首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5-Ketofructose (5-KF) is a promising low-calorie natural sweetener with the potential to reduce health problems caused by excessive sugar consumption. It is formed by periplasmic oxidation of fructose by fructose dehydrogenase (Fdh) of Gluconobacter japonicus, a membrane-bound three-subunit enzyme containing FAD and three haemes c as prosthetic groups. This study aimed at establishing Pseudomonas putida KT2440 as a new cell factory for 5-KF production, as this host offers a number of advantages compared with the established host Gluconobacter oxydans. Genomic expression of the fdhSCL genes from G. japonicus enabled synthesis of functional Fdh in P. putida and successful oxidation of fructose to 5-KF. In a batch fermentation, 129 g l−1 5-KF were formed from 150 g l−1 fructose within 23 h, corresponding to a space-time yield of 5.6 g l−1 h−1. Besides fructose, also sucrose could be used as substrate for 5-KF production by plasmid-based expression of the invertase gene inv1417 from G. japonicus. In a bioreactor cultivation with pulsed sucrose feeding, 144 g 5-KF were produced from 358 g sucrose within 48 h. These results demonstrate that P. putida is an attractive host for 5-KF production.  相似文献   

2.
Summary The mechanism of antimicrobial action of hexahydro-1,3,5-triethyl-s-triazine (HHTT) was studied using the HHTT-resistant isolate,Pseudomonas putida 3-T-152, its HHTT-sensitive, novobiocin-cured derivative,P. putida 3-T-152 11:21,P. putida ATCC 12633,Pseudomonas aeruginosa PA01 andEscherichia coli J53 (RP4). HHTT was oxidized byP. putida 3-T-152, while respiration ofP. putida 3-T-152 11:21 was inhibited by HHTT. Chemical assays showed that HHTT released formaldehyde.P. putida 3-T-152 was highly resistant to formaldehyde, whileP. putida 3-T-152 11:21 was highly sensitive to formaldehyde. Both HHTT and formaldehyde acted similarly to inhibit proline uptake in bacterial cells and to inhibit the synthesis of the inducible enzymes, -galactosidase and glucose-6-phosphate dehydrogenase. HHTT did not have uncoupler-like activity.P. putida 3-T-152 used either HHTT or ethylamine, a component of HHTT, as a nitrogen source for growth, but neither HHTT, ethylamine or formaldehyde served as a carbon and energy source for growth. We concluded that a major mechanism of antimicrobial action of HHTT was through its degradation product, formaldehyde.  相似文献   

3.
Following transposon Tn5 mutagenesis of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2, mutants that were able to grow in the presence of the tryptophan analog 5-fluorotryptophan were selected. Seven of the 50 5-fluorotryptophan-resistant mutants overproduced the phytohormone indoleacetic acid (IAA). Of these seven mutants, the highest level of IAA was observed with strain P. putida GR12-2/aux1, which produced four times the amount of indoleacetic acid synthesized by the wild-type strain. Strain P. putida GR12-2/aux1, in contrast to the wild type, lost the ability to stimulate the elongation of the roots of canola seedlings under gnotobiotic conditions. The growth rate, siderophore production, and 1-aminocyclopropane-1-carboxylate deaminase activity of mutant strain P. putida GR12-2/aux1 were identical to those of the wild-type strain. The role of IAA in the mechanism of plant growth stimulation by P. putida GR12-2 and other plant growth-promoting rhizobacteria is discussed.  相似文献   

4.
Albinism in the sea cucumber Apostichopus japonicus (Selenka) may be a significant biomarker that can be used to obtain information about behaviors and growth of this species. The goal of this study was to compare the behaviors and growth rate between albino and normal A. japonicus. Total light intensity and specific growth rate were used as statistical indices. Diverse light intensities were tested in the laboratory and in the field to identify ecological characteristics of albino A. japonicus. Experimental results revealed that: (1) both albino and normal specimens had negative phototaxis; (2) normal A. japonicus were more responsive to intense light than albino species, and the latter could withstand longer periods of exposure to intense light; (3) normal A. japonicus grew faster than albino specimens; and (4) both normal and albino A. japonicus grew faster in natural light than in the other light intensities tested.  相似文献   

