首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Minibrain kinase/dual-specificity tyrosine phosphorylation-regulated kinase (Mnb/Dyrk1A) is a proline-directed serine/threonine kinase encoded in the Down syndrome critical region of human chromosome 21. This kinase has been shown to phosphorylate dynamin 1 and synaptojanin 1. Here we report that amphiphysin I (Amph I) is also a Mnb/Dyrk1A substrate. This kinase phosphorylated native Amph I in rodent brains and recombinant human Amph I expressed in Escherichia coli. Serine 293 (Ser-293) was identified as the major site, whereas serine 295 and threonine 310 were found as minor kinase sites. In cultured cells, recombinant Amph I was phosphorylated at Ser-293 by endogenous kinase(s). Because mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) has been suggested to phosphorylate Amph I at Ser-293, our efforts addressed whether Ser-293 is phosphorylated in vivo by MAPK/ERK or by Mnb/Dyrk1A. Overnight serum-withdrawal inactivated MAPK/ERK; nonetheless, Ser-293 was phosphorylated in Chinese hamster ovary and SY5Y cells. Epigallocatechin-3-gallate, a potent Mnb/Dyrk1A inhibitor in vitro, apparently reduced the phosphorylation at Ser-293, whereas PD98059, a potent MAPK/ERK inhibitor, did not. High frequency stimulation of mouse hippocampal slices reduced the phosphorylation at Ser-293, albeit in the midst of MAPK/ERK activation. The endophilin binding in vitro was inhibited by phosphorylating Amph I with Mnb/Dyrk1A. However, phosphorylation at Ser-293 did not appear to alter cellular distribution patterns of the protein. Our results suggest that Mnb/Dyrk1A, not MAPK/ERK, is responsible for in vivo phosphorylation of Amph I at Ser-293 and that phosphorylation changes the recruitment of endophilin at the endocytic sites.  相似文献   

2.
The chemokine receptor CXCR4 is a widely expressed G protein-coupled receptor that has been implicated in a number of diseases including human immunodeficiency virus, cancer, and WHIM syndrome, with the latter two involving dysregulation of CXCR4 signaling. To better understand the role of phosphorylation in regulating CXCR4 signaling, tandem mass spectrometry and phospho-specific antibodies were used to identify sites of agonist-promoted phosphorylation. These studies demonstrated that Ser-321, Ser-324, Ser-325, Ser-330, Ser-339, and two sites between Ser-346 and Ser-352 were phosphorylated in HEK293 cells. We show that Ser-324/5 was rapidly phosphorylated by protein kinase C and G protein-coupled receptor kinase 6 (GRK6) upon CXCL12 treatment, whereas Ser-339 was specifically and rapidly phosphorylated by GRK6. Ser-330 was also phosphorylated by GRK6, albeit with slower kinetics. Similar results were observed in human astroglia cells, where endogenous CXCR4 was rapidly phosphorylated on Ser-324/5 by protein kinase C after CXCL12 treatment, whereas Ser-330 was slowly phosphorylated. Analysis of CXCR4 signaling in HEK293 cells revealed that calcium mobilization was primarily negatively regulated by GRK2, GRK6, and arrestin3, whereas GRK3, GRK6, and arrestin2 played a primary role in positively regulating ERK1/2 activation. In contrast, GRK2 appeared to play a negative role in ERK1/2 activation. Finally, we show that arrestin association with CXCR4 is primarily driven by the phosphorylation of far C-terminal residues on the receptor. These studies reveal that site-specific phosphorylation of CXCR4 is dynamically regulated by multiple kinases resulting in both positive and negative modulation of CXCR4 signaling.  相似文献   

