首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell wall structure and biogenesis in the unicellular green alga, Oocystis apiculata, is described. The wall consists of an outer amourphous primary layer and an inner secondary layer of highly organized cellulosic microfibrils. The primary wall is deposited immediately after cytokinesis. Golgi-derived products contribute to this layer. Cortical microtubules underlie the plasma membrane immediately before and during primary wall formation. They function in maintaining the elliptical cell shape. Following primary wall synthesis, Golgi-derived materials accumulate on the cell surface to form the periplasmic layer. This layer functions in the deposition of coating and cross-linking substances which associate with cellulosic microfibrils of the incipient secondary wall. Secondary wall microfibrils are assembled in association with the plasma membrane. Freeze-etch preparations of untreated, living cells reveal linear terminal complexes in association with growing cellulosic microfibrils. These complexes are embedded in the EF fracture face of the plasma membrane. The newly synthesized microfibril lies in a groove of the outer leaflet of the plasma membrane. The groove is decorated on the EF fracture face by perpendicular structures termed “ridges.” The ridges interlink with definitive rows of particles associated with the PF fracture face of the inner leaflet of the plasma membrane. These particles are termed “granule bands,” and they function in the orientation of the newly synthesized microfibrils. Microfibril development in relation to a coordinated multienzyme complex is discussed. The process of cell wall biogenesis in Oocystis is compared to that in higher plants.  相似文献   

2.
Uptake of 3H-labelled (±)-abscisic acid (ABA) into isolated barley (Hordeum vulgare L.) epidermal cell protoplasts (ECP) was followed over a range of pH values and ABA concentrations. The present results show that ABA uptake is not always linearly correlated with the external concentration of undissociated ABA (ABAH). At pH 7.25, ABA uptake exhibited saturation kinetics with an apparent K m value of 75 mmol·m–3 to tal ABA. This saturable transport component was inhibited by pretreating the protoplasts with 1 mol·m–3 p-chloromercuribenzenesulfonic acid at pH 8.0, conditions that minimized the uptake of this acid sulfhydryl reagent. Moreover, the rate of (±)-[3]HABA uptake was reduced by addition of 0.1 mol·m–3 (±)-ABA to 41%, whereas the same concentration of (±)-ABA was approximately half as effective (46% of the inhibitory effect). Thus, it was concluded that only (±)-ABA competes for an ABA carrier that is located in the epidermal cell plasma membrane. The permeability of the epidermal cell plasma membrane was studied by performing a Collander analysis. At pH 6 the overall plasma-membrane permeability of epidermal cells was similar to that of guard cells but was about two times higher than that of mesophyll cells.Abbreviations ABA abscisic acid - ABA anion of ABA - ABAH undissociated ABA - 2,4-D 2,4-dichlorophenoxyacetic acid - DMO 5,5-dimethyloxazolidine-2,4-dione - ECP deepidermal cell protoplast - Kr partition coefficient - Mr relative molecular mass - NEM N-ethylmaleimide - PCMBS p-chloromercuriben zenesulfonic acid - Ps permeability coefficient We are grateful to Barbara Dierich for expert technical assistance, to Prof. H. Gimmler (Lehrstuhl für Botanik I, Universität Würzburg, FRG) for helpful discussions and to the Deutsche Forschungsgemeinschaft (SFB 251, TP 3) for financial support.  相似文献   

3.
Abstract Changes in cell volume and solute content upon hyperosmotic shock have been studied for six unicellular blue-green algae (cyanobacteria): Synechococcus PCC 6301, PCC 6311; Synechocystis PCC 6702, PCC 6714, PCC 6803 and PCC 7008. The extent of change in volume was shown to be dependent upon the solute used to establish the osmotic gradient, with cells in NaCl showing a reduced shrinkage when compared to cells in media containing added sorbitol and sucrose. Uptake of extracellular solutes during hyperosmotic shock was observed in Synechocystis PCC 6714, with maximum accumulation of external solutes in NaCl and minimum solute uptake in sucrose solutions. Conversely, solute loss from the cells (K+ and amino acids) was greatest in sucrose-containing media and least in NaCl. The results show that these blue-green algae do not behave as ‘ideal osmometers’ in media of high osmotic strength. It is proposed that short-term changes in plasmalemma permeability in these organisms may be due to transient membrane instability resulting from osmotic imbalance between the cell and its surrounding fluid at the onset of hyperosmotic shock.  相似文献   

