首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relation of the in vivo nitrate reductase (NR) activityto growth period was studied in the nodules and the leaves ofthe summer moong (Vigna radiata). The maximum NR activity wasobserved 31 days after sowing (DAS) in the leaves and 28 DASin the case of the nodules. In a pot experiment, the effectof the various nitrogen concentrations, namely 0, 3, 6, 9 and12 mg kg–1 was studied on NR activity at three growthstages. The maximum NR activity was observed at 6 mg kg–1N during the pre-flowering stage (26 DAS). Though the noduleshave higher NR activity, its expression was limited by substrateavailability. The NR activity in the leaf could be used as anindex of NR activity in the nodules. Nitrate reductase, nitrogen, nitrate, moong, Vigna radiata  相似文献   

2.
3.
Nitrate assimilation was examined in two cultivars (Banner Winterand Herz Freya) of Vicia faba L. supplied with a range of nitrateconcentrations. The distribution between root and shoot wasassessed. The cultivars showed responses to increased applied nitrateconcentration. Total plant dry weight and carbon content remainedconstant while shoot: root dry weight ratio, total plant nitrogen,total plant leaf area and specific leaf area (SLA) all increased.The proportion of total plant nitrate and nitrate reductase(NR) activity found in the shoot of both cultivars increasedwith applied nitrate concentrations as did NO3: Kjeldahl-Nratios of xylem sap. The cultivars differed in that a greaterproportion of total plant NR activity occurred in the shootof cv. Herz Freya at all applied nitrate concentrations, andits xylem sap NO3: Kjeldahl-N ratio and SLA were consistentlygreater. It is concluded that the distribution of nitrate assimilationbetween root and shoot of V. faba varies both with cultivarand with external nitrate concentration. Vicia faba L., field bean, nitrate assimilation, nitrate reductase, xylem sap analysis  相似文献   

4.
Seedlings of Ricinus communis L. were cultivated in quartz sandand supplied with media which contained either different concentrationsof nitrate or ammonium nitrogen and were treated with a lowsalt stress. The concentration of ABA was determined in tissuesand in xylem and phloem saps. Between 41 and 51 day after sowing,abscisic acid (ABA) flows between roots and shoots were modelled.Long-distance transport of ABA was not stimulated under conditionsof nitrate deficiency (0.2 mol m–3). However, when ammoniumwas given as the only N source (1.0 mol m–3), ABA transportin both xylem and phloem was increased significantly. Mild saltstress (40 mol m–3 NaCl) increased ABA transport in nitrate-fedplants, but not in ammonium-fed plants. The leaf conductancewas lowered by salt treatment with both nitrogen sources, butit was always lower in ammonium-fed compared to nitrate-fedplants. A negative correlation of leaf conductance to ABA levelsin leaves or flow in xylem was found only in comparison of ammonium-fedto nitrate-fed plants. Key words: Abscisic acid, ammonium, Ricinus communis, phloem, xylem, transport, nitrate, nitrogen nutrition  相似文献   

5.
Red light and kinetin (10 µm) increased nitrite reductase(NIR) activity by 85 and 47% respectively in excised leavesof etiolated Zea mays. The stimulatory effect of kinetin decayedslower than that of red light. Indoleacetic acid (10 µm)had no effect on NIR activity. In the presence of abscisic acid(10 µm), the kinetin stimulated increase in NIR activitywas totally nullified, however, the red light irradiated plantsretained 20–25% increase in NIR activity over the darkcontrol. If ABA was given 2 h after kinetin treatment or redlight irradiation, it totally blocked kinetin stimulation asnoticed earlier, but red light stimulation was inhibited byonly 11%. Kinetin-treated and the red light irradiated leavesshowed 20–25% increase in nitrate accumulation, whichwas totally nullified by ABA. The experiments presented suggestan independent mode of signal transduction by kinetin and phytochromein stimulating NIR activity. (Received December 2, 1986; Accepted February 7, 1987)  相似文献   

