首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the Antennapedia homeodomain from Drosophila melanogaster was determined by nuclear magnetic resonance spectroscopy in solution. It includes three well-defined helices (residues 10-21, 28-38, and 42-52) and a more flexible fourth helix (residues 53-59). Residues 30-50 form a helix-turn-helix motif virtually identical to those observed in various prokaryotic repressors. Further comparisons of the homeodomain with prokaryotic repressors showed that there are also significant differences in the molecular architectures. Overall, these studies support the view that the third helix of the homeodomain may function as the DNA recognition site. The elongation of the third helix by the fourth helix is a structured element that so far appears to be unique to the Antennapedia homeodomain.  相似文献   

2.
The DNA-binding domain of the phage 434 repressor consisting of N-terminal residues 1 to 69 (434 repressor(1-69)), was expressed in Escherichia coli with natural isotope abundance, uniform 15N-labeling and biosynthetically directed fractional 13C-labeling in extent of about 10%. With these protein preparations the three-dimensional structure was determined in solution. The techniques used were nuclear magnetic resonance (n.m.r.) spectroscopy for the collection of conformational constraints, calculation of the protein structure from the n.m.r. data with the program DIANA and structure refinements by restrained energy minimization with a modified version of the program AMBER. A group of 20 conformers characterizes a well-defined structure for residues 1 to 63, with an average of 0-6 A for the root-mean-square deviations (RMSD) calculated for the backbone atoms of the individual conformers relative to the mean co-ordinates. The spatial structure of C-terminal residues 64 to 69 is not defined by the n.m.r. data. The molecular architecture of the 434 repressor(1-69) in solution includes five alpha-helices extending from residues 2 to 13, 17 to 24, 28 to 35, 45 to 52 and 56 to 60, which enclose a well-defined hydrophobic core. The n.m.r. structure is closely similar to the reported crystal structure of the 434 repressor(1-69), with an RMSD value of 1.1 A for the backbone atoms of residues 1 to 63. Small differences between the two structures in regions of the first helix and the loop between helices 3 and 4 were analyzed relative to possible correlations with protein-protein contacts in the crystal lattice and the different milieus of pH and ionic strength in the crystals and n.m.r. samples. Further systematic comparisons of local conformational features indicated that there are correlations between amino acid types, local precision of the structure determination by both techniques and local differences between the structures in the crystals and in solution. Overall, hydrophobic residues are most precisely characterized and agree most closely in the two environments.  相似文献   

3.
The NMR structure of the pheromone Er-2 from the ciliated protozoan Euplotes raikovi has been determined in aqueous solution. The structure of this 40-residue protein was calculated with the distance geometry program DIANA from 621 distance constraints and 89 dihedral angle constraints; the program OPAL was employed for the energy minimization. For a group of 20 conformers used to characterize the solution structure, the average pairwise RMS deviation from the mean structure calculated for the backbone heavy atoms N, C alpha, and C' of residues 3-37 was 0.31 A. The molecular architecture is dominated by an up-down-up bundle of 3 short helices of residues 5-11, 14-20, and 23-33, which is similar to the structures of the homologous pheromones Er-1 and Er-10. Novel structural features include a well-defined N-cap on the first helix, a 1-residue deletion in the second helix resulting in the formation of a 3(10)-helix rather than an alpha-helix as found in Er-1 and Er-10, and the simultaneous presence of 2 different conformations for the C-terminal tetrapeptide segment, i.e., a major conformation with the Leu 39-Pro 40 peptide bond in the trans form and a minor conformation with this peptide bond in the cis form.  相似文献   

