首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J M Pesando 《Biochemistry》1975,14(4):681-688
The seven resonances observed in the histidine region of the proton magnetic resonance (pmr) spectrum of human carbonic anhydrase B and reported in the preceding paper are studied in the presence of sulfonamide, azide, cyanide, and chloride inhibitors and in metal-free, cadmium substituted, cobalt substituted, and carboxymethylated forms of the enzyme. Results indicate that the two resonances that move-downfield with increasing pH and the two that do not move with pH reflect residues located at the active site. The first two resonances are assigned to the same titratable histidine whose pK value of 8.24 corresponds to that of the group controlling catalytic activity. Addition of anions or sulfonamides, removal of zinc, or substitution of cadmium for zinc at the active site, procedures known to abolish enzymatic activity, prevent titration of this residue. Partial inhibition of carbonic anhydrase by chloride slectively increases the pK value of the group controlling catalytic activity and of the histidine with pK equals 8.24. Experiments with metal-free and cadmium carbonic anhydrases and comparisons with model systems suggest that this histidine is bound to the metal ion at high pH; at low pH this complex appears to dissociate as protons compete with the metal for the imidazole group. It is proposed that ionization of the group controlling catalytic activity represents loss of the pyrrole proton of this neutral ligand when it binds to Zn(II), forming an imidazolate anion and juxtaposing a strong base and a powerful Lewis acid at the active site. When bound to zinc as an anion, this histidine can act as a general base catalyst in the hydration of carbon dioxide and be replaced as a metal ligand by an oxygen of the substrate in the course of the reaction. The histidine-metal complex is thought to exist in a strained configuration in the active enzyme so that its imidazole-metal bond is readily broken on addition of substrates or inhibitors. This model is consistent with the available data on the enzyme and is discussed in relation to alternative proposals.  相似文献   

2.
We have reacted acrolein with human carbonic anhydrase II using conditions reported to result in maximal formylethylation of exposed histidine and lysine residues (Pocker, Y., and Janji?, N. (1988) J. Biol. Chem. 263, 6169-6176). Pocker and Janji? proposed that the decrease by 95-98% in the steady-state turnover number for the hydration of CO2 caused by this chemical modification is due predominantly to the alkylation of one residue, the imidazole side chain of histidine 64. We measured the rate of 18O exchange between CO2 and water catalyzed by these enzymes at chemical equilibrium using membrane inlet mass spectrometry. The catalyzed rate of interconversion of CO2 and HCO3- at chemical equilibrium was the same for the acrolein-modified and the unmodified carbonic anhydrases, but the rate of release of 18O-labeled water from the active site had decreased by as much as 85% for the acrolein-modified enzyme. The 18O-exchange kinetics catalyzed by the acrolein-modified carbonic anhydrase II was similar to that catalyzed by a mutant human carbonic anhydrase II in which histidine at residue 64 was replaced with alanine. Moreover, modification of this mutant carbonic anhydrase II with acrolein did not alter to a significant extent its 18O-exchange pattern. These results support the proposal of Pocker and Janji? and the suggested role of histidine 64 in carbonic anhydrase II as a proton shuttle residue that transfers a proton from zinc-bound water to buffer in solution.  相似文献   

3.
A new catalytic mechanism is proposed for the hydration of CO2 by the zinc metalloenzyme carbonic anhydrase. This mechanism identifies the group controlling catalytic activity as an active site histidine, in which the protonated imidazole ring coordinates to zinc, losing a proton. Geometric constraints on the histidine unit make the metal-ligand bond a strained and, therefore, labile one. In the hydration reaction, the metal-bound neutral histidine moiety serves as a proton acceptor for the transient ionization of metal-bound water. Zinc-bound hydroxide attacks the carbon of the substrate to generate metal-bound bicarbonate, and the system regenerates itself by losing the elements of carbonic acid.  相似文献   