5.
The applicability of transgenic plants and plant growth-promoting bacteria to improve plant biomass accumulation as a phytoremediation strategy at a nickel (Ni)-contaminated field site was examined. Two crops of 4-day old non-transformed and transgenic canola (Brassica napus) seedlings in the presence and absence of Pseudomonas putida strain UW4 (crop #1) or P. putida strain HS-2 (crop #1 and 2) were transplanted at a Ni-contaminated field site in 2005. Overall, transgenic canola had increased growth but decreased shoot Ni concentrations compared to non-transformed canola, resulting in similar total Ni per plant. Under optimal growth conditions (crop #2), the addition of P. putida HS-2 significantly enhanced growth for non-transformed canola. Canola with P. putida HS-2 had trends of higher total Ni per plant than canola without P. putida HS-2, indicating the potential usefulness of this bacterium in phytoremediation strategies. Modifications to the planting methods may be required to increase plant Ni uptake.  相似文献   

6.
The substrate specificity of the two polymerases (PhaC1 and PhaC2) involved in the biosynthesis of medium‐chain‐length poly‐hydroxyalkanoates (mcl PHAs) in Pseudomonas putida U has been studied in vivo. For these kind of experiments, two recombinant strains derived from a genetically engineered mutant in which the whole pha locus had been deleted (P. putida U Δpha) were employed. These bacteria, which expresses only phaC1 (P. putida U Δpha pMC‐phaC1) or only phaC2 (P. putida U Δpha pMC‐phaC2), accumulated different PHAs in function of the precursor supplemented to the culture broth. Thus, the P. putida U Δpha pMC‐phaC1 strain was able to synthesize several aliphatic and aromatic PHAs when hexanoic, heptanoic, octanoic decanoic, 5‐phenylvaleric, 6‐phenylhexanoic, 7‐phenylheptanoic, 8‐phenyloctanoic or 9‐phenylnonanoic acid were used as precursors; the highest accumulation of polymers was observed when the precursor used were decanoic acid (aliphatic PHAs) or 6‐phenylhexanoic acid (aromatic PHAs). However, although it synthesizes similar aliphatic PHAs (the highest accumulation was observed when hexanoic acid was the precursor) the other recombinant strain (P. putida U Δpha pMC‐phaC2) only accumulated aromatic PHAs when the monomer to be polymerized was 3‐hydroxy‐5‐phenylvaleryl‐CoA. The possible influence of the putative three‐dimensional structures on the different catalytic behaviour of PhaC1 and PhaC2 is discussed.  相似文献   

7.
Pseudomonas putida has emerged as a promising host for the conversion of biomass-derived sugars and aromatic intermediates into commercially relevant biofuels and bioproducts. Most of the strain development studies previously published have focused on P. putida KT2440, which has been engineered to produce a variety of non-native bioproducts. However, P. putida is not capable of metabolizing pentose sugars, which can constitute up to 25% of biomass hydrolysates. Related P. putida isolates that metabolize a larger fraction of biomass-derived carbon may be attractive as complementary hosts to P. putida KT2440. Here we describe genetic tool development for P. putida M2, a soil isolate that can metabolize pentose sugars. The functionality of five inducible promoter systems and 12 ribosome binding sites was assessed to regulate gene expression. The utility of these expression systems was confirmed by the production of indigoidine from C6 and C5 sugars. Chromosomal integration and expression of non-native genes was achieved by using chassis-independent recombinase-assisted genome engineering (CRAGE) for single-step gene integration of biosynthetic pathways directly into the genome of P. putida M2. These genetic tools provide a foundation to develop hosts complementary to P. putida KT2440 and expand the ability of this versatile microbial group to convert biomass to bioproducts.  相似文献   

8.
We compared the seasonal changes in population density and nymphal development at different water temperatures and under different food conditions between two giant water bugs, Diplonychus japonicus and D. major, in Okayama, Japan. D. japonicus produced 1–2 generations a year, while D. major was strictly inivoltine. The developmental velocity was higher in D. japonicus than in D. major. The thermal constant of D. japonicus was less than that of D. major. These results suggest that D. japonicus is adapted, to higher water temperature than D. major. In the field, D. japonicus preyed predominately on Lymnaeidae and Physidae snails, while D. major preyed on aquatic insects such as dragonfly nymphs.  相似文献   