4.
Formation of the cytolytic membrane attack complex of complement on host cells is inhibited by the membrane-bound glycoprotein, CD59. The inhibitory activity of CD59 is species restricted, and human CD59 is not effective against rat complement. Previous functional analysis of chimeric human/rat CD59 proteins indicated that the residues responsible for the species selective function of human CD59 map to a region contained between positions 40 and 66 in the primary structure. By comparative analysis of rat and human CD59 models and by mutational analysis of candidate residues, we now identify the individual residues within the 40-66 region that confer species selective function on human CD59. All nonconserved residues within the 40-66 sequence were substituted from human to rat residues in a series of chimeric human/rat CD59 mutant proteins. Functional analysis revealed that the individual human to rat residue substitutions F47A, T51L, R55E, and K65Q each produced a mutant human CD59 protein with enhanced rat complement inhibitory activity with the single F47A substitution having the most significant effect. Interestingly, the side chains of the residues at positions 47, 51, and 55 are all located on the short single helix (residues 47-55) of CD59 and form an exposed continuous strip parallel to the helix axis. A single human CD59 mutant protein containing rat residue substitutions at all three helix residues produced a protein with species selective activity comparable to that of rat CD59. We further found that synthetic peptides spanning the human CD59 helix sequence were able to inhibit the binding of human CD59 to human C8, but had little effect on the binding of rat CD59 to rat C8.  相似文献   

5.
Ying J  Ahn JM  Jacobsen NE  Brown MF  Hruby VJ 《Biochemistry》2003,42(10):2825-2835
Glucagon, a 29-residue peptide hormone, plays an important role in glucose homeostasis and in diabetes mellitus. Several glucagon antagonists and agonists have been developed, but limited structural information is available to clarify the basis of their biological activity. The solution structure of the potent glucagon antagonist, [desHis1, desPhe6, Glu9]glucagon amide, was determined by homonuclear 2D NMR spectroscopy at pH 6.0 and 37 degrees C in perdeuterated dodecylphosphocholine micelles. The overall backbone root-mean-square deviation (rmsd) for the structured portion (residues 7-29, glucagon numbering) of the micelle-bound 27-residue peptide is 1.36 A for the 15 lowest-energy structures, after restrained molecular dynamics simulation. The structure consists of four regions (segment backbone rmsd in A): an unstructured N-terminal segment between residues 2 and 5 (1.68), an irregular helix between residues 7 and 14 (0.79), a hinge region between residues 15 and 18 (0.54), and a well-defined alpha-helix between residues 19 and 29 (0.33). The two helices form an L-shaped structure with an angle of about 90 degrees between the helix axes. There is an extended hydrophobic cluster, which runs along the inner surface of the L-structure and incorporates the side chains of the hydrophobic residues of each of the amphipathic helices. The outer surface contains the hydrophilic side chains, with two salt bridges (D15-R18 and R17-D21) implied from close approach of the charged groups. This result is the first clear indication of an overall tertiary fold for a glucagon analogue in the micelle-bound state. The relationship of the two helical structural elements may have important implications for the biological activity of the glucagon antagonist.  相似文献   

6.
The three-dimensional structure of the activation domain isolated from porcine pancreatic procarboxypeptidase B was determined using 1H NMR spectroscopy. A group of 20 conformers is used to describe the solution structure of this 81 residue polypeptide chain, which has a well-defined backbone fold from residues 11-76 with an average root mean square distance for the backbone atoms of 1.0 +/- 0.1 A relative to the mean of the 20 conformers. The molecular architecture contains a four-stranded beta-sheet with the polypeptide segments 11-17, 36-39, 50-56 and 75-76, two well defined alpha-helices from residues 20-30 and 60-70, and a 3(10) helix from residues 43-46. The three helices are oriented almost exactly antiparallel to each other, are all on the same side of the beta-sheet, and the helix axes from an angle of approximately 45 degrees relative to the direction of the beta-strands. Three segments linking beta-strands and helical secondary structures, with residues 32-35, 39-43 and 56-61, are significantly less well ordered than the rest of the molecule. In the three-dimensional structure two of these loops (residues 32-35 and 56-61) are located close to each other near the protein surface, forming a continuous region of increased mobility, and the third disordered loop is separated from this region only by the peripheral beta-strand 36-39 and precedes the short 3(10) helix.  相似文献   

