopic recombination between different ORGC. In 13 patients, we mapped the breakpoints of either a balanced or unbalanced translocation between chromosome 4p16 and different chromosomes. For all four t(4;8) cases, the breakpoints fall within the 4p and 8pter ORGC, confirming that non-allelic homologous recombination (NAHR) between the ORGC is the main mechanism of the t(4;8) formation. For the nine other translocations, the breakpoints on chromosome 4 mapped to different loci, one of them within the ORGC and in two flanking the ORGC. In these three cases, the translocation breakpoint at the reciprocal chromosome did not contain ORGC sequences. We conclude that only the t(4;8) is mediated by NAHR between ORGC.  相似文献   

9.
The RUNX1/AML1 gene is the most frequent target for chromosomal translocation, and often identified as a site for reciprocal rearrangement of chromosomes 8 and 21 in patients with acute myelogenous leukemia. Virtually all chromosome translocations in leukemia show no consistent homologous sequences at the breakpoint regions. However, specific chromatin elements (DNase I and topoisomerase II cleavage) have been found at the breakpoints of some genes suggesting that structural motifs are determinant for the double strand DNA-breaks. We analyzed the chromatin organization at intron 5 of the RUNX1 gene where all the sequenced breakpoints involved in t(8;21) have been mapped. Using chromatin immunoprecipitation assays we show that chromatin organization at intron 5 of the RUNX1 gene is different in HL-60 and HeLa cells. Two distinct features mark the intron 5 in cells expressing RUNX1: a complete lack or significantly reduced levels of Histone H1 and enrichment of hyperacetylated histone H3. Strikingly, induction of DNA damage resulted in formation of t(8;21) in HL-60 but not in HeLa cells. Taken together, our results suggest that H1 depletion and/or histone H3 hyperacetylation may have a linkage with an increase susceptibility of specific chromosomal regions to undergo translocations.  相似文献   

10.
应用基因组原位杂交鉴定蓝粒小麦及其诱变后代   总被引:9,自引:0,他引:9  
杨国华  李滨  刘建中  英加  穆素梅  周汉平  李振声 《遗传学报》2002,29(3):255-259,T001
应用基因组原位杂交技术(GISH)对普通小麦(Triticum aestivumL.)和长穗偃麦草[Agropyron elongatum(Host)Beauv,2n=10x=70]杂交后选育出的蓝粒小麦蓝-58及其诱变后代的染色体组成进行了鉴定。结果表明,GISH可方便地检测到小麦遗传背景中的长穗偃麦草染色体或易位的片段。如前人报道,蓝-58(2n=42)是一个具有2条长穗偃麦草4E染色体的异代换系(4E/4D)。LW004可能是一个具有两对相互易位染色体的纯合系,其田间表现磷高效特性,LW43-3-4为41条染色体的蓝单体(40W 1’4E),种子颜色为浅蓝色,通过此法还检测出一些染色体结构发生很大变异的材料如4E的单端体(40W 1‘4E),种子颜色为浅蓝色,通过此法还检测出一些染色结构发生很大变异的材料如4E的单端体(40W 1‘t4E)以及组型为39W 1‘4E 1‘t4E的个体,此项研究结果更为直观地表明控制蓝粒体状的基因的确在来自长穗偃麦草的染色体上。同时说明有效的突变方法与灵活方便的检测手段的有机结合在染色体工程材料的创制和染色体工程育种中起着至关重要的作用。  相似文献   