9.
The Pseudomonas putida strain SP1 was isolated from marine environment and was found to be resistant to 280 μM HgCl2. SP1 was also highly resistant to other metals, including CdCl2, CoCl2, CrCl3, CuCl2, PbCl2, and ZnSO4, and the antibiotics ampicillin (Ap), kanamycin (Kn), chloramphenicol (Cm), and tetracycline (Tc). mer operon, possessed by most mercury-resistant bacteria, and other diverse types of resistant determinants were all located on the bacterial chromosome. Cold vapor atomic absorption spectrometry and a volatilization test indicated that the isolated P. putida SP1 was able to volatilize almost 100% of the total mercury it was exposed to and could potentially be used for bioremediation in marine environments. The optimal pH for the growth of P. putida SP1 in the presence of HgCl2 and the removal of HgCl2 by P. putida SP1 was between 8.0 and 9.0, whereas the optimal pH for the expression of merA, the mercuric reductase enzyme in mer operon that reduces reactive Hg2+ to volatile and relatively inert monoatomic Hg0 vapor, was around 5.0. LD50 of P. putida SP1 to flounder and turbot was 1.5 × 109 CFU. Biofilm developed by P. putida SP1 was 1- to 3-fold lower than biofilm developed by an aquatic pathogen Pseudomonas fluorescens TSS. The results of this study indicate that P. putida SP1 is a low virulence strain that can potentially be applied in the bioremediation of HgCl2 contamination over a broad range of pH.  相似文献   

10.
The effects of Pseudomonas putida ATH2-1RI/9 and Acidovorax delafieldii ATH2-2RS/1 on rhizosphere colonization, cyanide production, and growth of velvetleaf and corn was examined. When formulated in alginate beads and inoculated onto velvetleaf and corn plants (109 CFU/plant), only P. putida ATH2-1RI/9 consistently reduced velvetleaf growth. Neither isolate inhibited corn growth. Interestingly the levels of P. putida ATH2-1RI/9 in the velvetleaf rhizosphere were 1000-fold higher (7 × 107 CFU/g root) than the A. delafieldii ATH2-2RS/1 populations. Cyanide (53–68 mM/g root) was recovered from the P. putida ATH2-1RI/9-inoculated velvetleaf plants. In contrast both A. delafieldii ATH2-2RS/1 and P. putida ATH2-1RI/9 colonized the corn rhizosphere to the same extent (1–5 × 107 CFU/g root), producing 1 mM and 14 mM/g root respectively. These results suggest that bacterial formulation methods can influence the effectiveness of deleterious rhizobacteria in reducing weed growth.  相似文献   

11.
Mung bean cuttings were dipped in solutions of wild type and mutant forms of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 and then incubated for several days until roots formed. The bacteria P. putida GR12-2 and P. putida GR12-2/aux1 mutant do not produce detectable levels of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, whereas P. putida GR12-2/acd36 is an ACC deaminase minus mutant. All bacteria produce the phytohormone indole-3-acetic acid (IAA), and P. putida GR12-2/aux1 overproduces it. Treatment of cuttings with the above-mentioned bacteria affected the rates of ethylene production in the cuttings in a way that can be explained by the combined effects of the activity of ACC deaminase localized in the bacteria and bacterial produced IAA. P. putida GR12-2 and P. putida GR12-2/acd36-treated cuttings had a significantly higher number of roots compared with cuttings rooted in water. In addition, the wild type influenced the development of longer roots. P. putida GR12-2/aux1 stimulated the highest rates of ethylene production but did not influence the number of roots. These results are consistent with the notion that ethylene is involved in the initiation and elongation of adventitious roots in mung bean cuttings. Received October 21, 1998; accepted January 3, 1999  相似文献   