6.
Seedlings of three genotypes of barley, Hordeum vulgare L.,cv. Winer, were grown in nutrient solutions for 12 d: (a) Wt,the wild type; (b) Chlo19 and (c) Chlo29, two nitrate reductase(NR) deficient nar-mutants. Nar-mutant plants grown in nitratedeveloped about 5–24% of NADH-NR (EC 1.6.6.1 [EC] .) activitylevel characteristic of the Wt. The NR in vitro assays in whichNADH or NADPH were used as electron donors showed that the twomutant lines contained a mixture of NADH-specific and NAD(P)H-bispecific(EC 1.6.6.2 [EC] .) NRs. Chlo19 had a very low level of MoCo activityas compared to Chlo29 and Wt. Chlo19 appeared to be mutatedin a MoCo gene rather than in the genes coding for the nitrateNR apoenzyme. NAD(P)H-NR was found in the shoots and roots of both mutantsbut only in the roots of Wt. Several aspects of the regulationof NADH and NAD(P)H specific NRs in plants of the barley cv.Winer genotypes are discussed. MoCo was a strong limiting factorfor NR biosynthesis in nitrate-fed plants of Chlo19, but lesslimited in N-starved and ammonium-fed plants. Biomass productionby the three genotypes was similar during first 12 d after germination,regardless of the level of NR detected in vitro. Mutant plantsmay be able to supply the nitrogen required for growth withonly 5–24% of the NR level of the WT. Key words: Hordeum vulgare, mutants, nitrate, nitrate reductase, molybdenum cofactor  相似文献   

7.
Experiments conducted to determine the effects of leupeptin,a specific inhibitor of thiol proteinase, on extractable nitratereductase (NR) activity in leaves of Hordeum distichum duringdarkness revealed that leupeptin (0.01 mg.ml–1) appliedto detached leaves significantly reduced the loss of NR activity.At the same time it also reduced the formation of small cytochromec reductase species, which is a degradation product of NR complex,Upon nitrate induction, extractable NR activity increased butthe content of thiol proteinase decreased. This inverse correlationwas also observed upon transfer of nitrate-grown barley seedlingsto nitrate-free nutrient solution. Furthermore, cycloheximide(0.1 mg.ml–1) treatment of barley seedlings reduced thecontent of thiol proteinase and retarded the loss of NR activityunder noninducing conditions. These results suggest that invivo changes in NR content in leaves of Hordeum distichum arethe result of proteolysis by an endogenous thiol proteinase. (Received May 16, 1985; Accepted July 22, 1985)  相似文献   

8.
The molybdenum cofactor (MoCo) is a component of aldehyde oxidase (AO EC 1.2.3.1), xanthine dehydrogenase (XDH EC 1.2.1.37) and nitrate reductase (NR, EC 1.6.6.1). The activity of AO, which catalyses the last step of the synthesis of abscisic acid (ABA), was studied in leaves and roots of barley (Hordeum vulgare L.) plants grown on nitrate or ammonia with or without salinity. The activity of AO in roots was enhanced in plants grown with ammonium while nitrate-grown plants exhibited only traces. Root AO in barley was enhanced by salinity in the presence of nitrate or ammonia in the nutrient medium while leaf AO was not significantly affected by the nitrogen source or salinity of the medium.Salinity and ammonium decreased NR activity in roots while increasing the overall MoCo content of the tissue. The highest level of AO in barley roots was observed in plants grown with ammonium and NaCl, treatments that had only a marginal effect on leaf AO. ABA concentration in leaves of plants increased with salinity and ammonium.Keywords: ABA, aldehyde oxidase, ammonium, nitrate, salinity.   相似文献   

9.
In oat (Avena sativa L. cv. Suregrain) leaf segments, light-darkmodulation of nitrate reductase (NR) activity could be observedonly when segments were kept in –NO3 conditions. We presenthere evidence that nitrate would regulate NR activity by modulatingthe phosphorylation status of the enzyme. (Received June 19, 1995; Accepted August 14, 1995)  相似文献   