4.
Histidine C-2 proton resonances in rhesus monkey carbonic anhydrase B (carbonate hydro-lyase, EC 4.2.1.1) and bovine carbonic anhydrase were investigated using 270-MHz proton magnetic resonance. The results suggest that there are extensive three-dimensional homologies between the human B and rhesus B enzymes and between the human C and bovine enzymes. Resonances from solvent exchangeable protons have been observed in the 11-16 ppm range in the NMR spectra of human carbonic anhydrases B and C and bovine carbonic anhydrase. Up to five of these are sensitive to changes of pH and the presence of inhibitors. Three of these resonances are assigned to NH protons of the metal coordinated imidazole groups. These results are discussed in relation to various models for the catalytic mechanism of carbonic anhydrase.  相似文献   

5.
Resonances of the histidine region of human carbonic anhydrase B have been studied by proton magnetic resonance spectroscopy in the presence of seven sulfonamide inhibitors. Results of difference spectroscopy and observation of the C-2 resonance of an additional titratable histidine in some of these spectra suggest a conformational change in the enzyme, while the large number of unaltered resonances indicates involvement of only a few residues. Inhibition of carbonic anhydrase by sulfonamides appears to involve: stabilization of an appropriately oriented initial complex by hydrophobic binding of the aromatic ring of the inhibitor to residues of the cavity forming the active site; ionization of the sulfonamido group, facilitated by its proximity to zinc; protonation and displacement of the high pH ligand to the metal controlling catalytic activity, thought here to be a histidine residue; and formation by the sulfonamido group of an ionic bond to zinc and a hydrogen bond to the hydroxyl group of serine or threonine. Diversity of spectra produced with various sulfonamides suggests that substituents on the ring and heteroatoms within the ring interact with additional groups at the active site. Increase in inhibitory potency appears to involve optimizing the number as well as the strength of these interactions. An upper limit for the dissociation rate of these complexes of 10 sec-1 was obtained.  相似文献   

6.
Nine resonances in the 270 MHz proton magnetic resonance spectrum of human carbonic anhydrase B have been identified with imidazole C(2) protons of histidine residues, six of which are observed to titrate with pKa values in the range 4.7 to 7.4. The behaviour of the nine resonances has been studied in the presence of the inhibitors, iodide, cyanide, acetate, hexacyanochromate, and imidazole. Measurements have also been made of the enzyme in its apo, cobalt, and mono-alkylated forms. Used in conjunction with the crystal structure, these results have enabled the tentative assignment of all nine resonances to particular histidine residues in the amino-acid sequence. Three of the active-site histidines at positions 64, 67, and 200 have low pKa values and cannot be directly linked to the activity of the enzyme. However, the resonances assigned to the three metal-liganding histidines do exhibit changes on anion binding and with pH, which parallel changes in the esterase activity. These results are consistent with the model of an ionizable water molecule bound to the zinc ion.Linewidth measurements of the resonances of the histidine residues on the enzyme surface are used to estimate pseudo-first-order rate constants of the order of 4 × 103 s?1 for D+ exchange between imidazole N and solvent in the absence of buffer. These rates are observed to increase in the presence of small amounts of the buffers Tris and imidazole.  相似文献   

7.
The spatial environment of the active centers for the four zinc-containing enzymes carbonic anhydrase, liver alcohol dehydrogenase, thermolysin and carboxypeptidase were compared and contrasted. The zinc is co-ordinated by three protein groups. In addition, a water molecule and substrate carbonyl may assume a fourth or fifth position. A group whose function is to abstract a proton from water during catalysis was found to have a constant spatial arrangement with respect to the zinc atom. The co-ordination sphere around the zinc is systematically distorted from a regular tetrahedral geometry with one specific ligand position being invariably occupied by a histidine residue. The orientation of the imidazole ring is moderately constant with respect to the Zn pyramid, a constraint possibly imposed by the adjacent substrate to permit its positioning suitable for catalysis.The comparison of carboxypeptidase and thermolysin was previously reported (Kester and Matthews, 1977a). The position of the water molecule as found in liver alcohol dehydrogenase when placed in thermolysin or carboxypeptidase would be consistent with a transient pentagonal Zn co-ordination during catalysis.Comparison of carboxypeptidase and carbonic anhydrase showed that the specificity pocket of carboxypeptidase superimposed onto a hydrophobic cavity of unknown function in carbonic anhydrase. The glycyl-l-tyrosine pseudo-substrate of carboxypeptidase fits well into the cavity, suggesting a probable binding site for esters in carbonic anhydrase. The excellent esterase activity of both these enzymes can thus be explained by a common binding mode and arrangement of catalytic groups.A comparison of trypsin and thermolysin demonstrates that, although their functional groups differ in character, the peptidase activity could be catalyzed in a similar manner. The proton-abstracting function of His57 in trypsin is generated by Glul43 acting on the Zn co-ordinated water, while the proton donor function of His57 in trypsin is generated by His231 in thermolysin.A comparison of liver alcohol dehydrogenase with other dehydrogenases suggests that His51 is not only a proton sink but also electronically provides an essential positive charge at crucial moments during catalysis. In contrast Arg 109 of lactafce dehydrogenase performs the same function by virtue of a conformational change. The superposition indicates that the zinc co-ordinated water oxygen has the proton acceptor function in liver alcohol dehydrogenase corresponding to the essential histidine groups in lactate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase.A compendium of the handedness of the catalytic configuration about the reactive atoms for ten different enzymes has been tabulated.  相似文献   

