首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of 10 to 100 μg indol-3-ylacetic acid to the leaves of rooted cuttings of aspen caused inhibition of root growth after three hours. Root growth recovered within 24 hours after IAA treatment. Swelling of the root tips occurred during the period of inhibition. The roots responded in the same way if IAA was applied in solution to the cut stem surface above the mature leaves. IAA-1-14C applied through a cut stem surface or to mature leaves was translocated downwards in the plants and labelled IAA could be isolated from the roots 3 to 24 hours after application. The ethanol-soluble activity decreased rapidly indicating a rapid metabolism or binding of IAA. IAA-1-14C applied to growing leaves was not translocated. From the rapid response of root growth it was concluded that IAA was translocated into the roots at a rate of about 7 cm per hour. This rate of translocation indicates that the sieve tubes are involved in the translocation. Implications of the results for the translocation of endogenous auxin into the roots are discussed.  相似文献   

2.
Asymmetries in root growth in response to localized aerial defoliation were examined in Coleus rehneltianus (Lamiaceae). We confirmed that assimilate transport was sectorial by examining the distribution of 14C-labeled carbohydrates following a 24-h chase period. Integrated physiological units (IPUs), or sectors, extended from the leaves into the roots, and this was reflected in the differential growth of roots following artificial defoliation of part of the leaf canopy. When defoliation was localized within leaves or leaf halves within sectors, roots grew asymmetrically, with decreased root growth in defoliated sectors. Three root populations were identified by their location and growth responses: stem side, stem corner, and bottom side roots, and asymmetric growth was observed in all three populations. Only the growth of stem corner roots, which made up 35–90% of dry mass of the total root population, was influenced by the pattern of aerial defoliation. In contrast, asymmetries in the growth of the other two root populations appeared to reflect the distribution of leaf biomass prior to defoliation.  相似文献   

3.
To determine the role of adventitious roots in supplying water to Ipomoea pes-caprae (L.) Sweet (Convolvulaceae), we examined the effects of water deficit on water uptake and the growth patterns of leaves and shoots. After stopping the water supply from the primary root or adventitious roots, the water-uptake rate of the other root system increased steeply within 90–100 min to a level of 90% of the pretreatment water-uptake rate of the whole plant. Thus, the primary and adventitious roots can compensate for a decrease in the water-uptake rate of the whole plant caused by dehydration. The continuous growth of leaves and shoots after dehydration suggests that an increase in the water-uptake rate by either root system can support plant growth, although the growth rates of immature leaves in plants with no water supply from the primary or adventitious roots were lower than in controls. We conclude that the water supply from adventitious roots contributes to the survival and growth of plants, and will be important for vegetative propagation.  相似文献   

4.
Two experiments were performed in simplified soil-less systems to study how roots respond to changes in mechanical impedance. In the first the increases in root force and diameter that occur when a pea root was impeded mechanically inside a hole with rigid conical walls were determined. The experiment was performed at 8°C and at 25°C, and the root growth pressures generated were calculated during periods of 12, 24, 48 and 72 hours. The maximum growth pressures generated were approximately the same at both temperatures, although the maximum pressure was achieved approximately twice as quickly at 25°C than at 8°C, being reached within 15–20 hours. In the second set of experiments a new technique was developed to measure simultaneously the elongation rate and the force exerted by the roots of seedlings grown in moist air. A constant force was exerted by a force transducer on a pea radicle using a system of pulleys, and the elongation rate of the pea root was monitored using a linear variable differential transformer (LVDT). The changes in root elongation rate were recorded that occurred in response to increases and decreases in the applied force. Root elongation rate decreased by more than 50% within 30 min of increasing the applied force by 100 mN. A similarly fast, but smaller increase in growth rate occurred when the force was removed. The interpretation of results from both studies will be discussed in terms of a modified form of the Lockhart model of growth.  相似文献   

5.
Immunofluorescence labeling of cortical microtubules (MTs) was used to investigate the relationship between MT arrangement and changes in growth rate of the upper and lower sides of horizontally placed roots of maize (Zea mays L. cv. Merit). Cap cells and cells of the elongation zone of roots grown vertically in light or darkness showed MT arrangements that were transverse (perpendicular) to the growth direction. Microtubules of cells basal to the elongation zone typically showed oblique orientation. Two hours after horizontal reorientation, cap cells of gravicompetent, light-grown and curving roots contained MTs parallel to the gravity vector. The MT arrangement on the upper side of the elongation zone remained transverse but the MTs of the outer four to five layers of cortical cells along the lower side of the elongation zone showed reorientation parallel to the axis of the root. The MTs of the lower epidermis retained their transverse orientation. Dark-grown roots did not curve and did not show reorientation of MTs in cells of the root cap or elongation zone. The data indicate that MT depolymerization and reorientation is correlated with reduction in growth rate, and that MT reorientation is one of the steps of growth control of graviresponding roots.Abbreviations MT microtubule - QC quiescent center This work was supported by National Science Foundation grant IBN-9118094.  相似文献   