7.
The structure and dynamics of a large segment of Ste2p, the G-protein-coupled alpha-factor receptor from yeast, were studied in dodecylphosphocholine (DPC) micelles using solution NMR spectroscopy. We investigated the 73-residue peptide EL3-TM7-CT40 consisting of the third extracellular loop 3 (EL3), the seventh transmembrane helix (TM7), and 40 residues from the cytosolic C-terminal domain (CT40). The structure reveals the presence of an alpha-helix in the segment encompassing residues 10-30, which is perturbed around the internal Pro-24 residue. Root mean-square deviation values of individually superimposed helical segments 10-20 and 25-30 were 0.91 +/- 0.33 A and 0.76 +/- 0.37 A, respectively. 15N-relaxation and residual dipolar coupling data support a rather stable fold for the TM7 part of EL3-TM7-CT40, whereas the EL3 and CT40 segments are more flexible. Spin-label data indicate that the TM7 helix integrates into DPC micelles but is flexible around the internal Pro-24 site, exposing residues 22-26 to solution and reveal a second site of interaction with the micelle within a region comprising residues 43-58, which forms part of a less well-defined nascent helix. These findings are discussed in light of previous studies in organic-aqueous solvent systems.  相似文献   

8.
The aquatic sex pheromone splendipherin (GLVSSIGKALGGLLADVVKSKGQPA-OH) of the male green tree frog Litoria splendida moves across the surface of water to reach the female. Surface pressure and X-ray reflectometry measurements confirm that splendipherin is a surface-active molecule, and are consistent with it having an ordered structure, whereby the hydrophilic portion of the peptide interacts with the underlying water and the hydrophobic region is adjacent to the vapour phase. The movement of splendipherin over the surface of water is caused by a surface pressure gradient. In order to better define the structure of splendipherin at the water/air interface we used 2D NMR studies of the pheromone with the solvent system trifluoroethanol/water (1 : 1 v/v). In this solvent system, splendipherin adopts a bent alpha helix from residues V3 to K21. The bending of the helix occurs in the centre of the peptide in the vicinity of G11 and G12. The region of splendipherin from V3 to G11 has well-defined amphipathicity, whereas the amphipathicity from G12 to A25 is reduced by K19 and P24 intruding into the hydrophobic and hydrophilic regions respectively. A helical structure is consistent with X-ray reflectometry data.  相似文献   

9.
Gao GH  Liu W  Dai JX  Wang JF  Hu Z  Zhang Y  Wang DC 《Biochemistry》2001,40(37):10973-10978
The three-dimensional solution structure of PAFP-S, an antifungal peptide extracted from the seeds of Phytolacca americana, was determined using 1H NMR spectroscopy. This cationic peptide contains 38 amino acid residues. Its structure was determined from 302 distance restraints and 36 dihedral restraints derived from NOEs and coupling constants. The peptide has six cysteines involved in three disulfide bonds. The previously unassigned parings have now been determined from NMR data. The solution structure of PAFP-S is presented as a set of 20 structures using ab initio dynamic simulated annealing, with an average RMS deviation of 1.68 A for the backbone heavy atoms and 2.19 A for all heavy atoms, respectively. For the well-defined triple-stranded beta-sheet involving residues 8-10, 23-27, and 32-36, the corresponding values were 0.39 and 1.25 A. The global fold involves a cystine-knotted three-stranded antiparallel beta-sheet (residues 8-10, 23-27, 32-36), a flexible loop (residues 14-19), and four beta-reverse turns (residues 4-8, 11-14, 19-22, 28-32). This structure features all the characteristics of the knottin fold. It is the first structural model of an antifungal peptide that adopts a knottin-type structure. PAFP-S has an extended hydrophobic surface comprised of residues Tyr23, Phe25, Ile27, Tyr32, and Val34. The side chains of these residues are well-defined in the NMR structure. Several hydrophilic and positively charged residues (Arg9, Arg38, and Lys36) surround the hydrophobic surface, giving PAFP-S an amphiphilic character which would be the main structural basis of its biological function.  相似文献   