3.
Neurofilament (NF), a major neuronal intermediate filament, is composed of three subunits, NF-L, NF-M, and NF-H. All three subunits contain a well conserved glutamate (E)-rich region called "E-segment" in the N terminus of the tail region. Although the E-segments of NF-L and NF-M are phosphorylated by casein kinases, it has not been observed in NF-H. Using mass spectrometric analysis, we identified phosphorylation of the E-segment of NF-H, prepared from rat spinal cords, at Ser-493 and Ser-501 in the Ser-Pro sequences. The E-segment kinase was isolated from rat brain extract using column chromatography and identified as glycogen synthase kinase (GSK) 3beta. GSK3beta was shown to phosphorylate at Ser-493 in vitro by phosphopeptide mapping and site-directed mutagenesis, and in vivo in HEK293 cells using the phospho-Ser-493 antibody, but did not phosphorylate Ser-501. GSK3beta preferred Ser-493 to the KSP-repeated sequences for phosphorylation sites in the NF-H tail domain. Moreover, Ser-493 was a better phosphorylation site for GSK3beta than other proline-directed protein kinases, Cdk5/p35 and ERK. GSK3beta in the spinal cord extract was associated with NF cytoskeletons. Taken together, we concluded that Ser-493 in the E-segment of NF-H is phosphorylated by GSK3beta in rat spinal cords.  相似文献   

4.
Full activation of protein kinase B (PKB)/Akt requires phosphorylation on Thr-308 and Ser-473 by 3-phosphoinositide-dependent kinase-1 (PDK1) and Ser-473 kinase (S473K), respectively. Although PDK1 has been well characterized, the identification of the S473K remains controversial. A major PKB Ser-473 kinase activity was purified from the membrane fraction of HEK293 cells and found to be DNA-dependent protein kinase (DNA-PK). DNA-PK co-localized and associated with PKB at the plasma membrane. In vitro, DNA-PK phosphorylated PKB on Ser-473, resulting in a approximately 10-fold enhancement of PKB activity. Knockdown of DNA-PK by small interfering RNA inhibited Ser-473 phosphorylation induced by insulin and pervanadate. DNA-PK-deficient glioblastoma cells did not respond to insulin at the level of Ser-473 phosphorylation; this effect was restored by complementation with the human PRKDC gene. We conclude that DNA-PK is a long sought after kinase responsible for the Ser-473 phosphorylation step in the activation of PKB.  相似文献   

5.
Zinc-finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses, including HIV-1, Ebola virus, and Sindbis virus. ZAP binds directly to specific viral mRNAs and recruits cellular mRNA degradation machinery to degrade the target RNA. ZAP has also been suggested to repress translation of the target mRNA. In this study, we report that ZAP is phosphorylated by glycogen synthase kinase 3β (GSK3β). GSK3β sequentially phosphorylated Ser-270, Ser-266, Ser-262, and Ser-257 of rat ZAP. Inhibition of GSK3β by inhibitor SB216763 or down-regulation of GSK3β by RNAi reduced the antiviral activity of ZAP. These results indicate that phosphorylation of ZAP by GSK3β modulates ZAP activity.  相似文献   

6.
c-Jun is an immediate-early gene whose degradation by the proteasome pathway is required for an efficient transactivation. In this report, we demonstrated that the c-Jun coactivator, nascent polypeptide associated complex and coactivator alpha (alphaNAC) was also a target for degradation by the 26S proteasome. The proteasome inhibitor lactacystin increased the metabolic stability of alphaNAC in vivo, and lactacystin, MG-132, or epoxomicin treatment of cells induced nuclear translocation of alphaNAC. We have shown that the ubiquitous kinase glycogen synthase kinase 3beta (GSK3beta) directly phosphorylated alphaNAC in vitro and in vivo. Inhibition of the endogenous GSKappa3beta activity resulted in the stabilization of this coactivator in vivo. We identified the phosphoacceptor site in the C-terminal end of the coactivator, on position threonine 159. We demonstrated that the inhibition of GSK3beta activity by treatment of cells with the inhibitor 5-iodo-indirubin-3'-monoxime, as well as with a dominant-negative GSK3beta mutant, induced the accumulation of alphaNAC in the nuclei of cells. Mutation of the GSK3beta phosphoacceptor site on alphaNAC induced a significant increase of its coactivation potency. We conclude that GSK3beta-dependent phosphorylation of alphaNAC was the signal that directed the protein to the proteasome. The accumulation of alphaNAC caused by the inhibition of the proteasome pathway or the activity of GSK3beta contributes to its nuclear translocation and impacts on its coactivating function.  相似文献   