6.
Effects on leaf growth, biomass accumulation and root morphogenesis associated with the establishment of phosphorus (P) deficiency were studied on maize in order to test the hypothesis that the root system response can be accounted for by the effect of P deficiency on the carbon budget of the plant. P deprivation had a large and rapid negative effect on leaf expansion. For 7 d after P deprivation, the total dry matter production per plant was almost fully accounted for by the effect of P starvation on leaf growth and its subsequent effect on photosynthetically active radiation (PAR) interception. No strong effect of P deficiency was observed on the radiation use efficiency during this first period, although it was reduced thereafter. Root growth was slightly enhanced a few days after P starvation, but strongly reduced thereafter. The elongation rate of axile roots was maintained throughout the experiment, whereas emergence of new axile roots and elongation of first-order laterals were drastically reduced. The density of first-order laterals was not severely affected. These morphological responses are very similar to what is observed when root growth is limited by the availability in carbohydrates. The results are therefore compatible with the hypothesis that P deficiency mainly affects the root system morphology through its effect on the carbon budget of the plant with no additional specific effect of P deficiency on root morphogenesis. The drastic and early reduction of shoot growth after P deprivation may explain that more carbohydrates were available for root growth which was observed a few days after P starvation and reported by several authors. Later on, however, because of the reduced leaf area of P-deprived plants, their capacity to intercept light was severely reduced so that root growth was finally reduced.Keywords: Zea mays L., maize, phosphorus, root, root morphogenesis.   相似文献   

7.
8.
Water relations and leaf expansion: importance of time scale   总被引:12,自引:0,他引:12  
The role of leaf water relations in controlling cell expansion in leaves of water-stressed maize and barley depends on time scale. Sudden changes in leaf water status, induced by sudden changes in humidity, light and soil salinity, greatly affect leaf elongation rate, but often only transiently. With sufficiently large changes in salinity, leaf elongation rates are persistently reduced. When plants are kept fully turgid throughout such sudden environmental changes, by placing their roots in a pressure chamber and raising the pressure so that the leaf xylem sap is maintained at atmospheric pressure, both the transient and persistent changes in leaf elongation rate disappear. All these responses show that water relations are responsible for the sudden changes in leaf elongation rate resulting from sudden changes in water stress and putative root signals play no part. However, at a time scale of days, pressurization fails to maintain high rates of leaf elongation of plants in either saline or drying soil, indicating that root signals are overriding water relations effects. In both saline and drying soil, pressurization does raise the growth rate during the light period, but a subsequent decrease during the dark results in no net effect on leaf growth over a 24 h period. When transpirational demand is very high, however, growth-promoting effects of pressurization during the light period outweigh any reductions in the dark, resulting in a net increase in growth of pressurized plants over 24 h. Thus leaf water status can limit leaf expansion rates during periods of high transpiration despite the control exercised by hormonal effects on a 24 h basis.  相似文献   

9.
In general, plant material grown in vitro has low photosynthetic ability to achieve positive carbon balances. Therefore, a continuous supply of carbohydrates from the culture medium is required, and sucrose has been the most commonly used carbon source. In this paper, we investigate the effects of different sucrose concentrations and the presence and absence of light on the endogenous levels of soluble carbohydrates and starch as well as on the proliferation and growth of Dendrobium Second Love (Orchidaceae) in vitro. The possibility of using etiolated stem segments as a means for micropropagating this hybrid was also verified. The results obtained indicated that the presence and absence of light and the sucrose concentrations used influenced the amounts of soluble carbohydrates and starch and the proliferation of D. Second Love shoots and roots. An increase in sucrose concentration caused a progressive increase in the amounts of total carbohydrates and starch. Under both light conditions, sucrose was the main sugar found in the shoots followed by glucose and fructose. The addition of sucrose to the culture medium up to 2% and 4% was advantageous to the number of shoots produced per explant and the root longitudinal growth in the presence and absence of light, respectively. Shoot and root dry matter and the number of roots formed per explant increased as sucrose concentration was raised up to 6% in both light treatments. The use of dark-grown shoot segments proved to be a useful and reliable alternative for the micropropagation of this hybrid.  相似文献   