10.
Water-borne protein pheromones are essential for coordination of reproductive activities in many marine organisms. In this paper, we describe the first structure of a pheromone protein from a marine organism, that of attractin (58 residues) from Aplysia californica. The NMR solution structure was determined from TOCSY, NOESY, and DQF-COSY measurements of recombinant attractin expressed in insect cells. The sequential resonance assignments were done with standard manual procedures. Approximately 90% of the 949 unambiguous NOESY cross-peaks were assigned automatically with simultaneous three-dimensional structure calculation using our NOAH/DIAMOD/FANTOM program suite. The final bundle of energy-refined structures is well-defined, with an average rmsd value to the mean structure of 0.72 +/- 0.12 A for backbone and 1.32 +/- 0.11 A for heavy atoms for amino acids 3-47. Attractin contains two antiparallel helices, made up of residues Ile9-Gln16 and I30-S36. The NMR distance constraints are consistent with the three disulfide bonds determined by mass spectroscopy (C4-C41, C13-C33, and C20-C26), where the first two could be directly determined from NOESY cross-peaks between CH beta protons of the corresponding cysteines. The second helix contains the (L/I)(29)IEECKTS(36) sequence conserved in attractins from five species of Aplysia that could interact with the receptor. The sequence and structure of this region are similar to those of the recognition helix of the Er-11 pheromone of the unicellular ciliate Euplotes raikovi, suggesting a possible common pathway for intercellular communication of these two distinct pheromone families.  相似文献   

11.
The melibiose carrier from Escherichia coli is a cation-substrate cotransporter that catalyzes the accumulation of galactosides at the expense of H(+), Na(+), or Li(+) electrochemical gradients. Charged residues on transmembrane domains in the amino-terminal portion of this carrier play an important role in the recognition of cations, while the carboxyl portion of the protein seems to be important for sugar recognition. In the present study, we substituted Lys-377 on helix XI with Val. This mutant carrier, K377V, had reduced melibiose transport activity. We subsequently used this mutant for the isolation of functional second-site revertants. Revertant strains showed the additional substitutions of Val or Asn for Asp-59 (helix II), or Leu for Phe-20 (helix I). Isolation of revertant strains where both Lys-377 and Asp-59 are substituted with neutral residues suggested the possibility that a salt bridge exists between helix II and helix XI. To further test this idea, we constructed three additional site-directed mutants: Asp-59-->Lys (D59K), Lys-377-->Asp (K377D), and a double mutant, Asp-59-->Lys/Lys-377-->Asp (D59K/K377D), in which the position of these charges was exchanged. K377D accumulated melibiose only marginally while D59K could not accumulate. However, the D59K/K377D double mutant accumulated melibiose to a modest level although this activity was no longer stimulated by Na(+). We suggest that Asp-59 and Lys-377 interact via a salt bridge that brings helix II and helix XI close to one another in the three-dimensional structure of the carrier.  相似文献   