7.
Phosphorylation and regulation of beta-catenin by casein kinase I epsilon   总被引:2,自引:0,他引:2  
beta-Catenin transduces cytosolic signals to the nucleus in the Wnt pathway. The Wnt ligand stabilizes cytosolic beta-catenin protein, preventing its phosphorylation by inhibiting glycogen synthase kinase 3 (GSK3). Serine-33 and -37 of beta-catenin are GSK3 phosphorylation sites that serve as recognition sites for the beta-TRCP-ubiquitin ligase complex, which ultimately triggers beta-catenin degradation. Mutations at those two sites, as well as in Ser-45, stabilize beta-catenin. Recently, casein kinase I epsilon (CKI epsilon) has been shown to be a positive regulator of the Wnt pathway. Its action mechanism, however, remains unknown. Here I show that Ser-45 is phosphorylated not by GSK3 but by CKI epsilon. Axin, a scaffold protein that binds CKI epsilon and beta-catenin, enhances this CKI epsilon-mediated phosphorylation. Overexpression of CKI epsilon in cells increases the amount of beta-catenin phosphorylated at Ser-45. Ser-45 phosphorylated beta-catenin is a better substrate for GSK3, which suggests that CKI epsilon and GSK3 may co-operate in destabilizing beta-catenin. In spite of the fact that CKI epsilon was found as a positive regulator of the Wnt pathway, mutational analysis suggests that mutation of Ser-45 regulates beta-catenin stability by inhibiting the ability of GSK3 to phosphorylate Ser-33 and -37, thereby disrupting the interaction between beta-catenin, beta-TRCP and Axin. I propose that phosphorylation of Ser-45 by CKI epsilon plays an important role in regulating beta-catenin stability.  相似文献   

8.
9.
Beyond regulating Rap activity, little is known regarding the regulation and function of the Rap GTPase-activating protein Rap1GAP. Tuberin and E6TP1 protein levels are tightly regulated through ubiquitin-mediated proteolysis. A role for these RapGAPs, along with SPA-1, as tumor suppressors has been demonstrated. Whether Rap1GAP performs a similar role was investigated. We now report that Rap1GAP protein levels are dynamically regulated in thyroid-stimulating hormone (TSH)-dependent thyroid cells. Upon TSH withdrawal, Rap1GAP undergoes a net increase in phosphorylation followed by proteasome-mediated degradation. Sequence analysis identified two putative destruction boxes in the Rap1GAP C-terminal domain. Glycogen synthase kinase 3beta (GSK3beta) phosphorylated Rap1GAP immunoprecipitated from thyroid cells, and GSK3beta inhibitors prevented phosphorylation and degradation of endogenous Rap1GAP. Co-expression of GSK3beta and Rap1GAP in human embryonic kidney 293 cells stimulated proteasome-dependent Rap1GAP turnover. Mutational analysis established a role for serine 525 in the regulation of Rap1GAP stability. Overexpression of Rap1GAP in thyroid cells impaired TSH/cAMP-stimulated p70S6 kinase activity and cell proliferation. These data are the first to show that Rap1GAP protein levels are tightly regulated and are the first to support a role for Rap1GAP as a tumor suppressor.  相似文献   

