首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low affinity IgE receptor, CD23, is implicated in IgE regulation and the pathogenesis of allergic disease. CD23 is a type II integral membrane protein, comprising a lectin "head," N-terminal "stalk," and C-terminal "tail" in the extracellular sequence. Endogenous proteases cleave CD23 in the stalk and the tail to release soluble fragments that either stimulate or inhibit IgE synthesis in human B cells. The molecular basis of these paradoxical activities is not understood. We have characterized three fragments of CD23, monomeric derCD23, monomeric exCD23, and oligomeric lzCD23. We show that the monomers inhibit and the oligomer stimulates IgE synthesis in human B cells after heavy chain switching to IgE. CD23 fragments could be targets for therapeutic intervention in allergic disease.  相似文献   

2.
3.
It is generally assumed that human differentiated cells have a limited life-span and proliferation capacity in vivo, and that genetic modifications are a prerequisite for their immortalization in vitro. Here we readdress this issue, studying the long-term proliferation potential of human B cells. It was shown earlier that human B cells from peripheral blood of healthy donors can be efficiently induced to proliferate for up to ten weeks in vitro by stimulating their receptor CD40 in the presence of interleukin-4. When we applied the same stimuli under conditions of modified cell number and culture size, we were surprised to find that our treatment induced B cells to proliferate throughout an observation period of presently up to 1650 days, representing more than 370 population doublings, which suggested that these B cells were immortalized in vitro. Long-term CD40-stimulated B cell cultures could be established from most healthy adult human donors. These B cells had a constant phenotype, were free from Epstein-Barr virus, and remained dependent on CD40 ligation. They had constitutive telomerase activity and stabilized telomere length. Moreover, they were susceptible to activation by Toll-like receptor 9 ligands, and could be used to expand antigen-specific cytotoxic T cells in vitro. Our results indicate that human somatic cells can evade senescence and be conditionally immortalized by external stimulation only, without a requirement for genetic manipulation or oncoviral infection. Conditionally immortalized human B cells are a new tool for immunotherapy and studies of B cell oncogenesis, activation, and function.  相似文献   

4.
5.
A macrophage-like suppressor cell is present in the spleens of BCG-infected C57BL/6 mice. This suppressor cell is capable of suppressing both in vitro cytotoxic and PFC responses of normal C57BL/6 spleen cells. Suppression was not caused by changes in the kinetics of the responses or in the quantities of antigen required for stimulation. Suppression of the in vitro cytotoxic response could not be linked to any soluble mediator. In contrast, supernatants obtained from BCG spleen cell cultures, which failed to inhibit alloantigen-induced cytotoxic responses, suppressed the in vitro PFC response to SRBC by normal C57BL/6 spleen cells. It is postulated that either BCG-induced macrophage-like suppressor cells inhibit these in vitro responses via different mechanism(s) or these responses are regulated by different suppressor cell subpopulations within the monocyte/macrophage compartment of BCG spleen cells.  相似文献   

6.
CD23, the low-affinity receptor for IgE, exists in membrane and soluble forms. Soluble CD23 (sCD23) fragments are released from membrane (m)CD23 by the endogenous metalloprotease a disintegrin and metalloprotease 10. When purified tonsil B cells are incubated with IL-4 and anti-CD40 to induce class switching to IgE in vitro, mCD23 is upregulated, and sCD23 accumulates in the medium prior to IgE synthesis. We have uncoupled the effects of mCD23 cleavage and accumulation of sCD23 on IgE synthesis in this system. We show that small interfering RNA inhibition of CD23 synthesis or inhibition of mCD23 cleavage by an a disintegrin and metalloprotease 10 inhibitor, GI254023X, suppresses IL-4 and anti-CD40-stimulated IgE synthesis. Addition of a recombinant trimeric sCD23 enhances IgE synthesis in this system. This occurs even when endogenous mCD23 is protected from cleavage by GI254023X, indicating that IgE synthesis is positively controlled by sCD23. We show that recombinant trimeric sCD23 binds to cells coexpressing mIgE and mCD21 and caps these proteins on the B cell membrane. Upregulation of IgE by sCD23 occurs after class-switch recombination, and its effects are isotype-specific. These results suggest that mIgE and mCD21 cooperate in the sCD23-mediated positive regulation of IgE synthesis on cells committed to IgE synthesis. Feedback regulation may occur when the concentration of secreted IgE becomes great enough to allow binding to mCD23, thus preventing further release of sCD23. We interpret these results with the aid of a model for the upregulation of IgE by sCD23.  相似文献   