4.
In a previous study, we characterized Cd–Hg interactions for uptake in human intestinal Caco-2 cells. We pursued our investigations on metal uptake from metal mixtures, focusing on the effects of Hg on cellular homeostasis. A 4-fold higher equilibrium accumulation value of 0.3 μmol/L 203Hg was measured in the presence of 100 μmol/L unlabeled Hg in the serum-free exposure medium without modification in the initial uptake rate. This phenomenon was eliminated at 4C. Mercury induced an increase in tritiated water and [3H]mannitol uptakes for exposure times greater than 20 min. Incubations for 20 min and 30 min with 100 μmol/L Hg and 2 mmol/L N-ethylmaleimide (NEM) resulted in a 34% and 50% reductions in cellular thiol staining, respectively, with additive effects. Lactate dehydrogenase leakage and live/dead assays confirmed the maintenance of cell membrane integrity in Hg- or NEM-treated cells. We conclude that Hg may alter membrane permeability and increase cell volume without any loss in cell viability. This phenomenon is sensitive to temperature and could involve Hg interaction with membrane thiols, possibly related to solute transport. During metal uptake from metal mixtures, Hg may thus promote the uptake of other toxic metals by increasing cell volume and consequently cell capacity. Deceased 25 March 2004  相似文献   

5.
In order to regulate cell volume during hyperosmotic stress, the intertidal copepod Tigriopus californicus, like other aquatic crustaceans, rapidly accumulates high levels of intracellular alanine, proline, and glycine. Glutamate-pyruvate transaminase (GPT; EC 2.6.1.2), which catalyzes the final step of alanine synthesis, is genetically polymorphic in T. californicus populations at Santa Cruz, California. Spectrophotometric studies of homogenates derived from a homozygous isofemale line of each of the two common GPT alleles indicated that the GPTF allozyme has a significantly higher specific activity than the GPTS allozyme. Under conditions of hyperosmotic stress, individual adult copepods of GPTF and GPTF/S genotypes accumulated alanine, but not glycine or proline, more rapidly than GPTS homozygotes. When young larvae were subjected to the same hyperosmotic conditions, GPTS larvae suffered a significantly higher mortality than GPTF or GPTF/S larvae. These results suggest that the biochemical differences among GPT allozymes result in specific physiological variation among GPT genotypes and that this physiological variation is manifested in differential genotypic survivorships under some naturally occurring environmental conditions.This work was supported in part by a grant from the Lerner Fund for Marine Research of the American Museum of Natural History, an NIH Training Grant in Integrative Biology, and NIH Grants GM 28016 and GM 10452.  相似文献   

6.
The responses to water stress of the bulk modulus of elasticity () and the apoplastic water fraction were examined using six sunflower cultivars of differing capacity for osmotic adjustment (OA). Water stress did not affect the partitioning of water between apoplastic (ca. 20%) and symplastic fractions in leaves which expanded during the exposure to stress in any genotype. Hence, no genotype-linked effects on either the buffering of cell water status during stress or on the estimates of bulk leaf osmotic potential could be expected. Genotypes differed in the degree of change in (estimated from pressure/volume [P/V] curves) and OA (estimated using both ln RWC/ ln o plots and P/V curves) induced by exposure to stress. In three genotypes increased significantly (p=0.05) as a consequence of stress, in another three change were small. OA was the only attribute of the three examined that could have contributed to turgor maintenance under stress. There was a strong negative association between leaf expansion and degree of OA across genotypes (r=–0.91) and a strong positive one between OA and (r=0.94). However all genotypes evidenced some degree of OA. These results are consistent with part of the genotype differences in OA being attributable to variations in leaf expansion during exposure to stress.  相似文献   

7.
Summary The evolution of the volume, the Na+ and K+ contents and the glycerol and ATP contents were investigated after subjectingDunaliella tertiolecta cells to hypertonic shocks. It was found that the variations in the glycerol and the ion contents superimpose as the cell regulates its volume. Hypertonic shock induces a rapid increase (some minutes) in the Na+ influx and Na+ content followed by a decrease until a new steady value is reached after 30 min of cell transfer. The regulatory mechanism extruding Na+ out of the cells was dependent on the presence of K or Rb ions in the external medium. A transient pumping of K+ ions was found after subjecting the cells to a hypertonic shock. This increase in K+ content resulted from the transient increase in the K+ influxes. The K+ pumping mechanism was blocked by the absence of Ca++ and Mg++ ions in the external medium and was inhibited by DCCD, FCCP and DCMU, whereas ouabain, cyanide and PCMBS were ineffective. The increase in K+ content was observed if the hypertonic shock was induced by the addition of NaCl, glycerol or choline chloride. These results are interpreted on the basis of two distinct mechanisms: a Na/K exchange pump and a Na+ independent K+ pump. These ionic transfer mechanisms would participate in the osmoregulation ofDunaliella cells and would be of importance, particularly during the onset of the osmotic shock when glycerol synthesis is incomplete.  相似文献   