10.
The phosphatase and tensin homologue (PTEN) tumor suppressor is a phosphatidylinositol D3-phosphatase that counteracts the effects of phosphatidylinositol 3-kinase and negatively regulates cell growth and survival. PTEN is itself regulated by phosphorylation on multiple serine and threonine residues in its C terminus. Previous work has implicated casein kinase 2 (CK2) as the kinase responsible for this phosphorylation. Here we showed that CK2 does not phosphorylate all sites in PTEN and that glycogen synthase kinase 3beta (GSK3beta) also participates in PTEN phosphorylation. Although CK2 mainly phosphorylated PTEN at Ser-370 and Ser-385, GSK3beta phosphorylated Ser-362 and Thr-366. More importantly, prior phosphorylation of PTEN at Ser-370 by CK2 strongly increased its phosphorylation at Thr-366 by GSK3beta, suggesting that the two may synergize. Using RNA interference, we showed that GSK3 phosphorylates PTEN in intact cells. Finally, PTEN phosphorylation was affected by insulin-like growth factor in intact cells. We concluded that multiple kinases, including CK2 and GSK3beta, participate in PTEN phosphorylation and that GSK3beta may provide feedback regulation of PTEN.  相似文献   

11.
Alzheimer disease neurons are characterized by extraneuronal plaques formed by aggregated amyloid-β peptide and by intraneuronal tangles composed of fibrillar aggregates of the microtubule-associated Tau protein. Tau is mostly found in a hyperphosphorylated form in these tangles. Glycogen synthase kinase 3β (GSK3β) is a proline-directed kinase generally considered as one of the major players that (hyper)phosphorylates Tau. The kinase phosphorylates mainly (Ser/Thr)-Pro motifs and is believed to require a priming activity by another kinase. Here, we use an in vitro phosphorylation assay and NMR spectroscopy to characterize in a qualitative and quantitative manner the phosphorylation of Tau by GSK3β. We find that three residues can be phosphorylated (Ser-396, Ser-400, and Ser-404) by GSK3β alone, without priming. Ser-404 is essential in this process, as its mutation to Ala prevents all activity of GSK3β. However, priming enhances the catalytic efficacy of the kinase, as initial phosphorylation of Ser-214 by the cAMP-dependent protein kinase (PKA) leads to the rapid modification by GSK3β of four regularly spaced additional sites. Because the regular incorporation of negative charges by GSK3β leads to a potential parallel between phospho-Tau and heparin, we investigated its interaction with the heparin/low density lipoprotein receptor binding domain of human apolipoprotein E. We indeed observed an interaction between the GSK3β-promoted regular phospho-pattern on Tau and the apolipoprotein E fragment but none in the absence of phosphorylation or the presence of an irregular phosphorylation pattern by the prolonged activity of PKA. Apolipoprotein E is therefore able to discriminate and interact with specific phosphorylation patterns of Tau.  相似文献   

12.
CTP synthetase (EC 6.3.4.2, UTP:ammonia ligase (ADP-forming)) is an essential enzyme in all organisms; it generates the CTP required for the synthesis of nucleic acids and membrane phospholipids. In this work we showed that the human CTP synthetase genes, CTPS1 and CTPS2, were functional in Saccharomyces cerevisiae and complemented the lethal phenotype of the ura7Delta ura8Delta mutant lacking CTP synthetase activity. The expression of the CTPS1- and CTPS2-encoded human CTP synthetase enzymes in the ura7Delta ura8Delta mutant was shown by immunoblot analysis of CTP synthetase proteins, the measurement of CTP synthetase activity, and the synthesis of CTP in vivo. Phosphoamino acid and phosphopeptide mapping analyses of human CTP synthetase 1 isolated from (32)P(i)-labeled cells revealed that the enzyme was phosphorylated on multiple serine residues in vivo. Activation of protein kinase A activity in yeast resulted in transient increases (2-fold) in the phosphorylation of human CTP synthetase 1 and the cellular level of CTP. Human CTP synthetase 1 was also phosphorylated by mammalian protein kinase A in vitro. Using human CTP synthetase 1 purified from Escherichia coli as a substrate, protein kinase A activity was dose- and time-dependent, and dependent on the concentrations of CTP synthetase 1 and ATP. These studies showed that S. cerevisiae was useful for the analysis of human CTP synthetase phosphorylation.  相似文献   