11.
Constitutional chromosomal translocations are relatively common causes of human morbidity, yet the DNA double-strand break (DSB) repair mechanisms that generate them are incompletely understood. We cloned, sequenced and analyzed the breakpoint junctions of a familial constitutional reciprocal translocation t(9;11)(p24;q23). Within the 10-kb region flanking the breakpoints, chromosome 11 had 25% repeat elements, whereas chromosome 9 had 98% repeats, 95% of which were L1-type LINE elements. The breakpoints occurred within an L1-type repeat element at 9p24 and at the 3'-end of an Alu sequence at 11q23. At the breakpoint junction of derivative chromosome 9, we discovered an unusually large 41-bp insertion, which showed 100% identity to 12S mitochondrial DNA (mtDNA) between nucleotides 896 and 936 of the mtDNA sequence. Analysis of the human genome failed to show the preexistence of the inserted sequence at normal chromosomes 9 and 11 breakpoint junctions or elsewhere in the genome, strongly suggesting that the insertion was derived from human mtDNA and captured into the junction during the DSB repair process. To our knowledge, these findings represent the first observation of spontaneous germ line insertion of modern human mtDNA sequences and suggest that DSB repair may play a role in inter-organellar gene transfer in vivo. Our findings also provide evidence for a previously unrecognized insertional mechanism in human, by which non-mobile extra-chromosomal fragments can be inserted into the genome at DSB repair junctions.  相似文献   

12.
Fluorescence in situ hybridization mapping of fully integrated human BAC clones to primate chromosomes, combined with precise breakpoint localization by PCR analysis of flow-sorted chromosomes, was used to analyze the evolutionary rearrangements of the human 3q21.3-syntenic region in orangutan, siamang gibbon, and silvered-leaf monkey. Three independent evolutionary breakpoints were localized within a 230-kb segment contained in BACs RP11-93K22 and RP11-77P16. Approximately 200 kb of the human 3q21.3 sequence was not present on the homologous orangutan, siamang, and Old World monkey chromosomes, suggesting a genomic DNA insertion into the breakpoint region in the lineage leading to humans and African great apes. The breakpoints in the orangutan and siamang genomes were narrowed down to 12- and 20-kb DNA segments, respectively, which are enriched with endogenous retrovirus long terminal repeats and other repetitive elements. The inserted DNA segment represents part of an ancestral duplication. Paralogous sequence blocks were found at human 3q21, approximately 4 Mb proximal to the evolutionary breakpoint cluster region; at human 3p12.3, which contains an independent orangutan-specific breakpoint; and at the subtelomeric and pericentromeric regions of multiple human and orangutan chromosomes. The evolutionary breakpoint regions between human chromosome 3 and orangutan 2 as well their paralogous segments in the human genome coincide with breaks of chromosomal synteny in the mouse, rat, and/or chicken genomes. Collectively our data reveal reuse of the same short recombinogenic DNA segments in primate and vertebrate evolution, supporting a nonrandom breakage model of genome evolution.  相似文献   

13.
Gamma-radiation-induced chromosomal interchanges in two inbred lines of rye were analyzed by using the C-banding technique. Neither the doses of radiation nor the time elapsed between radiation and cytological observation influenced the contribution of individual chromosomes to the observed interchanges. Dicentric are more frequent than monocentric interchanges. Neither the individual chromosome contribution to interchanges nor the chromosome combinations fit a random distribution. Chromosomes 6(5R), 4(4R) and 7(1R) of the inbred line Pool and 6(5R), 5(6R) and 4(4R) of line Riodeva, which are carriers of large amounts of heterochromatin, are much more frequently involved in interchanges than expected. Likewise, they are involved in the most frequent combinations observed (6-4, 6-7, 4-5, 4-7 and 6-3 (2R) in line Pool and 6-5, 6-4, 4-5 and 6-7 in line Riodeva). The role of C-heterochromatin in radiation-induced chromosomal interchanges is discussed.  相似文献   