7.
CD40L has a well-established role in enhancing the immunostimulatory capacity of normal and malignant B cells, but a formulation suitable for clinical use has not been widely available. Like other TNF family members, in vivo and in vitro activity of CD40L requires a homotrimeric configuration, and growing evidence suggests that bioactivity depends on higher-order clustering of CD40. We generated a novel formulation of human recombinant CD40L (CD40L-Tri) in which the CD40L extracellular domain and a trimerization motif are connected by a long flexible peptide linker. We demonstrate that CD40L-Tri significantly expands normal CD19+ B cells by over 20- to 30-fold over 14 days and induces B cells to become highly immunostimulatory antigen-presenting cells (APCs). Consistent with these results, CD40L-Tri-activated B cells could effectively stimulate antigen-specific T responses (against the influenza M1 peptide) from normal volunteers. In addition, CD40L-Tri could induce malignant B cells to become effective APCs, such that tumor-directed immune responses could be probed. Together, our studies demonstrate the potent immune-stimulatory effects of CD40L-Tri on B cells that enable their expansion of antigen-specific human T cells. The potent bioactivity of CD40L-Tri is related to its ability to self-multimerize, which may be facilitated by its long peptide linker.  相似文献   

8.
B cells in the germinal center are known to undergo apoptosis after B cell receptor (BCR) ligation, a process relevant to immunological tolerance. Human CD27 is a B cell co-stimulatory molecule. The aim of this study was to compare the effects of CD27 and CD40 signals on BCR-mediated apoptosis of B cells. BCR ligation activated mitochondrial apoptotic pathways including down-regulation of Bcl-X(L), dissipation of mitochondrial transmembrane potential, release of cytochrome c, and activation of caspase-9. Each of these effects was significantly inhibited by CD27 and CD40. Bik expression was weakly but significantly down-regulated by CD27 but up-regulated by CD40. BCR ligation resulted in p53 activation including its phosphorylation at Ser(15), nuclear translocation, and target gene p53AIP1 induction. CD27 and CD40 clearly suppressed these processes. Analyses that used dominant-negative p53 variants revealed a low but still substantial level of BCR-mediated apoptosis and intact mitochondria-mediated apoptotic pathway. These pathways were further inhibited by CD27 and CD40, although the cells showed no p53 phosphorylation or p53AIP1 expression. Our results suggested that, at the mitochondrial level, CD27 and CD40 co-stimulatory signals regulated the p53-amplified apoptotic pathway in B cells through the inhibition of p53-independent apoptotic pathway primarily induced by BCR ligation.  相似文献   

9.
The effector immune mechanisms underlying peanut-induced anaphylaxis remain to be fully elucidated. We investigated the relative contribution of Igs, mast cells (MCs), and FcepsilonRI in the elicitation of anaphylaxis in a murine model. Assessment of peanut hypersensitivity reactions was performed clinically and biologically. Our data show that wild-type (WT; C57BL/6 strain) mice consistently developed severe anaphylaxis (median clinical score: 3.5/5), an approximately 8 degrees C drop in core body temperature, and significantly increased plasma levels of histamine and leukotrienes. CD40 ligand- and B cell-deficient mice presented evidence of allergic sensitization as demonstrated by production of Th2-associated cytokines by splenocytes and a late-phase inflammatory response that were both indistinguishable to those detected in WT mice. However, CD40 ligand- and B cell-deficient mice did not exhibit any evidence of anaphylaxis. Our data also show that MC-deficient (Kit(W)/Kit(W-v)) mice did not suffer, unlike their littermate controls, anaphylactic reactions despite the fact that serum levels of peanut-specific Igs were similarly elevated. Finally, FcepsilonRI-deficient mice experienced anaphylactic responses although to a significantly lesser degree than those observed in WT mice. Thus, these data demonstrate that the presence of peanut-specific Abs along with functional MCs comprise a necessary and sufficient condition for the elicitation of peanut-induced anaphylaxis. That the absence of FcepsilonRI prevented the development of anaphylaxis only partially insinuates the contribution of an IgE-independent pathway, and suggests that strategies to impair MC degranulation may be necessary to improve the efficacy of anti-IgE therapy.  相似文献   