10.
The time-course for adjustments in the rate of extension of wheat (Triticum aestivum L. cv. Alexandria) roots, and the activity and capacity of respiratory pathways in the root apex, were determined after pruning the shoot to the ligule of the first leaf. Leaf pruning reduced the extension rate of both seminal and lateral roots. The onset of the response occurred within 1 h of pruning for laterals and between 2 and 3 h for seminals. The reduction in rate appears to be the result of a decrease in carbohydrate availability because (1) in seminal roots it was preceded by a decrease in soluble sugar content of the apical part of the growth zone (0–5 mm behind the root apex) and (2) supplying glucose (50 mM) to the roots of plants defoliated 24 h earlier led to a steady increase in extension rate of both seminal and lateral roots compared to non-fed controls. Supplying 3-O-methyl glucose had no effect. The reduction in extension rate of seminal roots was accompanied (or slightly preceded) by a reduction in respiratory O2 uptake in the apical part of the growth zone (0–5 mm). Changes in respiratory activity in the basal part of the growth zone (5–10 mm) only occurred several hours later. At the time root extension rate was reduced, the rate of O2 uptake could be stimulated with FCCP, which indicates that respiration was under the fine control of adenylates. From these results we suggest the following sequence of events occurs after defoliation. Firstly, defoliation reduces the supply of sugars to the root apex, this leads to a reduction in rate of extension through some form of coarse control by carbohydrates on cell division and expansion, which in turn reduces the rate of respiratory O2 uptake because of a smaller demand for ATP. The results also indicate that there is a rapid (<1.5 h) reduction in respiratory capacity in the root apex after defoliation which occurs before any change in the overall rate of respiration.  相似文献   

11.
Summary Results of this study showed that carbohydrates stored in the roots of western wheatgrass are utilized for regrowth following clipping of the aboveground foliage. Shoots remained dependent on carbohydrates stored in roots until sufficient photosynthetic leaf surface was developed to supply carbon to the shoots. During early phenophases, the partitioning of carbohydrates between shoots and roots was identical, indicating equal metabolic demands for carbon from both the shoot and root systems. Subsequent fluctuations in root and shoot carbohydrates may be caused by selected pressure imposed on either the root or shoot systems by physiological changes in these organs.Respiratory losses of 14C were slower during the early phenophases which may indicate that either the rate of respiration was slower or that recently assimilated nonlabeled carbon sources were utilized for respiration instead of the endogenous sources assimilated earlier in the growth period. re]19760427  相似文献   

12.
The development of phosphate deficiency (P-stress) was observed in rooted sprouts of Solanum tuberosum L. cv. Desiree growing in solutions without phosphate. Shoot growth was inhibited by P-stress within 3 to 5 days of terminating the phosphate supply, while significant effects on root growth were not recorded until 7 to 9 days. Thus, the shoot:root dry weight ratio decreased from 4.3 to 2.6 over a 10-day period. Growth in the absence of an exogenous phosphate supply progressively diluted the phosphorus in the plant. The proportional decrease in concentration was similar in roots and shoots over a 7-day period, even though the former were growing more quickly. The potential for phosphate uptake per unit weight of root increased rapidly during the first 3 days of P-stress. When the plants were provided subsequently with a labelled, 1 mol m?3 phosphate solution, the absorption rate was 3 to 4-fold greater than that of control plants which had received a continuous phosphate supply. The increased rate of uptake by P-stressed plants was accounted for by an increase (3-fold) in the Vmax of system 1 for phosphate transport and by a marked increase in the affinity of the system for phosphate (decrease in Km). In the early stages of P-stress, before marked changes in growth were measured, the proportion of labelled phosphate translocated to the shoots increased slightly relative to the controls when a phosphate supply was restored. In the later stages of stress a greater proportion was retained in the root system of P-stressed plants than in that of controls. In plants with roots divided between solutions containing or lacking a phosphate supply, the increased absorption rate was determined by the general demand for phosphate in the plant and not by the P-status of the particular root where uptake was measured. By contrast, the poportion translocated was strongly dependent on the P-status of the root. The restoration of a phosphate supply to P-stressed plants was marked by a rapid increase in the P concentration in snoots and roots which returned to levels similar to unstressed controls within 24 h. The enhanced uptake rate persisted for at least 5 days, resulting in supra-normal concentrations of P in both shoots and roots, and in the formation of extensive necrotic areas between the veins of mature leaves. Autoradiographs showed accumulations of 32P in these lesions and at the points where guttation droplets formed on leaves.  相似文献   