8.
The salt-induced H+-ATPase activity and osmotic adjustment responses of Catharanthus roseus (L.) G. Don suspension cultures were studied. Cells were treated with 0, 50 or 100mM NaCl for 7days or were maintained for 8 months with 50 mM NaCl (50T cells). Growth, osmotic potential (), ions content, soluble sugars, proline and total amino acids were determined in the sap of control and salt-treated cells. Salinity reduced cell growth and . The higher decrease in the in salt-treated cells was due to higher accumulation of Na+ and Cl. The levels of organic solutes, such as soluble sugars, free proline and total amino acids, increased with salt treatment. These results suggest that salt-tolerant cells are able to osmotically adjust. Salinity treatments stimulated H+-ATPase activity. Immunodetection of the enzyme showed that the increased activity was due to an increased amount of protein in the plasmalemma. The induction by NaCl, especially at 100 mM NaCl and for 50T cells, could account for the K+ and Cl uptake but not for higher or lower tolerance.  相似文献   

9.
The mechanism of the processes leading to membrane fusion is as yet unknown. In this report we demonstrate that changes in membrane potential and potassium fluxes correlate with Semliki Forest virus induced cell-cell fusion at mildly acidic pH. The changes observed occur only at pH's below 6.2 corresponding to values required to trigger the fusion process. A possible role of these alterations of the plasma membrane related to membrane fusion phenomena is discussed.  相似文献   

10.
The percentage of water in the total living body weight is restricted within a narrow range for each species, even in snails cultured under differing controlled ionic concentrations in the medium. The water level in Helisoma trivolvis is consistently higher than in Biomphalaria pfeifferi and B. glabrata under the same culture conditions.The whole cationic fraction of the total osmoconcentration of the haemolymph is maintained at a constant hypertonic level, even though individual cation levels vary with the cationic composition of the surrounding medium.  相似文献   

11.
Summary Photoautotrophically growing cultures of the fresh water cyanobacteriumAnacystis nidulans adapted to the presence of 0.4–0.5 M NaCl (about sea water level) with a lag phase of two days after which time the growth rate reassumed 80–90% of the control. Plasma and thylakoid membranes were separated from cell-free extracts of French pressure cell treatedAnacystis nidulans by discontinuous sucrose density gradient centrifugation and purified by repeated recentrifugation on fresh gradients. Identity of the plasma and thylakoid membrane fractions was confirmed by labeling of intact cells with impermeant protein markers prior to breakage and membrane isolation. Electron microscopy revealed that each type of membrane was obtained in the form of closed and perfectly spherical vesicles. Major changes in structure and function of the plasma membranes (and, to a much lesser extent, of the thylakoid membranes) were found to accompany the adaptation process. On the average, diameters of plasma membrane vesicles from salt adapted cells were only one-third of the diameters of corresponding vesicles from control cells. By contrast, the diameters of thylakoid membrane vesicles were the same in both cases.Freeze-etching the cells and counting the number of membrane-intercalating particles on both protoplasmic and exoplasmic fracture faces of plasma and thylakoid membranes indicated a roughly 50% increase of the particle density in plasma membranes during the adaptation process while that in thylakoid membranes was unaffected. Comparison between particle densities on isolated membranes and those on corresponding whole cell membranes permitted an estimate as to the percentage of inside-out and right-side-out vesicles. Stereometric measurement of particle sizes suggested that two distinct sub-populations of the particles in the plasma membranes increased during the adaptation process, tentatively correlated to the cytochrome oxidase and sodium-proton antiporter, respectively. The effects of salt adaptation described in this paper were fully reversed upon withdrawal of the additional NaCl from the growth medium (deadaptation). Moreover, they were not observed when the NaCl was replaced by KCl.Abbreviations CM cytoplasmic or plasma membrane - ICM intracytoplasmic or thylakoid membrane - EF exoplasmic fracture face - PF protoplasmic fracture face - DABS diazobenzosulfonate; Hepes N-2-hydroxyethylpiperazine-N-2-ethane-sulfonate - PMSF phenylmethylsulfonylfluoride Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