12.
The solution structure of a peptide fragment corresponding to the 38–59 region of porcine phospholipase A2 has been investigated using CD, nmr chemical shifts, and nuclear over-hauser effects (NOEs). This isolated fragment of phospholipase forms an α-helix spanning residues 38–55, very similar to the one found in the native protein, except for residues 56–58, which were helical in the crystal but found random in solution. Addition of triflouro-ethanol (TFE) merely increased helix population but it did not redefine helix limits. To investigate how the folding information, in particular that concerning eventual helix start and stop signals, was coded in this particular amino acid sequence, the helices formed by synthetic peptides reproducing sections of this phospholipase 38–59 fragment, namely 40–59, 42–59, 38–50, and 45–57, were characterized using NOEs and helix populations quantitatively evaluated on different peptide chain segments using nmr chemical shifts in two solvents (H2O and 30% TFE/H2O). A set of nmr spectra was also recorded and assigned under denaturing conditions (6Murea) to obtain reliable values for the chemical shifts of each peptide in the random state. Based on chemical shift data, it was concluded that the helix formed by the phospholipase 38–59 fragment was not abruptly, but progressively, destabilized all along its length by successive elimination of residues at the N end, while the removal of residues at the C end affected helix stability more locally and to a lesser extent. These results are consistent with the idea that there are not single residues responsible for helix initiation or helix stability, and they also evidence an asymmetry for contributions to helix stability by residues located at the two chain ends. The restriction of molecular mobility caused by linking with a disulphide bridge at Cys 51 two identical 38–59 peptide chains did not increase helix stability. The helix formed by the covalently formed homodimer was very similar in length and population to that formed by the monomer. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
The 3D structure of the membrane-permeabilizing 41-mer pediocin-like antimicrobial peptide curvacin A produced by lactic acid bacteria has been studied by NMR spectroscopy. In DPC micelles, the cationic and hydrophilic N-terminal half of the peptide forms an S-shaped beta-sheet-like domain stabilized by a disulfide bridge and a few hydrogen bonds. This domain is followed by two alpha-helices: a hydrophilic 6-mer helix between residues 19 and 24 and an amphiphilic/hydrophobic 11-mer helix between residues 29 and 39. There are two hinges in the peptide, one at residues 16-18 between the N-terminal S-shaped beta-sheet-like structure and the central 6-mer helix and one at residues 26-28 between the central helix and the 11-mer C-terminal helix. The latter helix is the only amphiphilic/hydrophobic part of the peptide and is thus presumably the part that penetrates into the hydrophobic phase of target-cell membranes. The hinge between the two helices may introduce the flexibility that allows the helix to dip into membranes. The helix-hinge-helix structure in the C-terminal half of curvacin A clearly distinguishes this peptide from the other pediocin-like peptides whose structures have been analyzed and suggests that curvacin A along with the structural homologues enterocin P and carnobacteriocin BM1 belong to a subgroup of the pediocin-like family of antimicrobial peptides.  相似文献   

14.
The Escherichia coli outer membrane beta-barrel enzyme PagP and its homologues are unique in that the eight-stranded barrel is tilted by about 25 degrees with respect to the membrane normal and is preceded by a 19-residue amphipathic alpha-helix. To investigate the role of this helix in the folding and stability of PagP, mutants were generated in which the helix was deleted (Delta(1-19)), or in which residues predicted to be involved in helix-barrel interactions were altered (W17A or R59L). The ability of the variants to insert into detergent micelles or liposomes was studied in vitro using circular dichroism, fluorescence, Fourier transform infrared spectroscopy, electrophoretic mobility and gain of enzyme activity. The data show that PagP, initially unfolded in 5% (w/v) perfluoro-octanoic acid or 6 M guanidinium chloride, inserts spontaneously and folds quantitatively to an active conformation into detergent micelles of cyclofos-7 or into large vesicles of diC(12:0)-phosphatidylcholine (diC(12:0)PC), respectively, the latter in the presence of 7 M urea. Successful refolding of all variants into both micelles and liposomes ruled out an essential role for the helix or helix-barrel interactions in folding and membrane insertion. Measurements of thermal stability indicated that the variants R59L, W17A/R59L and Delta(1-19) were destabilised substantially compared with wild-type PagP. However, in contrast to the other variants, destabilisation of the W17A variant relative to wild-type PagP was much greater in liposomes than in micelles. Analysis of the kinetics of folding and unfolding of all variants in diC(12:0)PC liposomes suggested that this destabilisation arises predominantly from an increased dissociation of the refolded variant proteins from the lipid-inserted state. The data support the view that the helix of PagP is not required for folding and assembly, but instead acts as a clamp, stabilising membrane-inserted PagP after folding and docking with the membrane are complete.  相似文献   