12.
13.
We tested the synthesis and in vitro activity of the poly(3-hydroxyalkanoate) (PHA) polymerase 1 from Pseudomonas putida GPo1 in both P. putida GPp104 and Escherichia coli JMU193. The polymerase encoding gene phaC1 was expressed using the inducible PalkB promoter. It was found that the production of polymerase could be modulated over a wide range of protein levels by varying inducer concentrations. The optimal inducer dicyclopropylketone concentrations for PHA production were at 0.03% (v/v) for P. putida and 0.005% (v/v) for E. coli. Under these concentrations the maximal polymerase level synthesized in the E. coli host (6% of total protein) was about three- to fourfold less than that in P. putida (20%), whereas the maximal level of PHA synthesized in the E. coli host (8% of total cell dry weight) was about fourfold less than that in P. putida (30%). In P. putida, the highest specific activity of polymerase was found in the mid-exponential growth phase with a maximum of 40 U/g polymerase, whereas in E. coli, the maximal specific polymerase activity was found in the early stationary growth phase (2 U/g polymerase). Our results suggest that optimal functioning of the PHA polymerase requires factors or a molecular environment that is available in P. putida but not in E. coli.  相似文献   

14.
采用高通量(Illumina Miseq)测序技术对栽培和野生2种生境下川麦冬根围的丛枝菌根(AM)真菌多样性和群落结构进行测定,并结合土壤理化因子进行相关性分析,以明确两种生境下川麦冬根围土壤AM真菌多样性和优势群落的分布特点,探讨AM真菌群落分布差异的驱动因子,为AM真菌应用于麦冬生产提供理论依据和技术支持。结果表明:(1)不同生境下川麦冬根围土壤中共鉴定出AM真菌3属10种,其中野生川麦冬根围土壤鉴定出的AM真菌3属7种,分别隶属于无梗囊霉属(Acaulospora)、多孢囊霉属(Diversispora)和球囊霉属(Glomus),而栽培环境下鉴定出AM真菌1属6种,隶属于球囊霉属。2个生境优势属均为球囊霉属。(2)不同生境下川麦冬根围AM真菌之间存在显著差异,野生生境下川麦冬根围土壤AM真菌多样性指数ACE和Shannon均显著高于人工栽培生境,而Simpson指数则相反。(3)相关性分析表明,AM真菌多样性指数及群落组成结构均与土壤理化因子存在相关性,其中全钾(TK)、全磷(TP)、全氮(TN)对AM真菌多样性指数和群落结构组成均存在显著影响。研究认为,不同生境下川麦冬根围AM真菌群落存在显著差异,球囊霉属为川麦冬互利共生的关键属,TK、TP、TN是不同生境川麦冬根围AM真菌群落差异的主要驱动因子。  相似文献   

15.
Aedes (Hulecoeteomyia) japonicus japonicus (Theobald, 1901) has recently established across North America and Central Europe. A 3‐year survey was conducted in northwestern Croatian regions from 2013 to 2015 using mosquito ovitraps at possible points of entry and house yards, occasionally complemented by larval collections from cemetery vases. In the first year, the survey investigated the county bordering Slovenia, where the first detection of Ae. j. japonicus had taken place on 28 August 2013. During the next 2 years, Ae. j. japonicus was detected in this area from early May until late October. In 2015, several counties further to the east were included in the survey, leading to the detection of Ae. j. japonicus approximately 100 km eastward from the initially surveyed region. Given a moderate continental climate and homogeneous climatic conditions in this part of Europe, the eastward spread of Ae. j. japonicus can be expected to continue.  相似文献   

16.
 This study examined which culture fraction of the plant-growth-promoting bacterium Pseudomonas putida (Trevisan) Migula has an effect on growth and mycorrhiza formation of maize (Zea mays L.). Shoot dry weight and total leaf area of plants did not increase after inoculation with Glomus fistulosum but were significantly higher than the controls when the plants were dualinoculated with G. fistulosum and living cells of P. putida. Mycorrhizal infection of the roots was significantly higher when plants were inoculated with G. fistulosum together with living cells of P. putida or with G. fistulosum and dialysed cell extracts of P. putida than with G. fistulosum alone. Development of arbuscular mycorrhizal (AM) extraradical hyphae and the proportion of extraradical hyphae showing NADH diaphorase activity were significantly enhanced by inoculation of plants with living cells of P. putida or dialysed cell extracts of P. putida. No stimulation of extraradical hyphae proliferation from in vitro incubated mycorrhizal root segments was observed after application of culture fractions of P. putida. However, the percentage contamination of the root segments by extraneous filamentous fungi significantly decreased in the presence of livingcells of P. putida. Accepted: 12 January 1996  相似文献   

