首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clostridium difficile is an emerging pathogen responsible for opportunistic infections in hospitals worldwide and is the main cause of antibiotic-associated pseudo-membranous colitis and diarrhea in humans. Clostridial toxins A and B (TcdA and TcdB) specifically bind to unknown glycoprotein(s) on the surface of epithelial cells in the host intestine, disrupting the intestinal barrier and ultimately leading to acute inflammation and diarrhea. The C-terminal receptor-binding domain (RBD) of TcdA, which is responsible for the initial binding of the toxin to host glycoproteins, has been predicted to contain 7 potential oligosaccharide-binding sites. To study the specific roles and functions of these 7 putative lectin-like binding regions, a consensus sequence of TcdA RBD derived from different C. difficile strains deposited in the NCBI protein database and three truncated fragments corresponding to the N-terminal (residues 1–411), middle (residues 296–701), and C-terminal portions (residues 524–911) of the RBD (F1, F2 and F3, respectively) were designed and expressed in Escherichia coli. In this study, the recombinant RBD (rRBD) and its truncated fragments were purified, characterized biologically and found to have the following similar properties: (a) are capable of binding to the cell surface of both Vero and Caco-2 cells; (b) possess Toll-like receptor agonist-like adjuvant activities that can activate dendritic cell maturation and increase the secretion of pro-inflammatory cytokines; and (c) function as potent adjuvants in the intramuscular immunization route to enhance immune responses against weak immunogens. Although F1, F2 and F3 have similar repetitive amino acid sequences and putative oligosaccharide-binding domains, they do not possess the same biological and immunological properties: (i) TcdA rRBD and its fragments bind to the cell surface, but only TcdA rRBD and F3 internalize into Vero cells within 15 min; (ii) the fragments exhibit various levels of hemagglutinin (HA) activity, with the exception of the F1 fragment, which demonstrates no HA activity; and (iii) in the presence of alum, all fragments elicit various levels of anti-toxin A-neutralizing antibody responses, but those neutralizing antibodies elicited by F2 did not protect mice against a TcdA challenge. Because TcdA rRBD, F1 and F3 formulated with alum can elicit immune protective responses against the cytotoxicity of TcdA, they represent potential components of future candidate vaccines against C. difficile-associated diseases.  相似文献   

2.
The Lewisx (Lex) trisaccharide (CD15) linked to proteins and glycolipids is highly expressed on the surface of normal human polymorphonuclear neutrophils (PMN) and several human neoplasias, such as breast and gastrointestinal carcinomas and chronic myeloid leukemias. FC-2.15 is an IgM murine mAb that specifically recognizes Lex and has been previously shown to mediate the in vitro lysis of Lex(+) cells by human complement. In a phase I clinical trial of FC-2.15, a temporary neutropenia was the main toxicity, and antitumor responses were observed. In order to characterize FC-2.15 further and determine the physiological relevance of Lex binding, the reactivity of FC-2.15 on PMN was investigated under several conditions. Flow cytometry revealed a strong reactivity of FC-2.15 with almost 100% of PMN, and Scatchard analysis demonstrated an affinity constant of 5.14 × 109 M−1 and 1.11 × 106 antigen sites/cell. In vitro, the binding of Lex epitopes by FC-2.15 induced PMN homotypic aggregation, only 28.4 ± 4.1% remaining as single cells. When PMN and the Lex(+) MCF-7 breast cancer cells were co-incubated, FC-2.15 induced heterotypic aggregation. In 51Cr-release assays employing human complement, FC-2.15 lysed 93.4 ± 7.9% of PMN and 87.8 ± 10.7% of MCF-7 cells. However, when the effect of FC-2.15 was tested in ex vivo circulating blood, no lytic activity against PMN was detected, whereas MCF-7 cells were still lysed. Blood smears demonstrated that FC-2.15 induced PMN agglutination and heterotypic aggregates when MCF-7 cells were present. A pre-treatment of PMN with colchicine impaired PMN agglutination both in vitro (single PMN = 81.15 ± 4.35%) and in ex vivo circulating blood. In the latter condition, FC-2.15-lytic activity was restored, suggesting that PMN homotypic aggregation by FC-2.15, but not lysis, is dependent on microtubule integrity and that PMN agglutination hinders their lysis. Moreover, when 51Cr-release assays were performed following agglutination, FC-2.15 cytotoxicity was restricted to isolated PMN. It is suggested that crosslinking of Lex epitopes by FC-2.15 induces PMN to form homotypic aggregates. It is suggested that the neutropenia observed in FC-2.15-treated patients would be due to PMN agglutination and margination, rather than lysis. In addition, FC-2.15 appears to be able to lyse Lex(+) tumor cells in circulation. Received: 3 December 1998 / Accepted: 28 January 1999  相似文献   

3.