12.
K. Laporte  M. Rossignol  J. A. Traas 《Planta》1993,191(3):413-416
Using monoclonal antibodies we have studied the interaction of tubulin with the plasma membrane of leaves of Nicotiana sylvestris (Speg. et Comes) and tobacco suspension-culture cells. The results show that isolated plasma membranes contain tightly bound -tubulins. Their association with the plasma membrane is resistent to non-ionic detergent and to low and high ionic strength. Only extraction with sodium dodecyl sulfate is capable of dissociating these cytoskeletal proteins. It is unlikely that this membrane-bound tubulin is present in its polymeric form because electron-microscopical analysis does not reveal the presence of filaments, whereas treatment of membranes with oryzalin (which has been shown to destabilize microtubules in vitro) does not remove the tubulins from isolated plasma membrane. When living cells are treated with oryzalin, the amount of membrane-associated tubulin is drastically reduced, which could mean that its presence is related to in-vivo microtubule dynamics.Abbreviations Mes 2 (N-morpholino) ethane sulfonic acid - NP40 Nonidet P40  相似文献   

13.
The unicellular green alga Chlamydomonas reinhardtii possesses a CO2-concentrating mechanism. In order to measure the CO2 permeability coefficients of the plasma membranes (PMs), carbonic anhydrase (CA) loaded vesicles were isolated from C. reinhardtii grown either in air enriched with 50 mL CO2 · L?1} (high-Ci cells) or in ambient air (350 μL CO2 · L?1}; low-Ci cells). Marker-enzyme measurements indicated less than 1% contamination with thylakoid and mitochondrial membranes, and that more than 90% of the PMs from high and low-Ci cells were orientated right-side-out. The PMs appeared to be sealed as judged from the ability of vesicles to accumulate [14C]acetate along a proton gradient for at least 10 min. Carbonic anhydrase-loaded PMs from high and low-Ci cells of C. reinhardtii were used to measure the exchange of 18O between doubly labelled CO2 (13C18O2) and H2O in stirred suspensions by mass spectrometry. Analysis of the kinetics of the 18O depletion from 13C18O2 in the external medium provides a powerful tool to study CO2 diffusion across the PM to the active site of CA which catalyses 18O exchange only inside the vesicles but not in the external medium (Silverman et al., 1976, J Biol Chem 251: 4428–4435). The activity of CA within loaded PM vesicles was sufficient to speed-up the 18O loss to H2O to 45360–128800 times the uncatalysed rate, depending on the efficiency of CA-loading and PM isolation. From the 18O-depletion kinetics performed at pH 7.3 and 7.8, CO2 permeability coefficients of 0.76 and 1.49·10?3} cm·s?1}, respectively, were calculated for high Ci cells. The corresponding values for low-Ci cells were 1.21 and 1.8·10?3} cm·s?1}. The implications of the similar and rather high CO2 permeability coefficients (low CO2 resistance) in high and low-Ci cells for the COi-concentrating mechanism of C. reinhardtii are discussed.  相似文献   

14.
We present a method with which osmotic properties of the cytoplasm of cyanobacterial cells and the osmotic permeability of plasma membranes to water and solutes can be assessed from measurements of chlorophyll a fluorescence. When the electron transport of photosystem II is inhibited, the quantum yield of chlorophyll a fluorescence in cyanobacterial cells varied between a low yield limit that was attained after acclimation to darkness (state 2) and a high yield limit that was attained after acclimation to light (state 1). It was shown recently that the difference between chlorophyll a fluorescence of light‐acclimated and of dark‐acclimated cells relates quantitatively to the internal osmolality of cyanobacteria (G. C. Papageorgiou and A. Alygizaki‐Zorba. 1997. Biochim. Biophys. Acta 1335: 1‐4). In the present work we employed rapid mixing of Synechococcus sp. PCC7942 (strain PAMCOD) suspensions with solutions of defined osmolality in order to measure cell osmolality and turgor threshold, as well as water and solute fluxes across cell membranes. Concentration upshocks with sorbitol, glycine betaine, Na+ and K+ salts caused rapid (t1/2 < 10 ms) depression of fluorescence that was correlated to osmotic water outflow from the cells. The fluorescence remained depressed in all cases except for NaCl. With NaCl, the depression was transient and fluorescence recovered with an apparent time constant of 200 ms. The fluorescence rise correlates to inflows of NaCl and water.  相似文献   