10.
CD40 is an important costimulatory molecule for B cells as well as dendritic cells, monocytes, and other APCs. The ligand for CD40, CD154, is expressed on activated T cells, NK cells, mast cells, basophils, and even activated B cells. Although both CD40(-/-) and CD154(-/-) mice have impaired ability to isotype switch, form germinal centers, make memory B cells, and produce Ab, it is not entirely clear whether these defects are intrinsic to B cells, to other APCs, or to T cells. Using bone marrow chimeric mice, we investigated whether CD40 or CD154 must be expressed on B cells for optimal B cell responses in vivo. We demonstrate that CD40 expression on B cells is required for the generation of germinal centers, isotype switching, and sustained Ab production, even when other APCs express CD40. In contrast, the expression of CD154 on B cells is not required for the generation of germinal centers, isotype switching, or sustained Ab production. In fact, B cell responses are completely normal when CD154 expression is limited exclusively to Ag-specific T cells. These results suggest that the interaction of CD154 expressed by activated CD4 T cells with CD40 expressed by B cells is the primary pathway necessary to achieve B cell activation and differentiation and that CD154 expression on B cells does not noticeably facilitate B cell activation and differentiation.  相似文献   

11.
CD40-activated B cells (CD40-B cells) have been identified as an alternative source of immuno-stimulatory antigen-presenting cells (APC) for cancer immunotherapy 1-3. Compared to Dendritic cells (DCs), the best characterized APC, CD40-B cells have several distinct biological and technical properties. Similar to DCs, B cells show an increased expression of MHC and co-stimulatory molecules (Fig.1b), exhibit a strong migratory capacity and present antigen presentation efficiently to T cells, after stimulation with interleukin-4 and CD40 ligand (CD40L). However, in contrast to immature or mature DCs, CD40-B cells express the full lymph node homing triad consisting of CD62L, CCR7/CXCR4, and leukocyte function antigen-1 (LFA1, CD11a/CD18), necessary for homing to secondary lymphoid organs (Fig.1a) 3. CD40-B cells can be generated without difficulties from very small amounts of peripheral blood which can be further expanded in vitro to very large amounts of highly-pure CD40-B cells (>109 cells per patient) from healthy donors as well as cancer patients (Fig.1c,d) 1,4.In this protocol we demonstrate how to obtain fully activated CD40-B cells from human PBMC. Key molecules for the cell culture are CD40 ligand, interleukin-4 (IL-4) and cyclosporin A (CsA), which are replenished in a 3-4 day culture cycle. For laboratory purposes CD40-stimulation is provided by NIH/3T3 cells expressing recombinant human CD40 ligand (tCD40L NIH/3T3) 5. To avoid contamination with non-transfected cells, expression of the human CD40 ligand on the transfectants has to be checked regularly (Fig.2).After 14 days CD40-B cell cultures consist of more than 95% pure B cells and an expansion of CD40-B cells over 65 days is frequently possible without any loss of function 1, 4. CD40-B cells efficiently take up, process and present antigens to T cells 6. They do not only prime naϊve, but also expand memory T cells 7,8. CD40-activated B cells can be used to study B-cell activation, differentiation and function. Moreover, they represent a promising tool for therapeutic or preventive vaccination against tumors 9.Download video file.(152M, mp4)  相似文献   

12.
Preformed CD40/CD40 homodimers were initially observed on human Burkitt lymphoma cell lines, normal B cells, and transitional bladder carcinoma cell lines. However, the nature and the biological relevance of these homodimers have not yet been investigated. In the present study, we demonstrated that Epstein-Barr virus-transformed B cells and CD40-transfected HEK 293 cells constitutively expressed disulfide-linked CD40/CD40 homodimers at low levels. Oligomerization of CD40 leads to a rapid and significant increase in the disulfide-linked CD40/CD40 homodimer formation, a response that could be prevented using a thiol-alkylating agent. Formation of CD40/CD40 homodimers was found to be absolutely required for CD40-mediated activation of phosphatidylinositol 3-kinase, which, in turn regulated B7.2 expression. In contrast, CD40 monomers provided the minimal signal emerging from CD40, activating p38 MAP kinase and inducing homotypic B cell adhesion. CD40/CD40 homodimer formation was totally independent of TRAF1/2/3/5 associations with the threonine at position 254 in the cytoplasmic tail of the CD40 molecules. This finding may be vital to better understanding the molecular mechanisms that govern cell signaling triggered by CD40/CD154 interactions.  相似文献   