13.
We have previously reported that in thrombin-stimulated human platelets, cytosolic phospholipase A(2) (cPLA2) is phosphorylated on Ser-505 by p38 protein kinase and on Ser-727 by an unknown kinase. Pharmacological inhibition of p38 leads to inhibition of cPLA2 phosphorylation at both Ser-505 and Ser-727 suggesting that the kinase responsible for phosphorylation on Ser-727 is activated in a p38-dependent pathway. By using Chinese hamster ovary, HeLa, and HEK293 cells stably transfected with wild type and phosphorylation site mutant forms of cPLA2, we show that phosphorylation of cPLA2 at both Ser-505 and Ser-727 and elevation of Ca(2+) leads to its activation in agonist-stimulated cells. The p38-activated protein kinases MNK1, MSK1, and PRAK1 phosphorylate cPLA2 in vitro uniquely on Ser-727 as shown by mass spectrometry. Furthermore, MNK1 and PRAK1, but not MSK1, is present in platelets and undergo modest activation in response to thrombin. Expression of a dominant negative form of MNK1 in HEK293 cells leads to significant inhibition of cPLA2-mediated arachidonate release. The results suggest that MNK1 or a closely related kinase is responsible for in vivo phosphorylation of cPLA2 on Ser-727.  相似文献   

14.
Glycogen synthase kinase 3beta (GSK3 beta) is implicated in many biological events, including embryonic development, cell differentiation, apoptosis, and insulin response. GSK3 beta has now been shown to induce activation of the mitogen-activated protein kinase kinase kinase MEKK1 and thereby to promote signaling by the stress-activated protein kinase pathway. GSK3 beta-binding protein blocked the activation of MEKK1 by GSK3 beta in human embryonic kidney 293 (HEK293) cells. Furthermore, co-immunoprecipitation analysis revealed a physical association between endogenous GSK3 beta and MEKK1 in HEK293 cells. Overexpression of axin1, a GSK3 beta-regulated scaffolding protein, did not affect the physical interaction between GSK3 beta and MEKK1 in transfected HEK293 cells. Exposure of cells to insulin inhibited the activation of MEKK1 by GSK3 beta, and this inhibitory effect of insulin was abolished by the phosphatidylinositol 3-kinase inhibitor wortmannin. Furthermore, MEKK1 activity under either basal or UV- or tumor necrosis factor alpha-stimulated conditions was reduced in embryonic fibroblasts derived from GSK3 beta knockout mice compared with that in such cells from wild-type mice. Ectopic expression of GSK3 beta increased both basal and tumor necrosis factor alpha-stimulated activities of MEKK1 in GSK3 beta(-/-) cells. Together, these observations suggest that GSK3 beta functions as a natural activator of MEKK1.  相似文献   

15.
Protein kinase B/Akt (PKB/Akt) is a member of the ACG kinase family, which also includes protein kinase C, that phosphorylates a number of 14-3-3-binding proteins. 14-3-3 protein regulation of protein kinase C activity is modulated by 14-3-3 phosphorylation. We examined the hypothesis that PKB/Akt interacts with and phosphorylates 14-3-3zeta, leading to modulation of dimerization. By glutathione S-transferase pull-down, Akt precipitated recombinant 14-3-3zeta and endogenous 14-3-3zeta from HEK293 cell lysates. Recombinant active PKB/Akt phosphorylated recombinant 14-3-3zeta in an in vitro kinase assay. Transfection of active PKB/Akt into HEK293 cells resulted in phosphorylation of 14-3-3zeta. Based on a motif search of 14-3-3zeta, a potential PKB/Akt phosphorylation site, Ser-58, was mutated to alanine. PKB/Akt was unable to phosphorylate this mutant protein. Incubation of 14-3-3zeta with recombinant active PKB/Akt resulted in phosphorylation of 45% of the protein, as determined by a pI shift on two-dimensional electrophoresis, but 14-3-3zeta dimerization was not altered. These data indicate that PKB/Akt phosphorylates Ser-58 on 14-3-3zeta both in vitro and in intact cells. The functional relevance of this phosphorylation remains to be determined.  相似文献   