15.
Summary The transepithelial water permeability in frog urinary bladder is believed to be essentially dependent on the ADH-regulated apical water permeability. To get a better understanding of the transmural water movement, the diffusional water permeability (P d) of the basolateral membrane of urinary bladder was studied. Access to this post-luminal barrier was made possible by perforating the apical membrane with amphotericin B. The addition of this antibiotic increasedP d from 1.12±0.10×10–4 cm/sec (n=7) to 4.08±0.33×10–4 cm/sec (n=7). The effect of mercuric sulfhydryl reagents, which are commonly used to characterize water channels, was tested on amphotericin B-treated bladders. HgCl2 (10–3 m) decreasedP d by 52% andpara-chloromercuribenzoic acid (pCMB) (1.4×10–4 m) by 34%. The activation energy for the diffusional water transport was found to increase from 4.52±0.23 kcal/mol (n=3), in the control situation, to 9.99±0.91 kcal/mol (n=4) in the presence of 1.4×10–4 m pCMB. Our second approach was to measure the kinetics of water efflux, by stop-flow light scattering, on isolated epithelial cells from urinary bladders.pCMB (0.5 or 1.4×10–4 m) was found to inhibit water exit by 91±2%. These data strongly support the existence of proteins responsible for water transport across the basolateral membrane, which are permanently present.  相似文献   

16.
Plasma-membrane dynamics in live protoplasts from maize (Zea mays L.) roots were characterized and examined for relationships as to the ability of the protoplasts to synthesize new cell walls and develop to cells capable of division. The lateral diffusion-coefficients and mobile fractions of fluorescence-labeled plasma-membrane proteins and lipids were measured by fluorescence photobleaching recovery. Small but significant effects on the diffusion of membrane proteins were observed after treatments with oryzalin or amiprophosmethyl, microtubule-disrupting drugs that increased the mobile fraction, and after treatments with cytochalasins B or D, microfilament-disrupting drugs that decreased the diffusion coefficient. A number of parameters were tested for correlative effects on membrane dynamics and protoplast performance in culture. Protoplasts isolated with a cellulase preparation from Trichoderma viride showed faster membrane-protein diffusion and a lower frequency of development to cells capable of division than did protoplasts isolated with a cellulase preparation from T. reesei. Membrane proteins in maize A632, a line less capable of plant regeneration from callus, diffused with a smaller diffusion coefficient but a greater mobile fraction than did membrane proteins in maize A634, a line with greater regeneration capacity. The plasma membranes of A632 and A634 protoplasts also differed with regard to lateral-diffusion characteristics of phospholipid and sterol probes, although the presence of both rapidly and slowly diffusing lipid components indicated the apparent existence of lipid domains in both A632 and A634. The protoplasts of the two lines did not differ significantly, however, in either wall regeneration or frequency of development to cells capable of division.Abbreviations and symbols D lateral diffusion coefficient - FITC fluorescein-5-isothiocyanate - FPR fluorescence photobleaching recovery - LY Lucifer yellow - LY-Chol dilithium 4-amino-N-[(-(carbo(5-cholesten-3-yl)oxy)hydrazinocarbonyl)aminol]-1,8-naphthalimide-3,6-disulfonate - LY-DC16:0PE dilithium 4-amino-N-[3-(-(dipalmitoyl-sn-glycero-3-phosphoethanol-amino)ethylsulfonyl)phenyl]-1,8-naphthalimide-3,6-disulfonate  相似文献   

17.
The fine structure of the upper cuticular membrane (CM) of Clivia miniata leaves was investigated using electron microscopy. The CM is made up of a thin (130 nm) lamellated cuticle proper (CP) and a thick (up to 7 m over periclinal walls) cuticular layer (CL) of marbled appearance. Evidence is presented to show that the electron lucent lamellae of the CP do not simply represent layers of soluble cuticular lipids (SCL). Instead, the lamellation is probably due to layers of cutin differing in polarity. It is argued that the SCL in the Cp are the main barrier to water. Thickening of the CM during leaf development takes place by interposition of cutin between the CM and the cellin wall. The cutin of young, expanding leaves has a high affinity for KMnO4 and is therefore relatively polar. As leaves mature, the external CL underneath the CP becomes non-polar, as only little contrast can be obtained with permanganate as the post fixative.Abbreviations CM cuticular membrane - CP cuticle proper - CL cuticular layer - SCL soluble cuticular lipids (cuticular waxes)  相似文献   