13.
The Effect of Defoliation on the Carbon Balance in Dactylis glomerata   总被引:2,自引:0,他引:2  
Measurements were made of the carbon dioxide exchange of rootsand shoots, changes in soluble carbohydrates, rates of rootextension, and rate of phosphorus uptake of young plants ofDactylis glomerata (Cocksfoot) during eight days following defoliation.The results indicated that the soluble carbohydrates formedpart of a labile pool which was used in respiration and forproviding substrates for new growth. Where defoliation was notsevere, the changes in reserve carbohydrates could account fornet respiratory losses and amounts of new growth made. Wheredefoliation was severe, even high concentrations of reservecarbohydrates were inadequate and other substances, presumablyproteins, must have been remobilized for use in respirationand new growth. The content of soluble carbohydrate in the root was completelyinadequate to meet the needs of root respiration; transfer fromthe tops and/or remobilization of other substances in the rootsmust have occurred. Following a severe defoliation, root extension stopped and ratesof respiration and phosphorus uptake fell markedly. Phosphorusuptake remained at a low level for the eight days considered.After a light defoliation the roots recovered relatively rapidly. It is suggested that, following a severe defoliation, regrowthduring the first week is limited in turn first by the solublecarbohydrate content in the bases of expanding leaves, thenby the rate of photosynthesis, and then in the later Stagesby the rate of nutrient uptake sustained by the roots.  相似文献   

14.
Imad N. Saab  Robert E. Sharp 《Planta》1989,179(4):466-474
Conditions of soil drying and plant growth that lead to non-hydraulic inhibition of leaf elongation and stomatal conductance in maize (Zea mays L.) were investigated using plants grown with their root systems divided between two containers. The soil in one container was allowed to dry while the other container was kept well-watered. Soil drying resulted in a maximum 35% inhibition of leaf elongation rate which occurred during the light hours, with no measurable decline in leaf water potential (w). Leaf area was 15% less than in control plants after 18 d of soil drying. The inhibition of elongation was observed only when the soil w declined to below that of the leaves and, thus, the drying soil no longer contributed to transpiration. However, midday root w in the dry container (-0.29 MPa) remained much higher than that of the surrounding soil (-1.0 MPa) after 15 d of drying, indicating that the roots in drying soil were rehydrated in the dark.To prove that the inhibition of leaf elongation was not caused by undetectable changes in leaf water status as a result of loss of half the watergathering capacity, one-half of the root system of control plants was excised. This treatment had no effect on leaf elongation or stomatal conductance. The inhibition of leaf elongation was also not explained by reductions in nutrient supply.Soil drying had no effect on stomatal conductance despite variations in the rate or extent of soild drying, light, humidity or nutrition. The results indicate that non-hydraulic inhibition of leaf elongation may act to conserve water as the soil dries before the occurrence of shoot water deficits.Symbol w water potential Contribution from the Missouri Agricultural Experiment Station, Journal Series No. 10881  相似文献   

15.
Seedlings of Quercus pubescens were grown in root boxes to study the growth pattern of the root system in relation to shoot development. Shoot growth was typically rhythmic. Root elongation was also periodic, in contrast to several previous reports on other Quercus species. Both taproot and lateral root elongation were depressed during expansion of the second leaf flush, with a more pronounced response of lateral root growth. Apical diameter of the taproot followed comparable but less prominent trends than taproot elongation. Modifying source/sink relationships through various defoliation treatments altered the root growth pattern. Ablation of source organs (mature leaves or cotyledons) amplified the decrease in root growth concomitant with leaf expansion. Root growth recovery was even more difficult when both cotyledons and mature leaves had been removed. Ablation of sink aerial organs (young leaves) initially suppressed competition for growth between the shoot and the root, and then caused a gradual decrease in lateral root growth. Antagonism between maximum leaf expansion and root growth reduction during the second flush, and various responses of seedlings with modified source/sink relationships, raise an hypothesis of mutual competition for carbohydrates. The gradual decrease in lateral root growth after ablation of young leaves suggests a long-term carbohydrate limitation, or auxin limitation as auxin sources have been removed.  相似文献   