17.
A bacterium, CP1, identified as Pseudomonas putida strain, was investigated for its ability to grow on and degrade mono-chlorophenols and phenols as sole carbon sources in aerobic shaking batch culture. The organism degraded up to 1.56 mM 2- and 3-chlorophenol, 2.34 mM 4-chlorophenol and 8.5 mM phenol using an ortho-cleavage pathway. P. putida CP1, acclimated to degrade 2-chlorophenol, was capable of 3-chlorocatechol degradation, while P. putida, acclimated to 4-chlorophenol degradation, degraded 4-chlorocatechol. Growth of P. putida CP1 on higher concentrations of the mono-chlorophenols, ≥1.56 mM 4-chlorophenol and ≥0.78 mM 2- and 3-chlorophenol, resulted in decreases in cell biomass despite metabolism of the substrates, and the formation of large aggregates of cells in the culture medium. Increases in cell biomass with no clumping of the cells resulted from growth of P. putida CP1 on phenol or on lower concentrations of mono-chlorophenol. Bacterial adherence to hydrocarbons (BATH) assays showed cells grown on the higher concentrations of mono-chlorophenol to be more hydrophobic than those grown on phenol and lower concentrations of mono-chlorophenol. The results suggested that increased hydrophobicity and autoaggregation of P. putida CP1 were a response to toxicity of the added substrates. Journal of Industrial Microbiology & Biotechnology (2002) 28, 316–324 DOI: 10.1038/sj/jim/7000249 Received 27 June 2001/ Accepted in revised form 09 February 2002  相似文献   

18.
Summary The kinetics of H2S oxidation in bioreactors with separately packed autotrophic Thiobacillus thioparus CH11 and heterotrophic Pseudomonas putida CH11 were evaluated. The reaction rates were determined to be first-order below 20 ppm, zero-order above 60 ppm, and fractional-order in the intermediate concentration ranges for the Thiobacillus thioparus CH11 bioreactor, and first-order below 35 ppm, zero-order above 80 ppm, and fractional-order in the intermediate concentration ranges for the Pseudomonas putida CH11 bioreactor. The saturation constants for H2S by Thiobacillus thioparus CH11 and Pseudomonas putida CH11 were calculated to be 30.3 ppm and 44.2 ppm, respectively.  相似文献   

19.
Jung  Min-Min  Hagiwara  Atsushi 《Hydrobiologia》2001,(1):123-127
Inconsistent results have been obtained on the population growth of Brachionus rotundiformis and Tigriopus japonicus, when results from single-species and two-species mixed cultures are compared. Bacteria growth was not regulated in these experiments, which could be the cause for this. In order to test this possibility, we conducted similar experiments under axenic and synxenic (with presence of one species of bacteria) conditions. The population growth of B. rotundiformis was suppressed by the presence of T. japonicus in axenic cultures. T. japonicus could not persist in axenic cultures, but its population increased when grown in synxenic cultures. T. japonicus used RT bacteria strain as a food source, while these bacteria were toxic to B. rotundiformis. These results suggest that bacteria can modify the interspecific relationship between B. rotundiformis and T. japonicus.  相似文献   

20.
We studied the effect of the common ascidian Styela clava on the growth of small holothurians of the species Apostichopus japonicus (Selenka, 1867). In a traditional aquaculture system, the oxygen consumption rates, ammonia excretion rates, and ingestion rates of small A. japonicus were reduced significantly, which suggested that this group was stressed by the presence of large A. japonicus, and that this stress grew stronger with time. Oxygen consumption rates, ammonia excretion rates, and ingestion rates of small A. japonicus in an integrated aquaculture (IA) system with S. clava, microalgae, and A. japonicus were higher than those observed in the traditional culture system. Metabolic and digestive enzymes were more active in small A. japonicus in the IA system than in those in the traditional aquaculture system. These results suggest that the IA model did not affect the growth of large A. japonicas, but produced a marked positive impact on the growth of small individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号