Background

Opportunistically nosocomial infections in hospitalized patients are often related to Clostridium difficile infections (CDI) due to disruption of the intestinal micro-flora by antibiotic therapies during hospitalization. Clostridial exotoxins A and B (TcdA and TcdB) specifically bind to unknown glycoprotein(s) in the host intestine, disrupt the intestinal barrier leading to acute inflammation and diarrhea. The C-terminal receptor binding domain of TcdA (A-rRBD) has been shown to elicit antibody responses that neutralize TcdA toxicity in Vero cell cytotoxicity assays, but not effectively protect hamsters against a lethal dose challenge of C. difficile spores. To develop an effective recombinant subunit vaccine against CDI, A-rRBD was lipidated (rlipoA-RBD) as a rational design to contain an intrinsic adjuvant, a toll-like receptor 2 agonist and expressed in Escherichia coli.

Results

The purified rlipoA-RBD was characterized immunologically and found to have the following properties: (a) mice, hamsters and rabbits vaccinated with 3 μg of rlipoA-RBD produced strong antibody responses that neutralized TcdA toxicity in Vero cell cytotoxicity assays; furthermore, the neutralization titer was comparable to those obtained from antisera immunized either with 10 μg of TcdA toxoid or 30 μg of A-rRBD; (b) rlipoA-RBD elicited immune responses and protected mice from TcdA challenge, but offered insignificant protection (10 to 20 %) against C. difficile spores challenge in hamster models; (c) only rlipoA-RBD formulated with B-rRBD consistently confers protection (90 to 100 %) in the hamster challenge model; and (d) rlipoA-RBD was found to be 10-fold more potent than A-rRBD as an adjuvant to enhancing immune responses against a poor antigen such as ovalbumin.

Conclusion

These results indicate that rlipoA-RBD formulated with B-rRBD could be an excellent vaccine candidate for preclinical studies and future clinical trials.  相似文献   

4.
Carbohydrate-specific monoclonal antibodies were used to demonstrate the expression of a new membrane glycoprotein on F9 murine embryonal carcinoma cells. Sialyl Lex was detected using monoclonal antibody FH6 in a sensitive, cell monolayer radioimmunoassay. The antigen codistributed in gel filtration of a crude homogenate and in a membrane-enriched fraction with two known lactosaminoglycan markers, i and SSEA-1 (Lex or X hapten). Sialyl Lex was further shown to be carried by a novel glycoprotein, termed small lactosaminoglycan-like glycoprotein (sLAG) which could be purified by immunoaffinity chromatography. In two-dimensional polyacrylamide gel electrophoresis this glycoprotein had an apparent molecular weight of 45 kDa and a pI of about 6.5. The more differentiated cell line PYS-2 also expressed sialyl Lex and i antigens but not Lex, and FH6-reactive sLAG could be extracted from PYS-2 membranes. Sialylation of fucosylated type 2 carbohydrate chains (X haptens) thus may be an early modification of embryonic carbohydrate antigens.  相似文献   