10.
The impact of low humidity in ambient air on water relations,nitrate uptake, and translocation of recently absorbed nitrogen,was investigated in 5-week-old tomato (Lycopersicon esculentumMill cv. Ailsa Craig) plants grown hydroponically in a completenutrient solution. Plants were subjected to dry air (relativehumidity 2–4% for 6 h. The transpiration rate increasedseveral-fold and the shoot water content decreased by almost20%, whereas root water content was unaffected. No effect onin vitro nitrate reductase (NR) activity was detected when usingan EDTA-contraining assay buffer. Replacement of EDTA with Mg2+revealed a significant decline in shoot NR activity, which suggestsphosphorylation of the enzyme during the stress treatment. Plantswere grown in a split-root system, in which one root half wasfed 15N-nitrate during the treatment, in order to determinenitrate uptake and translocation of recently absorbed nitrogenin the plants. Uptake of nitrate was substantially inhibited,but the proportion of absorbed 15N that was translocated tothe shoots was only slightly affected. In untreated plants,71% of the 15N recovered in roots had been retranslocated fromthe shoots, whereas in plants subjected to stress the deliveryof 15N from shoots to roots appeared to be completely inhibited.The data show that lowered humidity in air has significant effectson both uptake of nitrate as well as translocation of nitrogenwithin the plants. Some of these effects appear to be commonwith those observed in plants subjected to reduced water potentialsin the root environment and point to the possibility of theshoot water relations being highly influential on nitrogen uptakeand translocation. Key words: Air humidity, nitrate assimilation, nitrate reductase activity, nitrogen translocation, tomato, water stress  相似文献   

11.
12.
Nitrate and total nitrogen contents, and nitrate reductase (NR) activity of the excised maize roots in buffered or unbuffered nitrate solution (at pH 6.5 or 4.5) as affected by putrescine (PUT), abscisic acid (ABA) and salicylic acid (SA) were investigated. In unbufferred solution, the NR activity was lower at pH 4.5 as compared to that at pH 6.5, but in bufferred solution the activity was higher at lower pH. Supply of 100 µM PUT or 500 µM SA, promoted NR activity and 50 µM ABA inhibited the activity at pH 6.5. However, at pH 4.5, PUT and SA inhibited NR activity and ABA had no effect. In most cases, the increase in NR activity was positively correlated with total organic nitrogen and a negatively with nitrate content. A reverse situation was found when NR activity was inhibited by the growth regulators.  相似文献   

13.
Palmer  C. E. 《Plant & cell physiology》1985,26(6):1083-1091
Treatment of potato plants grown in nutrient solution with 3.8µM ABA resulted in reduced soluble protein in roots andin leaves at 24 h, but not in stems. This treatment reducedin vivo nitrate reductase activity in all organs for about 48h with the most pronounced reduction occurring in the roots.Excised root and leaf segments from plants treated with ABAfor 24, 48 and 72 h absorbed significantly more 14C leucine,compared to the control but the percent incorporation into proteinwas not altered in roots. In response to ABA total free amino nitrogen in leaves was lowerat 5 and 72 h and in stems at 72 h. Amino nitrogen content ofroots was enhanced by ABA at 5, 24 and 72 h due to generallyhigher levels of aspartate, serine, glutamate, proline and ammonia.There was no consistent relationship between ABA suppressionof nitrate reductase activity and ammonia or specific aminoacid (except proline) levels in leaves and stems. The increasedfree amino nitrogen levels in response to the hormone may bethe result of impaired NO3– reduction rather than thecause. The results of protein synthesis studies and solubleprotein content suggest that ABA inhibition of nitrate reductaseis not due to general inhibition of protein synthesis and mayinvolve specific inhibition of nitrate reductase protein synthesis. 1 Contribution No. 684, Department of Plant Science, Universityof Manitoba.  相似文献   

14.
The method for assay of in vivo nitrate reductase (NR) activitywas standardized for barley (Hordeum vulgare L.). NR activitywas determined in the various organs of the main shoot of field-grownJyoti barley at 40 kg N ha–1. Total nitrate reductaseactivity (TNRA) of each organ for the period it was metabolicallyactive was calculated. The NR activity was highest in the laminae,followed by the sheaths, reproductive organs; and internodes.The NR activity was high in the first-formed laminae and itshowed a decline in the ones formed subsequently. The valuesvaried from 43.2 ± 4.33 to 7.2 ± 1.49 µmolNO3 reduced g–1 dry wt. h–1. Maximum TNRAin the laminae, sheath, and internodes was at 49, 84, and 84–93d after sowing, respectively. The TNRA of the main shoot asa whole showed three peaks, one around 49 d, a second around63 d, and a third around 84 d after sowing. Correlation coefficient(r) between NR and NO3 concentration was highly significantin the laminae and sheath viz. 0.76*** and 0.62***, respectively.The results are discussed in relation to alteration in managementpractices to maximize nitrate assimilatory activity and theamount of reduced N harvested.  相似文献   