8.
The residue phenylalanine 198 (Phe 198) is a prominent cause of the lower activity of human carbonic anhydrase III (HCA III) compared with HCA II and other isozymes which have leucine at this site. We report the crystal structures of HCA III and the site-directed mutant F198L HCA III, both at 2.1 A resolution, and the enhancement of catalytic activity by exogenous proton donors containing imidazole rings. Both enzymes had a hexahistidine extension at the carboxy-terminal end, used to aid in purification, that was ordered in the crystal structures bound in the active site cavity of an adjacent symmetry-related enzyme. This observation allowed us to comment on a number of possible binding sites for imidazole and derivatives as exogenous proton donors/acceptors in catalysis by HCA III. Kinetic and structural evidence indicates that the phenyl side chain of Phe 198 in HCA III, about 5 A from the zinc, is a steric constriction in the active site, may cause altered interactions at the zinc-bound solvent, and is a binding site for the activation of catalysis by histidylhistidine. This suggests that sites of activation of the proton-transfer pathway in carbonic anhydrase are closer to the zinc than considered in previous studies.  相似文献   

9.
Among the seven known isozymes of carbonic anhydrase in higher vertebrates, isozyme III is the least efficient in catalytic hydration of CO2 and the least susceptible to inhibition by sulfonamides. We have investigated the role of two basic residues near the active site of human carbonic anhydrase III (HCA III), lysine 64 and arginine 67, to determine whether they can account for some of the unique properties of this isozyme. Site-directed mutagenesis was used to replace these residues with histidine 64 and asparagine 67, the amino acids present at the corresponding positions of HCA II, the most efficient of the carbonic anhydrase isozymes. Catalysis by wild-type HCA III and mutants was determined from the initial velocity of hydration of CO2 at steady state by stopped-flow spectrophotometry and from the exchange of 18O between CO2 and water at chemical equilibrium by mass spectrometry. We have shown that histidine 64 functions as a proton shuttle in carbonic anhydrase by substituting histidine for lysine 64 in HCA III. The enhanced CO2 hydration activity and pH profile of the resulting mutant support this role for histidine 64 in the catalytic mechanism and suggest an approach that may be useful in investigating the mechanistic roles of active-site residues in other isozyme groups. Replacing arginine 67 in HCA III by asparagine enhanced catalysis of CO2 hydration 3-fold compared with that of wild-type HCA III, and the pH profile of the resulting mutant was consistent with a proton transfer role for lysine 64. Neither replacement enhanced the weak inhibition of HCA III by acetazolamide or the catalytic hydrolysis of 4-nitrophenyl acetate.  相似文献   

10.
The maximal velocity in the hydration of CO(2) catalyzed by the carbonic anhydrases in well-buffered solutions is limited by an intramolecular proton transfer from zinc-bound water to acceptor groups of the enzyme and hence to buffer in solution. Stopped-flow spectrophotometry was used to accumulate evidence that this maximal velocity is affected by residues of basic pK(a), near 8 to above 9, in catalysis of the hydration of CO(2) by carbonic anhydrases III, IV, V, and VII. A mutant of carbonic anhydrase II containing the replacement His-64-->Ala, which removes the prominent histidine proton shuttle (with pK(a) near 7), allows better observation of these basic groups. We suggest this feature of catalysis is general for the human and animal carbonic anhydrases and is due to residues of basic pK(a), predominantly lysines and tyrosines more distant from the zinc than His-64, that act as proton acceptors. These groups supplement the well-studied proton transfer from zinc-bound water to His-64 in the most efficient of the carbonic anhydrases, isozymes II, IV, and VII.  相似文献   