16.
Plants may experience different environmental cues throughout their development which interact in determining their phenotype. This paper tests the hypothesis that environmental conditions experienced early during ontogeny affect the phenotypic response to subsequent environmental cues. This hypothesis was tested by exposing different accessions of Rumex palustris to different light and nutrient conditions, followed by subsequent complete submergence. Final leaf length and submergence-induced plasticity were affected by the environmental conditions experienced at early developmental stages. In developmentally older leaves, submergence-induced elongation was lower in plants previously subjected to high-light conditions. Submergence-induced elongation of developmentally younger leaves, however, was larger when pregrown in high light. High-light and low-nutrient conditions led to an increase of nonstructural carbohydrates in the plants. There was a positive correlation between submergence-induced leaf elongation and carbohydrate concentration and content in roots and shoots, but not with root and shoot biomass before submergence. These results show that conditions experienced by young plants modulate the responses to subsequent environmental conditions, in both magnitude and direction. Internal resource status interacts with cues perceived at different developmental stages in determining plastic responses to the environment.  相似文献   

17.
In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root‐zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant – especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root‐zone temperature and its heterogeneity inside pots.  相似文献   

18.
Plants of Cirsium vulgare (Savi) Ten. were cultivated under five different nitrogen regimes in order to investigate the effects of nitrogen supply on the storage processes in a biennial species during its first year of growth. External N supply increased total biomass production without changing the relationship between ‘productive plant compartments’ (i.e. shoot plus fine roots) and ‘storage plant compartments’ (i.e. structural root dry weight, which is defined as the difference between tap root biomass and the amount of stored carbohydrates and N compounds). The amount of carbohydrates and N compounds stored per unit of structural tap root dry weight was not affected by external N availability during the season, because high rates of N supply increased the concentration of N compounds whilst decreasing the carbohydrate concentration, and low rates of N supply had the opposite effect. Mobilization of N from senescing leaves was not related to the N status of the plants. The relationship between nitrogen compounds stored in the tap root and the maximum amount of nitrogen in leaves was an increasing function with increasing nitrogen supply. We conclude that the allocation between vegetative plant growth and the growth of storage structures over a wide range of N availability seems to follow predictions from optimum allocation theory, whereas N storage responds in a rather plastic way to N availability.  相似文献   

19.
Ethylene as a possible mediator of light-induced inhibition of root growth   总被引:1,自引:0,他引:1  
Eliasson, L. and Bollmark, M. 1988. Ethylene as a possible mediator of light-induced inhibition of root growth. - Physiol. Plant. 72: 605–609.
Pea seedlings ( Pisum sativum L. cv. Weibull's Marma) were used to investigate the possible role of ethylene in light-induced inhibition of root elongation. Illumination of the roots with white light inhibited root elongation by 40–50% and increased ethylene production by the roots about 4-fold. Our main approach was to use exogenous 1-aminocyclopropane-1-carboxylic acid (ACC), supplied in the growth solution, to monitor ethylene production of the roots independent of light treatment. Ethylene production of excised root tips increased with increasing ACC concentrations. The rate of ethylene production in dark-grown roots treated with 0.1 μ M ACC was similar to that caused by illumination. Low ACC concentrations (0.01–0.1 μ M ) decreased the rate of root elongation, especially in seedlings grown in the dark, and 0.1 μ M ACC inhibited elongation to about the same extent as light. In light the roots curved and grew partly plagiogravitropically. This effect was also simulated by the 0.1 μ M ACC treatment. At 1 μ M and higher concentrations, ACC inhibited root growth almost completely and caused conspicuous curvatures of the root tips both in light and darkness. Inhibitors of ethylene synthesis and action partially counteracted the inhibition of root elongation caused by light. These observations suggest that the increase in ethylene production caused by light is at least partly responsible for the decreased growth of light-exposed roots.  相似文献   

20.
Using a macrophotographic technique, kinetic studies were performed on growth and gravireaction, both measured on maize (cv. LG 11) roots. When using intact roots, it was found that the growth rate decreased two hours after the beginning of the gravistimulus, the rate of root curvature being optimal at that time. These two processes are greater in light than in the dark. Subsequently, the curvature rate decreased rapidly to zero in the dark but, in light, it continued for at least a further three hours. There was then a recovery of elongation in darkness whereas in light growth rate remained low. A comparative analysis between root segments and intact roots suggests that the correlation between the growth and the gravireaction rates differs according to the system studied and that light has a greater effect on growth rate when the roots are subject to gravitational stimuli. Present data are discussed in terms of hormone balance between several endogenous regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号