15.
The Antennapedia homeodomain structure consists of four helices. The helices II and III are connected by a tripeptide that forms a turn, and constitute the well-known helix-turn-helix motif. The recognition helix penetrates the DNA major groove, gives specific protein-DNA contacts and forms direct, or water-mediated, intermolecular hydrogen bonds. It was suggested that helix III (and perhaps also helix IV) might represent the recognition helix of Antennapedia homeodomain, which makes contact with the surface of the major groove of the DNA. In an attempt to clarify the helix III capabilities of assuming an helical conformation when separated from the rest of the protein, we carried out the structural determination of the recognition helix III in different solvent media. The conformational study of fragments 42-53, where residues W48 and F49, not involved in the protein-DNA interaction, were substituted by two alanines, was conducted in sodium dodecyl sulfate (SDS), trifluoroethanol (TFE) and TFE/water, using circular dichroism, nuclear magnetic resonance (NMR) and distance geometry (DG) techniques. The fragment assumes a well-defined secondary structure in TFE and in TFE/water (90/10, v/v) with an alpha-helix encompassing residues 4-9, while in TFE/water (70/30, v/v) a less regular structure was found. The DG results in the micellar system evidence the presence of a distorted alpha-helical conformation involving residues 4-8. Our results reveal that the isolated Antennapedia recognition helix III tend to preserve in solution the alpha-helical conformation even if separated from the rest of the molecule.  相似文献   

16.
The solution structure and backbone dynamics of the recombinant potato carboxypeptidase inhibitor (PCI) have been characterized by NMR spectroscopy. The structure, determined on the basis of 497 NOE-derived distance constraints, is much better defined than the one reported in a previous NMR study, with an average pairwise backbone root-mean-square deviation of 0.5 A for the well-defined region of the protein, residues 7-37. Many of the side-chains show now well-defined conformations, both in the hydrophobic core and on the surface of the protein. Overall, the solution structure of free PCI is similar to the one that it shows in the crystal of the complex with carboxypeptidase A. However, some local differences are observed in regions 15-21 and 27-29. In solution, the six N-terminal and the two C-terminal residues are rather flexible, as shown by 15N backbone relaxation measurements. The flexibility of the latter segment may have implications in the binding of the inhibitor by the enzyme. All the remaining residues in the protein are essentially rigid (S2 > 0.8) with the exception of two of them at the end of a short 3/10 helix. Despite the small size of the protein, a number of amide protons are protected from exchange with solvent deuterons. The slowest exchanging protons are those in a small two-strand beta-sheet. The unfolding free energies, as calculated from the exchange rates of these protons, are around 5 kcal/mol. Other protected amide protons are located in the segment 7-12, adjacent to the beta-sheet. Although these residues are not in an extended conformation in PCI, the equivalent residues in structurally homologous proteins form a third strand of the central beta-sheet. The amide protons in the 3/10 helix are only marginally protected, indicating that they exchange by a local unfolding mechanism, which is consistent with the increase in flexibility shown by some of its residues. Backbone alignment-based programs for folding recognition, as opposite to disulfide-bond alignments, reveal new proteins of unrelated sequence and function with a similar structure.  相似文献   

17.
The heat stable inhibitor of cAMP-dependent protein kinase (PKIalpha) contains both a nuclear export signal (NES) and a high affinity inhibitory region that is essential for inhibition of the catalytic subunit of the kinase. These functions are sequentially independent. Two-dimensional NMR spectroscopy was performed on uniformly [15N]-labeled PKIalpha to examine its structure free in solution. Seventy out of 75 residues were identified, and examination of the CaH chemical shifts revealed two regions of upfield chemical shifts characteristic of alpha-helices. When PKIalpha was fragmented into two functionally distinct peptides for study at higher concentrations, no significant alterations in chemical shifts or secondary structure were observed. The first ordered region, identified in PKIalpha (1-25), contains an alpha-helix from residues 1-13. This helix extends by one turn the helix observed in the crystal structure of a PKIalpha (5-24) peptide bound to the catalytic subunit. The second region of well-defined secondary structure, residues 35-47, overlaps with the nuclear export signal in the PKIalpha (26-75) fragment. This secondary structure consists of a helix with a hydrophobic face comprised of Leu37, Leu41, and Leu44, followed by a flexible turn containing Ile46. These four residues are critical for nuclear export function. The remainder of the protein in solution appears relatively unstructured, and this lack of structure surrounding a few essential and well-defined signaling elements may be characteristic of a growing family of small regulatory proteins that interact with protein kinases.  相似文献   