11.
Maupin CM  Voth GA 《Biochemistry》2007,46(11):2938-2947
Histidine at position 64 (His64) in human carbonic anhydrase II (HCA II) is believed to be the proton acceptor in the hydration direction and the proton donor in the dehydration direction for the rate-limiting proton transfer (PT) event. Although the biochemical effect of histidine at position 64 has been thoroughly investigated, the role of its orientation in the PT event is a topic of considerable debate. X-ray data of HCA II suggests that His64 can adopt either an "in" or "out" orientation. The "in" orientation is believed to be favored for the hydration direction PT event because the Ndelta of His64 is closer to the catalytic zinc. This orientation allows for smaller water bridges, which are postulated to be more conducive to PT. In the present work, classical molecular dynamics simulations have been conducted to elucidate the role that the His64 orientation may play in its ability to act as a proton donor/acceptor in HCA II. The free energy profile for the orientation of His64 suggests that the histidine will adopt an "in" orientation in the hydration direction, which brings Ndelta in close proximity to the catalytic zinc. When the histidine becomes protonated, it then rotates to an "out" orientation, creating a more favorable solvation environment for the protonated His64. In this "out" orientation, the imidazole ring releases the delta nitrogen's excess proton into the bulk environment. After the second PT event and when the zinc-bound water is regenerated, the His64 is again favored to reorient to the "in" orientation, completing the catalytic cycle.  相似文献   

12.
X-ray absorption spectroscopy at the Zn K-edge indicates that the active site of the marine diatom Thalassiosira weissflogii carbonic anhydrase is strikingly similar to that of mammalian alpha-carbonic anhydrase enzymes. The zinc has three histidine ligands and a single water at 1.98 A. This is quite different from the beta-carbonic anhydrases of higher plants in which zinc is coordinated by two cysteine thiolates, one histidine, and a water molecule. The diatom carbonic anhydrase shows no significant sequence similarity with other carbonic anhydrases and may represent an example of convergent evolution at the molecular level.  相似文献   

13.
Tu C  Rowlett RS  Tripp BC  Ferry JG  Silverman DN 《Biochemistry》2002,41(51):15429-15435
Catalysis of the dehydration of HCO(3)(-) by carbonic anhydrase requires proton transfer from solution to the zinc-bound hydroxide. Carbonic anhydrases in each of the alpha, beta, and gamma classes, examples of convergent evolution, appear to have a side chain extending into the active site cavity that acts as a proton shuttle to facilitate this proton transfer, with His 64 being the most prominent example in the alpha class. We have investigated chemical rescue of mutants in two of these classes in which a proton shuttle has been replaced with a residue that does not transfer protons: H216N carbonic anhydrase from Arabidopsis thaliana (beta class) and E84A carbonic anhydrase from the archeon Methanosarcina thermophila (gamma class). A series of structurally homologous imidazole and pyridine buffers were used as proton acceptors in the activation of CO(2) hydration at steady state and as proton donors of the exchange of (18)O between CO(2) and water at chemical equilibrium. Free energy plots of the rate constants for this intermolecular proton transfer as a function of the difference in pK(a) of donor and acceptor showed extensive curvature, indicating a small intrinsic kinetic barrier for the proton transfers. Application of Marcus rate theory allowed quantitative estimates of the intrinsic kinetic barrier which were near 0.3 kcal/mol with work functions in the range of 7-11 kcal/mol for mutants in the beta and gamma class, similar to results obtained for mutants of carbonic anhydrase in the alpha class. The low values of the intrinsic kinetic barrier for all three classes of carbonic anhydrase reflect proton transfer processes that are consistent with a model of very rapid proton transfer through a flexible matrix of hydrogen-bonded solvent structures sequestered within the active sites of the carbonic anhydrases.  相似文献   