5.
Tc toxin is an exotoxin composed of three subunits named TcA, TcB and TcC. Structural analysis revealed that TcA can form homopentamer that mediates the cellular recognition and delivery processes, thus contributing to the host tropism of Tc toxin. N-glycans and heparan sulfates have been shown to act as receptors for several Tc toxins. Here, we performed two independent genome-wide CRISPR-Cas9 screens, and have validated glycans and sulfated glycosaminoglycans (sGAGs) as Tc toxin receptors also for previously uncharacterized Tc toxins. We found that TcdA1 form Photorhabdus luminescens W14 (TcdA1W14) can recognize N-glycans via the RBD-D domain, corroborating previous findings. Knockout of N-glycan processing enzymes specifically blocks the intoxication of TcdA1W14-assembled Tc toxin. On the other hand, our results showed that sGAG biosynthesis pathway is involved in the cell surface binding of TcdA2TT01 (TcdA2 from P. luminescens TT01). Competition assays and biolayer interferometry demonstrated that the sulfation group in sGAGs is required for the binding of TcdA2TT01. Finally, based on the conserved domains of representative TcA proteins, we have identified 1,189 putative TcAs from 1,039 bacterial genomes. These TcAs are categorized into five subfamilies. Each subfamily shows a good correlation with both genetic organization of the TcA protein(s) and taxonomic origin of the genomes, suggesting these subfamilies may utilize different mechanisms for cellular recognition. Taken together, our results support the previously described two different binding modalities of Tc toxins, leading to unique host targeting properties. We also present the bioinformatics data and receptor screening strategies for TcA proteins, provide new insights into understanding host specificity and biomedical applications of Tc toxins.  相似文献   

6.
The pathogenicity of Clostridium difficile is primarily linked to secretion of the intracellular acting toxins A (TcdA) and B (TcdB) which monoglucosylate and thereby inactivate Rho GTPases of host cells. Although the molecular mode of action of TcdA and TcdB is well understood, far less is known about toxin binding and uptake. It is acknowledged that the C-terminally combined repetitive oligopeptides (CROPs) of the toxins function as receptor binding domain. The current study evaluates the role of the CROP domain with respect to functionality of TcdA and TcdB. Therefore, we generated truncated TcdA devoid of the CROPs (TcdA(1-1874)) and found that this mutant was still cytopathic. However, TcdA(1-1874) possesses about 5 to 10-fold less potency towards 3T3 and HT29 cells compared to the full length toxin. Interestingly, CHO-C6 cells even showed almost identical susceptibility towards truncated and full length TcdA concerning Rac1 glucosylation or cell rounding, respectively. FACS and Western blot analyses elucidated these differences and revealed a correlation between CROP-binding to the cell surface and toxin potency. These findings refute the accepted opinion of solely CROP-mediated toxin internalization. Competition experiments demonstrated that presence neither of TcdA CROPs nor of full length TcdA reduced binding of truncated TcdA(1-1874) to HT29 cells. We assume that toxin uptake might additionally occur through alternative receptor structures and/or other associated endocytotic pathways. The second assumption was substantiated by TER measurements showing that basolaterally applied TcdA(1-1874) exhibits considerably higher cytotoxic potency than apically applied mutant or even full length TcdA, the latter being almost independent of the side of application. Thus, different routes for cellular uptake might enable the toxins to enter a broader repertoire of cell types leading to the observed multifarious pathogenesis of C. difficile.  相似文献   

7.
Clostridium difficile is a leading cause of nosocomial infection in North America and a considerable challenge to healthcare professionals in hospitals and nursing homes. The gram-positive bacterium produces two high molecular weight exotoxins, toxin A (TcdA) and toxin B (TcdB), which are the major virulence factors responsible for C. difficile-associated disease and are targets for C. difficile-associated disease therapy. Here, recombinant single-domain antibody fragments (V(H)Hs), which specifically target the cell receptor binding domains of TcdA or TcdB, were isolated from an immune llama phage display library and characterized. Four V(H)Hs (A4.2, A5.1, A20.1, and A26.8), all shown to recognize conformational epitopes, were potent neutralizers of the cytopathic effects of toxin A on fibroblast cells in an in vitro assay. The neutralizing potency was further enhanced when V(H)Hs were administered in paired or triplet combinations at the same overall V(H)H concentration, suggesting recognition of nonoverlapping TcdA epitopes. Biacore epitope mapping experiments revealed that some synergistic combinations consisted of V(H)Hs recognizing overlapping epitopes, an indication that factors other than mere epitope blocking are responsible for the increased neutralization. Further binding assays revealed TcdA-specific V(H)Hs neutralized toxin A by binding to sites other than the carbohydrate binding pocket of the toxin. With favorable characteristics such as high production yield, potent toxin neutralization, and intrinsic stability, these V(H)Hs are attractive systemic therapeutics but are more so as oral therapeutics in the destabilizing environment of the gastrointestinal tract.  相似文献   