13.
NK cells are a subpopulation of lymphocytes characterized primarily by their cytolytic activity. They are recognized as an important component of the immune response against virus infection and tumors. In addition to their cytolytic activity, NK cells also participate either directly or indirectly in the regulation of the ongoing Ab response. More recently, it has been suggested that NK cells have an important role in the outcome of autoimmune diseases. Here, we demonstrate that human NK cells can induce autologous resting B cells to synthesize Ig, including switching to IgG and IgA, reminiscent of a secondary Ab response. B cell activation by the NK cell is contact-dependent and rapid, suggesting an autocrine B cell-regulated process. This NK cell function is T cell-independent, requires an active cytoplasmic membrane, and is blocked by anti-CD40 ligand (anti-CD154) or CD40-mIg fusion protein, indicating a critical role for CD40-CD40 ligand interaction. Depletion studies also demonstrate that CD5+ B cells (autoreactive B-1 cells) and a heterogeneous population of CD27+ memory B cells play a critical role in the Ig response induced by NK cells. The existence of this novel mechanism of B cell activation has important implications in innate immunity, B cell-mediated autoimmunity, and B cell neoplasia.  相似文献   

14.
Research on B cells has shown that CD40 activation improves their antigen presentation capacity. When stimulated with interleukin-4 and CD40 ligand (CD40L), human B cells can be expanded without difficulties from small amounts of peripheral blood within 14 days to very large amounts of highly-pure CD40-B cells (>109 cells per patient) from healthy donors as well as cancer patients1-4. CD40-B cells express important lymph node homing molecules and can attract T cells in vitro5. Furthermore they efficiently take up, process and present antigens to T cells6,7. CD40-B cells were shown to not only prime naíve, but also expand memory T cells8,9. Therefore CD40-activated B cells (CD40-B cells) have been studied as an alternative source of immuno-stimulatory antigen-presenting cells (APC) for cell-based immunotherapy1,5,10. In order to further study whether CD40-B cells induce effective T cell responses in vivo and to study the underlying mechanism we established a cell culture system for the generation of murine CD40-activated B cells. Using splenocytes or purified B cells from C57BL/6 mice for CD40-activation, optimal conditions were identified as follows: Starting from splenocytes of C57BL/6 mice (haplotype H-2b) lymphocytes are purified by density gradient centrifugation and co-cultured with HeLa cells expressing recombinant murine CD40 ligand (tmuCD40L HeLa)11. Cells are recultured every 3-4 days and key components such as CD40L, interleukin-4, -Mercaptoethanol and cyclosporin A are replenished. In this protocol we demonstrate how to obtain fully activated murine CD40-B cells (mCD40B) with similar APC-phenotype to human CD40-B cells (Fig 1a,b). CD40-stimulation leads to a rapid outgrowth and expansion of highly pure (>90%) CD19+ B cells within 14 days of cell culture (Fig 1c,d). To avoid contamination with non-transfected cells, expression of the murine CD40 ligand on the transfectants has to be controlled regularly (Fig 2). Murine CD40-activated B cells can be used to study B-cell activation and differentiation as well as to investigate their potential to function as APC in vitro and in vivo. Moreover, they represent a promising tool for establishing therapeutic or preventive vaccination against tumors and will help to answer questions regarding safety and immunogenicity of this approach12.Download video file.(141M, mp4)  相似文献   

15.
16.
In vivo, dendritic cells (DC) are programmed to orchestrate innate and adaptive immunity in response to pathogen-derived "danger" signals. Under particular circumstances, DC can also be directly cytotoxic against tumor cells, potentially allowing them to release tumor associated Ags from dying cells and then prime antitumor immunity against them. In this study, we describe the innate characteristics of DC (OK-DC) generated in vitro after exposure of immature human myeloid-derived DC to OK432, a penicillin-inactivated and lyophilized preparation of Streptococcus pyrogenes. OK-DC produced proinflammatory cytokines, stimulated autologous T cell proliferation and IFN-gamma secretion, expressed CCR7, and migrated in response to MIP-3beta. Moreover, OK-DC displayed strong, specific cytotoxicity toward tumor cell targets. This cytotoxicity was associated with novel, OK432-induced up-regulation of CD40L on the cell surface of OK-DC, and was absolutely dependent on expression of CD40 on the tumor targets. These data demonstrate that maturation of human DC with OK432, an adjuvant suitable for clinical use, induces direct tumor cell killing by DC, and describes a novel CD40/CD40L-mediated mechanism for specific DC antitumor cytotoxicity.  相似文献   