18.
B A Johnson  E E Sugg 《Biochemistry》1992,31(35):8151-8159
The solution structure of chemically synthesized iberiotoxin, a scorpion toxin that blocks Ca(2+)-activated K+ channels, has been determined using 2D 1H NMR spectroscopy. Analysis of the NOEs, coupling constants, and HN-DN exchange rates indicates the structure consists of an antiparallel beta-sheet from residues 25 to 36, with a type 1 turn at residues 30-31, and a helix from residues 13 to 21. The carboxyl-terminal residues form a short, and distorted, third strand of the sheet. The NMR data are consistent with disulfide bonds from residues 7 to 28, 13 to 33, and 17 to 35. The disulfide bridging presents the same profile as in other scorpion toxins, where a Cys-X-Cys sequence in a strand of sheet forms two disulfide bonds to a Cys-X-X-X-Cys sequence in a helix. Three-dimensional structures were generated using the torsion angle space program PEGASUS. The best ten structures had an average rmsd over all pairwise comparisons of 1.49 A. The average rmsd to a calculated average structure is 1.0 A. The resulting structures appear very similar to those of charybdotoxin, a related scorpion toxin.  相似文献   

19.
H Gouda  H Torigoe  A Saito  M Sato  Y Arata  I Shimada 《Biochemistry》1992,31(40):9665-9672
The three-dimensional solution structure of the recombinant B domain (FB) of staphylococcal protein A, which specifically binds to the Fc portion of immunoglobulin G, was determined by NMR spectroscopy and hybrid distance geometry-dynamical simulated annealing calculations. On the basis of 692 experimental constraints including 587 distance constraints obtained from the nuclear Overhauser effect (NOE), 57 torsion angle (phi, chi 1) constraints, and 48 constraints associated with 24 hydrogen bonds, a total of 10 converged structures of FB were obtained. The atomic root mean square difference among the 10 converged structures is 0.52 +/- 0.10 A for the backbone atoms and 0.98 +/- 0.08 A for all heavy atoms (excluding the N-terminal segment from Thr1 to Glu9 and the C-terminal segment from Gln56 to Ala60, which are partially disordered). FB is composed of a bundle of three alpha-helices, i.e., helix I (Gln10-His19), helix II (Glu25-Asp37), and helix III (Ser42-Ala55). Helix II and helix III are antiparallel to each other, whereas the long axis of helix I is tilted at an angle of about 30 degrees with respect to those of helix II and helix III. Most of the hydrophobic residues of FB are buried in the interior of the bundle of the three helices. It is suggested that the buried hydrophobic residues form a hydrophobic core, contributing to the stability of FB.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In a previous study 23 residues in helix XI of the cysteine-less melibiose carrier were changed individually to cysteine. Several of these cysteine mutants (K377C, A383C, F385C, L391C, G395C) had low transport activity and they were white on melibiose MacConkey fermentation plates. After several days of incubation of these white clones on melibiose MacConkey plates a rare red mutant appeared. The plasmid DNA was then isolated and sequenced. The two second site revertants from K377C were I22S and D59A. This change of aspartic acid to a neutral residue suggests that physiologically there is an interaction between K377 and D59 (possibly a salt bridge). The revertants from A383C were in positions 20 (F20L) and 22 (I22S and I22N). Revertants of F385C were intrahelical changes (I387M and A388G) and a change in C-terminal loop (R441C). Revertants of L391C were in helix I (I22N, I22T and D19E) and helix V (A152S). Revertants of G395C were in helix I (D19E and I22N). We suggest that there is an interaction between helix XI and helices I, II, and V and proximity between these helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号