15.
Palmer  C. E. 《Plant & cell physiology》1985,26(6):1167-1174
Abscisic acid (ABA) at 3.8 µM suppressed both in vivoand in vitro nitrate reductase activity in roots, stems andleaves of potato plants grown in solution culture. Suppressionwas maximal between 24 and 48 h, followed by recovery of activityat 72 h in roots and leaves and at 96 h in stems. Removal from ABA after 24 h resulted in complete recovery ofnitrate reductase activity in roots by 24 h and partial recoveryin leaves. ABA treatment enhanced nitrate accumulation in roots,decreased that of leaves, but had no effect on stem nitratecontent. ABA enhanced decay of the enzyme following nitrate removal;by 7 h activity in roots was 22.5% of the initial value comparedto 55% in the control. ABA showed a less drastic effect on lossof activity in leaves and stems. These results indicate thatABA suppression of nitrate reductase activity is not dependenton nitrate uptake, and although it reduced leaf nitrate contentthere was no clear relationship between tissue nitrate levelsand the ABA response. (Received September 13, 1984; Accepted July 1, 1985)  相似文献   

16.
Nitrate reductase activity in the first true leaves of canola(Brassica napus L.) seedlings grown in one-quarter strengthHoagland's solution from seeds pretreated with triadimenol (0.3or 30 g (a.i.) kg–1 of seed) was higher than controlsduring the growth period of 15 to 25 d after planting. Triadimenolalso increased chlorophyll levels, the increase being more pronouncedat its lower concentration. The treatment also increased theweight and nitrate content of the leaves. When seedlings weregrown in nutrient solution containing 1 to 20 mM nitrate, theincrease in nitrate reductase activity by triadimenol was higherat lower rather than at higher nitrate concentrations. The nitratelevels and Kjeldahl nitrogen in the triadimenol-treated leaveswas higher than the controls at concentrations of added nitrateabove 2 mM. Addition of nitrate to plants grown in ammonium,increased nitrate reductase activity more in plants grown fromtriadimenol-treated seeds than controls. However, addition of10µM triadimenol for 24 h to ammonium-grown plants hadlittle effect on enzyme activity, both in the absence as wellas the presence of nitrate. This study demonstrates that triadimenolincreases nitrate reductase activity and nitrate accumulationin the leaves and at least part of the increased enzyme activityis independent of nitrate accumulation. Key words: Triazoles, nitrate content, nitrate reductase activity  相似文献   

17.
The molybdenum cofactor is shared by nitrate reductase (NR), xanthine dehydrogenase (XDH), and abscisic acid (ABA) aldehyde oxidase in higher plants (M. Walker-Simmons, D.A. Kudrna, R.L. Warner [1989] Plant Physiol 90:728-733). In agreement with this, cnx mutants are simultaneously deficient for these three enzyme activities and have physiological characteristics of ABA-deficient plants. In this report we show that aba1 mutants, initially characterized as ABA-deficient mutants, are impaired in both ABA aldehyde oxidase and XDH activity but overexpress NR. These characteristics suggest that aba1 is in fact involved in the last step of molybdenum cofactor biosynthesis specific to XDH and ABA aldehyde oxidase; aba1 probably has the same function as hxB in Aspergillus. The significance of NR overexpression in aba1 mutants is discussed.  相似文献   