8.
Summary and conclusion Lex (13 fucosylated type 2 chain) functions as an adhesion molecule capable of Ca2+-mediated homotypic binding. Cells with high surface expression of Lex therefore exhibit strong self-aggregation (based on Lex-Lex interaction) in the presence of Ca2+. In this review, I have summarized several lines of supporting data for this concept, and the role of Lex-Lex interaction in the process of embryo compaction and autoaggregation of F9 teratocarcinoma cells. In general, cell adhesion events based on Lex-Lex interaction may be followed and reinforced by integrin- or Ig receptor-based adhesion systems.SLex, the 23 sialosyl derivative of Lex, and its positional isomer SLea, have been identified as the target molecules for selectin-dependent cell adhesion. Adhesion of leukocytes or tumour cells to ECs or platelets, which express E-selectin and P-selectin respectively, is initiated by this process. The target epitopes SLex and SLea are presented mainly on transmembrane glycoproteins having many clusters of O-linked carbohydrate chains. Therefore, inhibition of O-glycosylation may be effective for blocking selectin-mediated cell adhesion. The abundant presence of Lex epitope in the central nervous system, and the physiological changes of Lex expression as described in this monograph, reflect the adhesive properties of this molecule and its sialyosylated and/or fucosylated derivatives.  相似文献   

9.
A less than adequate therapeutic plan for the treatment of anthrax in the 2001 bioterrorism attacks has highlighted the importance of developing alternative or complementary therapeutic approaches for biothreat agents. In these regards passive immunization possesses several important advantages over active vaccination and the use of antibiotics, as it can provide immediate protection against Bacillus anthracis. Herein, we report the selection and characterization of several human monoclonal neutralizing antibodies against the toxin of B. anthracis from a phage displayed human scFv library. In total 15 clones were selected with distinct sequences and high specificity to protective antigen and thus were the subject of a series of both biophysical and cell-based cytotoxicity assays. From this panel of antibodies a set of neutralizing antibodies were identified, of which clone A8 recognizes the lethal (and/or edema) factor binding domain, and clones F1, G11, and G12 recognize the cellular receptor binding domain found within the protective antigen. It was noted that all clones distinguish a conformational epitope existing on the protective antigen; this steric relationship was uncovered using a sequential epitope mapping approach. For each neutralizing antibody, the kinetic constants were determined by surface plasmon resonance, while the potency of protection was established using a two-tier macrophage cytotoxicity assay. Among the neutralizing antibodies identified, clone F1 possessed the highest affinity to protective antigen, and provided superior protection from lethal toxin in the cell cytotoxicity assay. The data presented provide the ever-growing arsenal of immunological and functional analysis of monoclonal antibodies to the exotoxins of anthrax. In addition it grants new candidates for the prophylaxis and therapeutic treatment against this toxin.  相似文献   

10.
Clostridium difficile strains of toxinotype VIII from serogroups F and X are described as toxin B-positive, toxin A-negative (TcdB+ A-), although they harbour almost the entire tcdA gene. To identify the reason for the lack of TcdA detection, we analyzed catalytic and ligand domains of TcdA-1470 of the type strain of serogroup F, strain 1470. Using recombinant fragments, the C-terminal immunodominant ligand domain TcdA3-1470, spanning amino acid residues 1694-2711 (corresponding to VPI 10463 sequence), was detected in Western blots. Similar experiments using the recombinant N-terminal catalytic fragment TcdAc1-2-1470 (amino acid positions 1-544) failed. In addition, this fragment showed no glucosylation activity. We determined the size and the position of alterations in the ligand domain tcdA3-1470 by DNA sequencing. Within the N-terminal fragment tcdAc1-2-1470, a nonsense mutation was identified introducing a stop codon at amino acid position 47. Identical mutations were found in the two serogroup X strains 17663 and 10355. The mutation might explain the lack of TcdA production observed in strains of serotypes F and X.  相似文献   