18.
Malarial parasites propagate asexually inside the erythrocytes of their vertebrate host. Six hours after invasion, the permeability of the host cell membrane to anions and small nonelectrolytes starts to increase and reaches its peak as the parasite matures. This increased permeability differs from the native transport systems of the normal erythrocyte in its solute selectivity pattern, its enthalpy of activation and its susceptibility to inhibitors, suggesting the appearance of new transport pathways. A biophysical analysis of the permeability data indicates that the selectivity barrier discriminates between permeants according to their hydrogen bonding capacity and has solubilization properties compared to those ofiso-butanol. The new permeability pathways could result from structural defects caused in the host cell membrane by the insertion of parasite-derived polypeptides. It is suggested that the unique transport properties of the new pathways be used to target drugs into infected cells, to affect the parasite either directly or through the modulation of the intraerythrocytic environment. The feasibility of drug targeting is demonstrated inin vitro cultures of the human malarial parasitePlasmodium falciparum.  相似文献   

19.
The major heat shock protein (hsp) of Hydra vulgaris has recently been found to be a 60 kDa protein. Since in all organisms studied so far, the major heat shock protein is a 70 kDa protein, we have analyzed the relationship of hydra hsp60 to the highly conserved 70 kDa heat shock protein family. Genes and proteins related to the 70 kDa class of stress proteins are present in hydra. However, antibodies known to cross-react with hsp70 proteins in several different organisms do not cross-react with hydra hsp60 suggesting that hsp60 is not related to the conserved hsp70 proteins.  相似文献   

20.
Summary The lethal effects of crude venom prepared from the ectoparasitic wasp Nasonia vitripennis were examined with cultured cells from six insect and two vertebrate species. Venom caused cells from Sarcophaga peregrina (NIH SaPe4), Drosophila melanogaster (CRL 1963), Trichoplusia ni (TN-368 and BTI-TN-5B1-4), Spodoptera frugiperda (SF-21AE), and Lymantria dispar (IPL-Ldfbc1) to round up, swell, and eventually die. Despite similar sensitivities and overlapping LC50 values [0.0004–0.0015 venom reservoir equivalents (VRE)/μl], profound differences were noted at the onset of cytotoxicity among the six insect cell lines: over 80% of the NIH SaPe4 and SF21AE cells were nonviable within 1 h after addition of an LC99 dose of venom, whereas the other cells required a 5–10-fold longer incubation period to produce mortality approaching 100%. In contrast, cells from the grass frog, Rana pipiens (ICR-2A), and goldfish, Carassius auratus (CAR), showed little sensitivity to the venom: six venom reservoir equivalents were needed to induce 50% mortality in ICR-2A cells [50% lethal concentration (LC50)=0.067 VRE/μl), and 9 VRE did not yield sufficient mortality in CAR cells for us to calculate an LC50. All susceptible cells showed similar responses when incubated with wasp venom: retraction of cytoplasmic extensions (when present), blebbing of the plasma membrane, swelling of the plasma and nuclear membranes, condensation of nuclear material, and eventual cell death attributed to lysis. The rate of swelling and lysis in NIH SaPe4 and BTI-TN-5B1-4 cells exposed to venom appeared to be dependent on the diffusion potential of extracellular solutes (Na+=choline>sucrose≥raffinose>K+), which is consistent with a colloid-osmotic lysis mechanism of cell death. When T. ni cells were cotreated with venom and the K+ channel blocker 4-aminopyridine, cell swelling and lysis increased with increasing drug concentration. In contrast, cells from S. peregrina were protected from the effects of the venom when treated in a similar manner. Addition of certain divalent cations (Zn+2 and Ca+2) to the extracellular media 1 h postvenom incubation rescued both BTI-TN-5B1-4 and NIH SaPe4 cells, suggesting that protection was gained from closure of open pores rather than prevention of pore formation. Venom from N. vitripennis displayed no hemolytic activity toward sheep erythrocytes, supporting the view that venom intoxication is not by a nondiscriminate mechanism. A possible mode of action of the venom is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号