18.
Are Roots a Source of Abscisic Acid for the Shoots of Flooded Pea Plants?   总被引:4,自引:1,他引:3  
Flooding the soil for 2–5 d decreased stomatal conductancesof pea plants (Pisum sativum L., cv. Sprite) with six or sevenleaves. This coincided with slower transpiration, increasedleaf water potentials and increased concentrations of abscisicacid (ABA) in the leaves. No increase in ABA was found in theterminal 20 mm of roots of flooded plants over the same timeperiod. Small stomatal conductances associated with increases in foliarABA were also found in plants grown in nutrient solution whenaeration was halted, causing the equilibrium partial pressuresof dissolved oxygen to fall below 05 It Pa. No increase in ABAconcentration in young secondary roots of the non-aerated plantswas detected after 24, 48 or 72 h, even when the shoot, thepresumed site of deposition for any ABA from the roots, wasremoved 5–6 h before analysis. Similarly, ABA concentrations in roots were not increased whenthe nutrient solution was de-oxygenated by continuous purgingwith nitrogen gas. The abscisic acid concentration in leaf epidermis,the tissue most likely to be the recipient of any ABA movingin the transpiration stream from oxygen-deficient roots, waslower than in the remaining parts of the leaf when examinedin the mutant Argenteum which possesses easily removable epidermallayers. It is concluded that the leaves of plants subjectedto flooding of the soil or oxygen shortage in the root environmentare not enriched substantially with ABA from the roots. A moreprobable source of this growth regulator is the leaf itself. Key words: Pisum sativum, flooding, roots, hormones, aeration stress, abscisic acid, Argenteum mutant  相似文献   

19.
Palmer  C. E. 《Plant & cell physiology》1981,22(8):1541-1551
Abscisic acid (ABA) at concentrations of 1 to 10 µg.ml–1suppressed development of nitrate reductase activity in freshtuber slices of Solanum tuberosum L. incubated in KNO3. Suppressionof activity was evident after 3 hr and continued for 20 hr beforerecovery. This recovery may be due to inactivation of the hormone.Nitrate accumulation was enhanced by ABA. At exogenous NO3 levelsof 0.1 to 5 mM, the hormone enhanced both NO3 accumulation andnitrate reductase activity. When applied 24 hr after incubation in NO3, ABA promoted a markeddecline in enzyme activity in the absence of exogenous NO3,but was less effective in the presence of NO3. Slices incubatedin NO3 and ABA also exhibited increased loss of enzyme activityupon removal of NO3. Preincubating slices in the hormone for24 hr in a NO3- free medium resulted in stimulation of nitratereductase activity. Addition of NO3 resulted in a marked stimulationof enzyme activity over a period of 8–10 hr. The ABA response is not related to tissue levels of free aminoacids and is not affected by different NO3 sources. These resultssuggest the ABA effect on nitrate reductase activity is influencedby NO3 status of the cells. Where external NO3 levels are lowit stimulated NRA while it inhibited activity where NO3 contentis high. (Received May 12, 1981; Accepted October 12, 1981)  相似文献   

20.
Neill, S. J., McGaw, B. A. and Horgan, R. 1986. Ethylene and1-aminocyclopropane-l-carboxylic acid production in flacca,a wilty mutant of tomato, subjected to water deficiency andpretreatment with abscisic acid —J. exp. Bot. 37: 535–541. Plants of Lycoperstcon esculentum Mill. cv. Ailsa Craig wildtype and flacca (flc) were sprayed daily with H2O or 2?10–2mol m–3 abscisic acid (ABA). ABA treatment effected apartial phenotypic reversion of flc shoots; leaf areas wereincreased and transpiration rates decreased. Leaf expansionof wild type shoots was inhibited by ABA. Indoleacetic acid (IAA), ABA and l-aminocyclopropane-l-carboxylicacid (ACC) concentrations were determined by combined gas chromatography-massspectrometry using deuterium-labelled internal standards ABAtreatment for 30 d resulted in greatly elevated internal ABAlevels, increasing from 1?0 to 4?3 and from 0?45 to 4?9 nmolg–1 fr. wt. in wild type and flc leaves respectively.Endogenous IAA and ACC concentrations were much lower than thoseof ABA. IAA content ranged from 0?05 to 0?1 nmol g–1 andACC content from 0?07 to 0?24 nmol g–1 Ethylene emanationrates were similar for wild type and flc shoots. Wilting of detached leaves induced a substantial increase inethylene and ACC accumulation in all plants, regardless of treatmentor type. Ethylene and ACC levels were no greater in flc leavescompared to the wild type. ABA pretreatment did not preventthe wilting-induced increase in ACC and ethylene synthesis. Key words: ABA, ACC, ethylene, wilting, wilty mutants  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号