11.
A Lex trisaccharide functionalized with a cysteamine arm was prepared and this synthesis provided additional information on the reactivity of N-acetylglucosamine O-4 acceptors when they are glycosylated with trichloroacetimidate donors activated with excess BF3·OEt2. In turn, this trisaccharide was conjugated to BSA lysine side chains through a squarate–mediated coupling. This BSA-Lex glycoconjugate displayed 35 Lex haptens per BSA molecule. The relative affinity of the anti-Lex monoclonal antibody SH1 for the Lex antigen and analogues of Lex in which the d-glucosamine, l-fucose or d-galactose residues were replaced with d-glucose, l-rhamnose and d-glucose, respectively, was measured by competitive ELISA experiments. While all analogues were weaker inhibitors than the Lex antigen, only the analogue of Lex in which the galactose residue was replaced by a glucose unit showed no binding to the SH1 mAb. To confirm that the reduced or loss of recognition of the Lex analogues by the anti-Lex mAb SH1 did not result from different conformations adopted by the analogues when compared to the native Lex antigen, we assessed the conformational behavior of all trisaccharides by a combination of stochastic searches and NMR experiments. Our results showed that, indeed, the analogues adopted the same stacked conformation as that identified for the Lex antigen. The identification of a trisaccharide analogue that does not cross-react with Lex but still retains the same conformation as Lex constitutes the first step to the design of a safe anti-cancer vaccine based on the dimeric Lex tumor associated carbohydrate antigen.  相似文献   

12.
Membrane-associated oligosaccharides are known to take part in interactions between natural killer (NK) cells and their targets and modulate NK cell activity. A model system was therefore developed using synthetic glycoconjugates as tools to modify the carbohydrate pattern on NK target cell surfaces. NK cells were then assessed for function in response to synthetic glycoconjugates, using both cytolysis-associated caspase 6 activation measured by flow cytometry and IFN-γ production. Lipophilic neoglycoconjugates were synthesized to provide their easy incorporation into the target cell membranes and to make carbohydrate residues available for cell–cell interactions. While incorporation was successful based on fluorescence monitoring, glycoconjugate incorporation did not evoke artifactual changes in surface antigen expression, and had no negative effect on cell viability. Glycoconjugates contained Lex, sulfated Lex, and Ley sharing the common structure motif trisaccharide Lex were revealed to enhance cytotoxicity mediated specifically by CD16 +CD56+NK cells. The glycoconjugate effects were dependent on saccharide presentation in a polymeric form. Only polymeric, or clustered, but not monomeric glycoconjugates resulted in alteration of cytotoxicity in our system, suggesting that appropriate presentation is critical for carbohydrate recognition and subsequent biological effects.  相似文献   

13.
A variety of glycoconjugates, including glycosphingolipids (GSLs), expressed in mammalian tissues and cells were isolated and characterized in early biochemical studies. Later studies of virus-transformed fibroblasts demonstrated the association of GSL expression profiles with cell phenotypes. Changes of GSL expression profile were observed during mammalian embryogenesis. Cell surface molecules expressed on embryos in a stage-specific manner appeared to play key roles in regulation of cell-cell interaction and cell sorting during early development. Many mAbs showing stage-specific reactivity with mouse embryos were shown to recognize carbohydrate epitopes. Among various stage-specific embryonic antigens (SSEAs), SSEA-1 was found to react with neolacto-series GSL Lex, while SSEA-3 and SSEA-4 reacted with globo-series Gb5 and monosialyl-Gb5, respectively. GSL expression during mouse early development was shown to shift rapidly from globo-series to neolacto/lacto-series, and then to ganglio-series. We found that multivalent Lex caused decompaction of mouse embryos, indicating a functional role of Lex epitope in the compaction process. Autoaggregation of mouse embryonal carcinoma (EC) F9 cells provided a useful model of the compaction process. We showed that Lex-Lex interaction, a novel type of molecular interavction termed carbohydrate-carbohydrate interaction (CCI), was involved in cell aggregation. Similar shifting of GSL expression profiles from globo-series and neolacto/lacto-series to ganglio-series was observed during differentiation of human EC cells and embryonic stem (ES) cells, reflecting the essential role of cell surface glycoconjugates in early development.  相似文献   