14.
Chromosome breakage and recombination at fragile sites.   总被引:15,自引:0,他引:15       下载免费PDF全文
Chromosomal fragile sites are points on chromosomes that usually appear as nonstaining chromosome or chromatid gaps. It has frequently been suggested that fragile sites may be involved in chromosome breakage and recombination events. We and others have previously shown that fragile sites predispose to intrachromosomal recombination as measured by sister-chromatid exchanges. These findings suggested that fragile site expression often, if not always, is accompanied by DNA strand breakage. In the present report, fragile sites are shown to predispose to deletions and interchromosomal recombination. By use of somatic cell hybrids containing either human chromosome 3 or the fragile X chromosome, deletions and translocations were induced by FUdR or aphidicolin with breakpoints at the fragile sites Xq27 or 3p14.2 (FRA3B) or at points so close to the fragile sites as to be cytogenetically indistinguishable. Southern blot analysis of DNA from a panel of chromosome 3 deletion and translocation hybrids was then utilized to detect loss or retention of markers flanking FRA3B and to corroborate the cytogenetic evidence that the breakpoints were at this fragile site. One cell line with a reciprocal translocation between human chromosome 3 (with breakpoint at 3p14.2) and a hamster chromosome showed cytogenetically that the fragile site was expressed on both derivative chromosomes, supporting the hypothesis that the fragile site represents a repeated sequence. The approach described provides a means of generating specific rearrangements in somatic cell hybrids with a breakpoint at a fragile site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Chromosomes from 20 patients were used to delineate the breakpoints of inverted duplications of chromosome 15 (inv dup[15]) that include the Prader-Willi syndrome/Angelman syndrome (PWS/AS) chromosomal region (15q11-q13). YAC and cosmid clones from 15q11-q14 were used for FISH analysis, to detect the presence or absence of material on each inv dup(15). We describe two types of inv dup(15): those that break between D15S12 and D15S24, near the distal boundary of the PWS/AS chromosomal region, and those that share a breakpoint immediately proximal to D15S1010. Among the latter group, no breakpoint heterogeneity could be detected with the available probes, and one YAC (810f11) showed a reduced signal on each inv dup(15), compared with that on normal chromosomes 15. The lack of breakpoint heterogeneity may be the result of a U-type exchange involving particular sequences on either homologous chromosomes or sister chromatids. Parent-of-origin studies revealed that, in all the cases analyzed, the inv dup(15) was maternal in origin.  相似文献   

16.
X;autosome translocations in females with Duchenne muscular dystrophy (DMD) provide an opportunity to study the mechanisms responsible for chromosomal rearrangements that occur in the germ line. We describe here a detailed molecular analysis of the translocation breakpoints of an X;autosome reciprocal translocation, t(X;5)(p21;q31.1), in a female with DMD. Cosmid clones that contained the X-chromosome breakpoint region were identified, and subclones that hybridized to the translocation junction fragment in restriction digests of the patient's DNA were isolated and sequenced. Primers designed from the X-chromosomal sequence were used to obtain the junction fragments on the der(X) and the der(5) by inverse PCR. The resultant clones were also cloned and sequenced, and this information used to isolate the chromosome 5 breakpoint region. Comparison of the DNA sequences of the junction fragments with those of the breakpoint regions on chromosomes X and 5 revealed that the translocation arose by nonhomologous recombination with an imprecise reciprocal exchange. Four and six base pairs of unknown origin are inserted at the exchange points of the der(X) and der(5), respectively, and three nucleotides are deleted from the X-chromosome sequence. Two features were found that may have played a role in the generation of the translocation. These were (1) a repeat motif with an internal homopyrimidine stretch 10 bp upstream from the X-chromosome breakpoint and (2) a 9-bp sequence of 78% homology located near the breakpoints on chromosomes 5 and X.  相似文献   