16.
17.
A novel indirubin analog, indirubin-5-nitro-3'-monoxime, inhibited cell proliferation against various human cancer cells. Additional studies indicate that the mechanism of action of this analog against human lung cancer cells might be to arrest cell cycle progression at the G2/M phase and induce apoptosis via p53- and mitochondria-dependent pathways. These data suggest that indirubin-5-nitro-3'-monoxime might be a novel candidate for development of anticancer agents.  相似文献   

18.
Mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MAPKAPK2) mediates multiple p38 MAPK-dependent inflammatory responses. To define the signal transduction pathways activated by MAPKAPK2, we identified potential MAPKAPK2 substrates by using a functional proteomic approach consisting of in vitro phosphorylation of neutrophil lysate by active recombinant MAPKAPK2, protein separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and phosphoprotein identification by peptide mass fingerprinting with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and protein database analysis. One of the eight candidate MAPKAPK2 substrates identified was the adaptor protein, 14-3-3zeta. We confirmed that MAPKAPK2 interacted with and phosphorylated 14-3-3zeta in vitro and in HEK293 cells. The chemoattractant formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated p38-MAPK-dependent phosphorylation of 14-3-3 proteins in human neutrophils. Mutation analysis showed that MAPKAPK2 phosphorylated 14-3-3zeta at Ser-58. Computational modeling and calculation of theoretical binding energies predicted that both phosphorylation at Ser-58 and mutation of Ser-58 to Asp (S58D) compromised the ability of 14-3-3zeta to dimerize. Experimentally, S58D mutation significantly impaired both 14-3-3zeta dimerization and binding to Raf-1. These data suggest that MAPKAPK2-mediated phosphorylation regulates 14-3-3zeta functions, and this MAPKAPK2 activity may represent a novel pathway mediating p38 MAPK-dependent inflammation.  相似文献   

19.
20.
IQGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner   总被引:2,自引:0,他引:2  
In eukaryotic cells IQGAP1 binds to and alters the function of several proteins, including actin, E-cadherin, beta-catenin, Cdc42, and Rac1. Yeast IQGAP1 homologues have an important role in cytoskeletal organization, suggesting that modulation of the cytoskeleton is a fundamental role of IQGAP1. Phosphorylation is a common mechanism by which cells regulate protein function. Here we demonstrate that endogenous IQGAP1 is highly phosphorylated in MCF-7 human breast epithelial cells. Moreover, incubation of cells with phorbol 12-myristate 13-acetate (PMA) stimulated phosphate incorporation into IQGAP1. By using mass spectrometry, Ser-1443 was identified as the major site phosphorylated on IQGAP1 in intact cells treated with PMA. Ser-1441 was also phosphorylated but to a lesser extent. In vitro analysis with purified proteins documented that IQGAP1 is a substrate for protein kinase Cepsilon, which catalyzes phosphorylation on Ser-1443. Consistent with these findings, inhibition of cellular protein kinase C via bisindolymaleimide abrogated Ser-1443 phosphorylation in response to PMA. To elucidate the biological sequelae of phosphorylation, Ser-1441 and Ser-1443 were converted either to alanine, to create a nonphosphorylatable construct, or to glutamic acid and aspartic acid, respectively, to generate a phosphomimetic IQGAP1. Although overexpression of wild type IQGAP1 promoted neurite outgrowth in N1E-115 neuroblastoma cells, the nonphosphorylatable IQGAP1 S1441A/S1443A had no effect. In contrast, the S1441E/S1443D mutation markedly enhanced the ability of IQGAP1 to induce neurite outgrowth. Our data disclose that IQGAP1 is phosphorylated at multiple sites in intact cells and that phosphorylation of IQGAP1 will alter its ability to regulate the cytoskeleton of neuronal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号