14.
Carcinoembryonic antigen (CEA)-related antigens were detected histologically in normal and inflamed oesophageal squamous mucosa using polyclonal anti-CEA antisera and monoclonal antibodies recognizing CEA or NCAs (non-specific cross-reacting antigens). Expression was limited to the surface of more mature squames. Immunoblotting of detergent extracts of oesophageal mucosa separated on polyacrylamide gels using polyclonal anti-CEA antisera showed a number of CEA-related proteins, of 195, 145, and 80 kDa. CEA-specific monoclonal antibodies recognized only the 195-kDa glycoprotein. The lower molecular weight species were recognized by anti-NCA antibody DD9 and a CD66 antibody. The carboyhydrate antigen Lewisx (Lex, CD15), previously shown to be a marker of mature squames, was present predominantly on a subpopulation of the 195-kDa antigen and was demonstrable on the higher molecular weight component of a doublet recognized by the CEA antibodies. Expression of Lex carbohydrate antigens in inflamed oesophageal squamous mucosa was shown to be significantly reduced relative to the expression seen in normal tissue. A suprabasal layer of CEA-positive, Lex-negative cells became apparent in inflamed tissue showing altered glycosylation of the CEA under these conditions. It is postulated that CEA plays a role in maintaining the integrity of the squamous mucosa.  相似文献   

15.
The symptoms of Clostridium difficile infections are caused by two exotoxins, TcdA and TcdB, which target host colonocytes by binding to unknown cell surface receptors, at least in part via their combined repetitive oligopeptide (CROP) domains. A combination of the anti-TcdA antibody actoxumab and the anti-TcdB antibody bezlotoxumab is currently under development for the prevention of recurrent C. difficile infections. We demonstrate here through various biophysical approaches that bezlotoxumab binds to specific regions within the N-terminal half of the TcdB CROP domain. Based on this information, we solved the x-ray structure of the N-terminal half of the TcdB CROP domain bound to Fab fragments of bezlotoxumab. The structure reveals that the TcdB CROP domain adopts a β-solenoid fold consisting of long and short repeats and that bezlotoxumab binds to two homologous sites within the CROP domain, partially occluding two of the four putative carbohydrate binding pockets located in TcdB. We also show that bezlotoxumab neutralizes TcdB by blocking binding of TcdB to mammalian cells. Overall, our data are consistent with a model wherein a single molecule of bezlotoxumab neutralizes TcdB by binding via its two Fab regions to two epitopes within the N-terminal half of the TcdB CROP domain, partially blocking the carbohydrate binding pockets of the toxin and preventing toxin binding to host cells.  相似文献   

16.
Glycolipid antigen reacting to the monoclonal antibody directed to the developmentally regulated antigen SSEA-1 was isolated from human erythrocytes and colonic adenocarcinoma. The antigens have the Lex (Galβl→4[Fucα]→3]GlcNAcβl→R) or Ley (Fucαl→2Galβl→4[Fucαl→3]GlcNAcβl→R) structure at the termini of the branched polylactosaminolipid. In addition, a novel polyfucosyl structure locating exclusively at the internal GlcNAc was detected in the tumor antigen. The antibody reacts with a simple monovalent Lex glycolipid (Galβl→4[Fucαl→3]GlcNAcβl→3Galβl→4Glcβl→Cer) previously isolated from colonic carcinoma when presented at a high density on liposomes. The antibody therefore may react to the bivalent or multivalent Lex or Ley structure.  相似文献   

17.
Ascitic fluids from patients with various types of cancer were screened for the CA 19-9 and CA 125 tumor-associated antigenic activities. Two fluids exhibiting the highest activities were tested for their binding to various lectin-Sepharose columns resulting in both being bound best to wheat germ agglutinin (WGA) Sepharose. The WGA column eluate of one fluid was further chromatographed by HPLC and three peaks were obtained with approximate molecular weights of 3.65 MDa, 664 kDa and 330 kDa, of which only the largest fraction contained the CA 19-9 activity. The fluids were also fractionated on a Sephacryl S-400 column with most of the activity being present in or near the void volume.Monoclonal antibodies were used to demonstrate that the purified glycoproteins also contained the blood group A determinant, the four Lewis determinants Lea, Leb, Lex and Ley, and the sialylated-Lex determinant, while other antibody analyses failed to detect other blood group and/or carbohydrate sequence determinants. Some of the blood group expressions could be separated from the CA 19-9 and CA 125 active glycoproteins by adsorption with various lectins other than the WGA.Abbreviations used NeuAc N-acetyl-D-neuraminic acid - Gal galactose,D-galactopyranose - Fuc fucose,L-fucopyranose - GlcNAc N-acetyl-D-glucosamine - GalNAc N-acetyl-D-galactosamine - WGA wheat germ agglutinin - PBS phosphate buffered saline  相似文献   