14.
Using bromo[1-13C]acetate to modify N tau of His-200 of human carbonic anhydrase isozyme I leads to the introduction of a useful 13C NMR probe into the active site. To complement our previous diamagnetic NMR studies with this probe, we have now succeeded in directly observing the paramagnetically perturbed resonance of the carboxylate in the cobalt-substituted modified enzyme above pH 8. In the pH range 8-10, the resonance undergoes a pH-dependent slow-exchange process, with the more alkaline form having a much smaller pseudocontact shift and a narrower line width. Below pH 8, the resonance apparently undergoes a very large paramagnetic downfield shift that was estimated by extrapolation. An ionization of approximate pK of 6 appears to control this process. Paramagnetic spin-relaxation studies on the resonance under conditions where it was directly observed yielded distance measurements between the carboxylate carbon and the active site cobalt ion. In inhibitor complexes, this distance was in the range of 5-7 A. In the absence of inhibitors, the distance was approximately 3.0-3.2 A at pH 7.9, consistent with the coordination of the carboxylate to the metal. However, at pH 10, the distance was increased to 4.8 A. These distance determinations were aided by relaxation measurements of a paramagnetically shifted proton resonance at 60-65 ppm downfield assigned by others to a proton of a ligand histidine of metal and confirmed by us to be 5.2 +/- 0.1 A from the metal. Our findings provide a molecular basis for the observed changes in catalytic properties that accompany the carboxymethylation.  相似文献   

15.
Among the isozymes of carbonic anhydrase, isozyme III is the least efficient in the catalysis of the hydration of CO2 and was previously thought to be unaffected by proton transfer from buffers to the active site. We report that buffers of small size, especially imidazole, increase the rate of catalysis by human carbonic anhydrase III (HCA III) of (1) 18O exchange between HCO3- and water measured by membrane-inlet mass spectrometry and (2) the dehydration of HCO3- measured by stopped-flow spectrophotometry. Imidazole enhanced the rate of release of 18O-labeled water from the active site of wild-type carbonic anhydrase III and caused a much greater enhancement, up to 20-fold, for the K64H, R67H, and R67N mutants of this isozyme. Imidazole had no effect on the rate of interconversion of CO2 and HCO3- at chemical equilibrium. Steady-state measurements showed that the addition of imidazole resulted in increases in the turnover number (kcat) for the hydration of CO2 catalyzed by HCA III and for the dehydration of HCO3- catalyzed by R67N HCA III. These results are consistent with the transfer of a proton from the imidazolium cation to the zinc-bound hydroxide at the active site, a step required to regenerate the active form of enzyme in the catalytic cycle. Like isozyme II of carbonic anhydrase, isozyme III can be enhanced in catalytic rate by the presence of small molecule buffers in solution.  相似文献   

16.
The imidazole (15)N signals of histidine 64 (His(64)), involved in the catalytic function of human carbonic anhydrase II (hCAII), were assigned unambiguously. This was accomplished by incorporating the labeled histidine as probes for solution NMR analysis, with (15)N at ring-N(delta1) and N(epsilon2), (13)Cat ring-Cepsilon1, (13)C and (15)N at all carbon and nitrogen, or (15)N at the amide nitrogen and the labeled glycine with (13)C at the carbonyl carbon. Using the pH dependence of ring-(15)N signals and a comparison between experimental and simulated curves, we determined that the tautomeric equilibrium constant (K(T)) of His(64) is 1.0, which differs from that of other histidine residues. This unique value characterizes the imidazole nitrogen atoms of His(64) as both a general acid (a) and base (b): its epsilon2-nitrogen as (a) releases one proton into the bulk, whereas its delta1-nitrogen as (b) extracts another proton from a water molecule within the water bridge coupling to the zinc-bound water inside the cave. This accelerates the generation of zinc-bound hydroxide to react with the carbon dioxide. Releasing the productive bicarbonate ion from the inside separates the water bridge pathway, in which the next water molecules move into beside zinc ion. A new water molecule is supplied from the bulk to near the delta1-nitrogen of His(64). These reconstitute the water bridge. Based on these features, we suggest here a catalytic mechanism for hCAII: the tautomerization of His(64) can mediate the transfers of both protons and water molecules at a neutral pH with high efficiency, requiring no time- or energy-consuming processes.  相似文献   