17.
Previous studies have suggested that common genetic mechanisms influence sensitivity to the locomotor-stimulant effects of ethanol and allopregnanolone. We conducted two quantitative trait locus (QTL) studies to identify chromosomal regions that harbor genes that influence locomotor response to ethanol (2 g/kg) and allopregnanolone (17 mg/kg) using F2 crosses between C57BL/6J and DBA/2J mice. Because our previous data from the BXD recombinant inbred strains had indicated that chromosome 2 contained QTL for sensitivity to the locomotor-stimulant effects of both ethanol and allopregnanolone, we also tested reciprocal chromosome 2 congenic strains for sensitivity to the locomotor-stimulant effects of both drugs. The F2 analysis for ethanol sensitivity identified significant QTL on chromosomes 1 and 2 and suggestive QTL on chromosomes 5 and 9. The analysis of the allopregnanolone F2 study identified suggestive QTL on chromosomes 3, 5 and 12. Suggestive evidence for a female-specific QTL on chromosome 2 was also found. The studies of congenic mouse strains indicated that both the congenic strains captured one or more QTL for sensitivity to the locomotor-stimulant effects of both ethanol (2 g/kg) and allopregnanolone (17 mg/kg). When Fisher's method was used to combine the P values for the RI, F2 and congenic studies of the chromosome 2 QTL, cumulative probability scores of 9.6 x 10(-15) for ethanol and 7.7 x 10(-7) for allopregnanolone were obtained. These results confirm the presence of QTL for ethanol and allopregnanolone sensitivity in a common region of chromosome 2 and suggest possible pleiotropic genetic influence on sensitivity to these drugs.  相似文献   

18.
Summary A new mechanism for changing chromosome numbers (preserving the fundamental number of long chromosome arms) during karyotype evolution is suggested. It includes: 1) Occurrence of individuals heterozygous for two interchanges between different arms of three chromosomes (a metacentric and two acrocentric ones). 2) Formation in heterokaryotypes of multivalents during meiosis between the chromosomes involved in the interchanges and their unchanged homologues. 3) Mis-segregation of chromosomes from these multivalents resulting in hypoploid (n-1) and hyperploid (n+1) simultaneously instead of euhaploid gametes. 4) Fusion of n-1 or n+1 gametes which gives rise to (zygotes and) individuals representing homokaryotypes with changed number of chromosomes (2n+2 or 2n-2), but preserves (as compared to the parental karyotypes) the number of long chromosome arms. Under definite conditions, chromosome numbers of the progeny may be changed by this process in both directions (upwards and downwards). The mechanism is free of the difficulties associated with the explanation for such changes by direct Robertsonian interchanges (see Discussion), which are usually considered to be responsible for such alterations in chromosome number. The above-mentioned process has been experimentally documented in Vicia faba and it probably also occurred naturally within the Vicia sativa group.  相似文献   

19.
Analysis of a group of human/rodent somatic cell hybrids with nucleic acid probes prepared from cloned human variable region (VH), junctional (JH), and constant region (C epsilon) heavy chain immunoglobulin genes indicates that all of these IgH genes are localized on the subtelomeric (q32) band of chromosome 14. Somatic cell hybrids were isolated in selective medium after fusing human fibroblasts with hprt- Chinese hamster cells. The human parental cells contained two translocation chromosomes representing a reciprocal translocation between chromosomes X and 14. Only those hybrid cell lines retaining a complete human autosome 14 or the X/14 translocation chromosome (i.e. containing band 14q32) retained the human IgH genes. Retention of these genes did not correlate with the presence of the other translocation chromosome, 14/X. These results indicate that all human IgH genes (VH, JH, and CH) map to the same chromosomal band (14q32) which is commonly involved in reciprocal translocations with human chromosome 8 (8q24) in B-cell neoplasms.  相似文献   

20.
A detailed molecular analysis of both reciprocal recombination products of the variant t(2;8) chromosomal translocation of the Burkitt lymphoma derived cell line JI and their germline counterparts was carried out. The breakpoint on chromosome 8 is localized 28 kb to the 3' side of the c-myc protooncogene, the breakpoint on chromosome 2 was found to be within an aberrantly rearranged VK gene (abbreviations ref. 1). Novel features of the immunoglobulin moiety involved in this process include insertion of extra nucleotides in the V-J junction which have the characteristics of a N segment as it has been found up to now only in heavy chain and T cell receptor genes; the occurrence of somatic mutations in 8q+ and not in 2p-. These data allow a reconstruction of the course of events in the cell line JI; remarkable sequence regularities at the chromosomal breakpoints consisting of symmetrically placed dinucleotides and elements related to the hepta- and nonanucleotide recombinase recognition sequences are discussed in the context of the translocation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号