18.
Clostridium difficile may induce antibiotic‐associated diarrhoea and, in severe cases, pseudomembranous colitis characterized by tremendous neutrophil infiltration. All symptoms are caused by two exotoxins: TcdA and TcdB. We describe here the activation of isolated human blood neutrophils by TcdB and, moreover, by toxin fragments generated by limited proteolytical digestion. Kinetics and profiles of TcdB‐induced rise in intracellular‐free Ca2+ and reactive oxygen species production were similar to that induced by fMLF, which activates the formyl peptide receptor (FPR) recognizing formylated bacterial peptide sequences. Transfection assays with the FPR‐1 isoform hFPR26 in HEK293 cells, heterologous desensitization experiments and FPR inhibition via cyclosporine H strongly suggest activation of cells via FPR‐1. Domain analyses revealed that the N‐terminal glucosyltransferase domain of TcdB is a potent activator of FPR pointing towards an additional mechanism that might contribute to pathogenesis. This pro‐inflammatory ligand effect can be triggered even by cleaved and, thus, non‐cytotoxic toxin. In summary, we report (i) a ligand effect on neutrophils as completely new molecular mode of action, (ii) pathogenic potential of truncated or proteolytically cleaved ‘non‐cytotoxic’ fragments and (iii) an interaction of the N‐terminal glucosyltransferase domain instead of the C‐terminal receptor binding domain of TcdB with target cells.  相似文献   

19.
Intratumoral phenotypic diversity is well documented with regard to tumor associated carbohydrate antigens (TACA). The factors which control the expression of these cell-surface oligosaccharides on different cells of the same tumor are not understood. We investigated the expression of a panel of mucin associated oligosaccharides in cell lines growing at different surface densities (number of cells per cm2 of growth flask). Results show that the apparent expression of extended Lea-Lex, Lea and Lex, sialyl Lea, Tn and sialyl Tn varies with density of growth by an invasive human squamous cell lung carcinoma cell line (NU6-1), a benign variant (NE-18) and the human lung epithelial cell line BEAS-2B. The results indicate that one of the factors influencing the apparent expression of mucin-associated oligosaccharides is cell-cell interactions.Abbreviations Mab monoclonal antibody - FIT fluorescein isothiocyanate - TACA tumor associated carbohydrate antigen  相似文献   

20.
The N-terminal sequence of the Smac/DIABLO protein is known to be involved in binding to the BIR3 domain of the anti-apoptotic proteins IAPs, antagonizing their action. Short peptides and peptide mimetics based on the first 4-residues of Smac/DIABLO have been demonstrated to re-sensitize resistant cancer cells, over-expressing IAPs, to apoptosis. Based on the well-defined structural basis for this interaction, a small focused library of C-terminal capped Smac/DIABLO-derived peptides was designed in silico using docking to the XIAP BIR3 domain. The top-ranked computational hits were conveniently synthesized employing Solid Phase Synthesis (SPS) on an alkane sulfonamide ‘Safety-Catch’ resin. This novel approach afforded the rapid synthesis of the target peptide library with high flexibility for the introduction of various C-terminal amide-capping groups. The library members were obtained in high yield (>65%) and purity (>85%), upon nucleophilic release from the activated resin by treatment with various amine nucleophiles. In vitro caspase-9 activity reconstitution assays of the peptides in the presence of the recombinant BIR3-domain of human XIAP (500 nM) revealed N-methylalanyl-tertiarybutylglycinyl-4-(R)-phenoxyprolyl-N-biphenylmethyl carboxamide (11a) to be the most potent XIAP BIR3 antagonist of the series synthesized inducing 93% recovery of caspase-9 activity, when used at 1 μM concentration. Compound (11a) also demonstrated moderate cytotoxicity against the breast cancer cell lines MDA-MB-231 and MCF-7, compared to the Smac/DIABLO-derived wild-type peptide sequences that were totally inactive in the same cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号