17.
We report the X-ray crystal structures and rate constants for proton transfer in site-specific mutants of human carbonic anhydrase III (HCA III) that place a histidine residue in the active-site cavity: K64H, R67H, and K64H-R67N HCA III. Prior evidence from the exchange of 18O between CO2 and water measured by mass spectrometry shows each mutant to have enhanced proton transfer in catalysis compared with wild-type HCA III. However, His64 in K64H and K64H-R67N HCA III have at most a capacity for proton transfer that is only 13% that of His64 in HCA II. This reduced rate in mutants of HCA III is associated with a constrained side-chain conformation of His64, which is oriented outward, away from the active-site zinc in the crystal structures. This conformation appears stabilized by a prominent pi stacking interaction of the imidazole ring of His64 with the indole ring of Trp5 in mutants of HCA III. This single orientation of His64 in K64H HCA III predominates also in a double mutant K64H-R67N HCA III, indicating that the positive charge of Arg67 does not influence the observed conformation of His64 in the crystal structure. Hence, the structures and catalytic activity of these mutants of HCA III containing His64 account only in small part for the lower activity of this isozyme compared with HCA II. His67 in R67H HCA III was also shown to be a proton shuttle residue, having a capacity for proton transfer that was approximately four times that of His64 in K64H HCA III. This is most likely due to its proximity and orientation inward towards the zinc-bound solvent. These results emphasize the significance of side chain orientation and range of available conformational states as characteristics of an efficient proton shuttle in carbonic anhydrase.  相似文献   

18.
Aeromonas sobria hemolysin (ASH) is one of the major virulence factors produced by A. sobria, a causative agent of diarrhea in humans. We investigated the effects of ASH on anion transport in human colonic epithelial cells. ASH increased short circuit currents across the intestinal epithelia, which were suppressed by anion channel antagonists, such as carbonic anhydrase inhibitors, and by the removal of external HCO3-. Iliac fluid accumulation was also inhibited by carbonic anhydrase inhibitors. The results suggest that ASH activates HCO3- secretion, whose level correlates with the severity of diarrhea.  相似文献   

19.
We have prepared a site-specific mutant of human carbonic anhydrase (HCA) II with histidine residues at positions 7 and 64 in the active site cavity. Using a different isozyme, we have placed histidine residues in HCA III at positions 64 and 67 and in another mutant at positions 64 and 7. Each of these histidine residues can act as a proton transfer group in catalysis when it is the only nonliganding histidine in the active site cavity, except His(7) in HCA III. Using an (18)O exchange method to measure rate constants for intramolecular proton transfer, we have found that inserting two histidine residues into the active site cavity of either isozyme II or III of carbonic anhydrase results in rates of proton transfer to the zinc-bound hydroxide that are antagonistic or suppressive with respect to the corresponding single mutants. The crystal structure of Y7H HCA II, which contains both His(7) and His(64) within the active site cavity, shows the conformation of the side chain of His(64) moved from its position in the wild type and hydrogen-bonded through an intervening water molecule with the side chain of His(7). This suggests a cause of decreased proton transfer in catalysis.  相似文献   

20.
Zinc and carbonic anhydrase III measurement in human and rat muscle extracts indicate that: 1. About one fifth of zinc in human soleus is associated with carbonic anhydrase III isozyme, and even higher levels of zinc and carbonic anhydrase III are found in rat soleus, where about one half of the zinc is in carbonic anhydrase III. Other muscle was also analysed in a similar way, (see text). Heart is notable in containing lower levels of zinc but negligible carbonic anhydrase III. 2. Treatment of muscle with water or phosphate solutions showed that all the carbonic anhydrase III was water extractable, whereas significant zinc remained bound, but was partially extractable by phosphate solutions. 3. Dialysis of muscle extracts showed that whilst some zinc was dialysable, there was no significant contribution from the carbonic anhydrase III in the dialysed extract. EDTA enhanced the release of dialysable zinc from muscle extract. These findings are discussed in relation to muscle disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号