17.
Chronic hepatitis B virus (HBV) infection is the result of an inadequate antiviral immune response to the virus. In this study, we aimed to investigate whether the soluble CD40 ligand-activated B (CD40-B) cells could present antigen and induce specific cytotoxic T lymphocytes (CTLs) in patients with chronic HBV infection. We observed that after activated by sCD40L, the expression of CD80, CD86, major histocompatibility complex (MHC) I and II molecules on the CD40-B cells was significantly increased. Cytometry and fluorescence microscopy showed that more than 41.34% CD40-B cells were loaded by the HBcAg peptide. Furthermore, after been activated and HBcAg18–27 antigen peptide pulsed, B cells obtained from patients with chronic HBV infection could induce HBcAg18–27 specific CTLs in vitro. Taken together, our results show that B cells from patients with chronic HBV infection can be activated by sCD40L and may function as antigen presenting cells and induce HBV-specific CTLs.  相似文献   

18.
OX40 and its ligand (OX40L) have been implicated in T cell-dependent humoral immune responses. To further characterize the role of OX40/OX40L in T-B cell interaction, we newly generated an anti-mouse OX40L mAb (RM134L) that can inhibit the costimulatory activity of OX40L transfectants for anti-CD3-stimulated T cell proliferation. Flow cytometric analyses using RM134L and an anti-mouse OX40 mAb indicated that OX40 was inducible on splenic T cells by stimulation with immobilized anti-CD3 mAb in a CD28-independent manner, while OX40L was not expressed on resting or activated T cells. OX40L was inducible on splenic B cells by stimulation with anti-IgM Ab plus anti-CD40 mAb, but not by either alone. These activated B cells exhibited a potent costimulatory activity for anti-CD3-stimulated T cell proliferation and IL-2 production. Anti-CD80 and anti-CD86 mAbs partially inhibited the costimulatory activity, and further inhibition was obtained by their combination with RM134L and/or anti-CD70 mAb. We also found the anti-IgM Ab- plus anti-CD40 mAb-stimulated B cells exhibited a potent costimulatory activity for proliferation of and IL-2 production by anti-CD3-stimulated CD28- T cells from CD28-deficient mice, which was substantially inhibited by RM134L and/or anti-CD70 mAb. These results indicated that OX40L and CD70 expressed on surface Ig- and CD40-stimulated B cells can provide CD28-independent costimulatory signals to T cells.  相似文献   

19.
The CD80/86-CD28 and CD40-CD40 ligand costimulatory pathways are essential for Th cell-dependent B cell responses that generate high-affinity, class-switched Ab in vivo. Disruption of either costimulatory pathway results in defective in vivo humoral immune responses, but it remains unclear to what extent this is due to deficient activation of Th cells and/or of B cells. To address this issue, we generated mixed chimeras in which CD80/86- or CD40-deficient bone marrow-derived cells coexist with wild-type (WT) cells, thereby providing the functional T cell help and accessory cell functions required for fully competent B cell responses. We were then able to assess the requirement for CD80/86 or CD40 expression on B cells producing class-switched Ig in response to a T-dependent Ag. In CD80/86 WT plus CD80/86 double-knockout mixed chimeras, both WT- and CD80/86-deficient B cells produced IgG1 and IgE responses, indicating that direct signaling by CD80/86 is not essential for efficient B cell activation. In marked contrast, only WT IgG1 and IgE responses were detected in the chimeras containing CD40-deficient cells, demonstrating that CD40 expression on B cells is essential for class switching by those B cells. Thus, while disrupting either the CD80/86-CD28 or the CD40-CD40 ligand costimulatory pathway abrogates T-dependent B cell immune responses, the two pathways are nonredundant and mediated by distinct mechanisms.  相似文献   

20.
There are currently no appropriate and sensitive biomarkers available to assess preanalytic variations in human biological fluids stored in biobanks. We identified soluble CD40 ligand (sCD40L) as the first ubiquitous biomarker to show an on-off response in serum exposed to moderate or elevated room temperature conditions. We used immunoenzyme assays to monitor the sCD40L response after 12 h storage at 37 degrees C or 48 h at 20 degrees C. Our findings show that prolonged storage of serum samples at elevated room temperature can be determined by the absence of detectable sCD40L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号