首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To establish the major body axes, late Drosophila oocytes localize determinants to discrete cortical positions: bicoid mRNA to the anterior cortex, oskar mRNA to the posterior cortex, and gurken mRNA to the margin of the anterior cortex adjacent to the oocyte nucleus (the "anterodorsal corner"). These localizations depend on microtubules that are thought to be organized such that plus end-directed motors can move cargoes, like oskar, away from the anterior/lateral surfaces and hence toward the posterior pole. Likewise, minus end-directed motors may move cargoes toward anterior destinations. Contradicting this, cytoplasmic dynein, a minus-end motor, accumulates at the posterior. Here, we report that disruption of the plus-end motor kinesin I causes a shift of dynein from posterior to anterior. This provides an explanation for the dynein paradox, suggesting that dynein is moved as a cargo toward the posterior pole by kinesin-generated forces. However, other results present a new transport polarity puzzle. Disruption of kinesin I causes partial defects in anterior positioning of the nucleus and severe defects in anterodorsal localization of gurken mRNA. Kinesin may generate anterodorsal forces directly, despite the apparent preponderance of minus ends at the anterior cortex. Alternatively, kinesin I may facilitate cytoplasmic dynein-based anterodorsal forces by repositioning dynein toward microtubule plus ends.  相似文献   

2.
A minus end-directed microtubule motor activity from extracts of HeLa cells blocked at prometaphase/metaphase of mitosis with vinblastine has been partially purified and characterized. The motor activity was eliminated by immunodepletion of Centromere binding protein E (CENP-E). The CENP-E-associated motor activity, which was not detectable in interphase cells, moved microtubules at mean rates of 0.46 micron/s at 37 degrees C and 0.24 micron/s at 25 degrees C. The motor activity co-purified with CENP-E through several purification procedures. Motor activity was clearly not due to dynein or to kinesin. The microtubule gliding rates of the CENP-E-associated motor were different from those of dynein and kinesin. In addition, the pattern of nucleotide substrate utilization by the CENP-E-associated motor and the sensitivity to inhibitors were different from those of dynein and kinesin. The CENP-E-associated motor had an apparent native molecular weight of 874,000 Da and estimated dimensions of 2 nm x 80 nm. This is the first demonstration of motor activity associated with CENP-E, strongly supporting the hypothesis that CENP-E may act as a minus end-directed microtubule motor during mitosis.  相似文献   

3.
Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus‐end directed kinesin and minus‐end directed dynein motors. Microtubules are decorated by microtubule‐associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neuronal MAP that stabilizes axonal microtubules and crosslinks them into bundles. Dysregulation of tau leads to a range of neurodegenerative diseases known as tauopathies including Alzheimer's disease (AD). Tau reduces the processivity of kinesin and dynein by acting as an obstacle on the microtubule. Single‐molecule assays indicate that kinesin‐1 is more strongly inhibited than kinesin‐2 or dynein, suggesting tau might act to spatially modulate the activity of specific motors. To investigate the role of tau in regulating bidirectional transport, we isolated phagosomes driven by kinesin‐1, kinesin‐2, and dynein and reconstituted their motility along microtubules. We find that tau biases bidirectional motility towards the microtubule minus‐end in a dose‐dependent manner. Optical trapping measurements show that tau increases the magnitude and frequency of forces exerted by dynein through inhibiting opposing kinesin motors. Mathematical modeling indicates that tau controls the directional bias of intracellular cargoes through differentially tuning the processivity of kinesin‐1, kinesin‐2, and dynein. Taken together, these results demonstrate that tau modulates motility in a motor‐specific manner to direct intracellular transport, and suggests that dysregulation of tau might contribute to neurodegeneration by disrupting the balance of plus‐ and minus‐end directed transport.   相似文献   

4.
Cytoplasmic dynein and kinesin are two-headed microtubule motor proteins that move in opposite directions on microtubules. It is known that kinesin steps by a 'hand-over-hand' mechanism, but it is unclear by which mechanism dynein steps. Because dynein has a completely different structure from that of kinesin and its head is massive, it is suspected that dynein uses multiple protofilaments of microtubules for walking. One way to test this is to ask whether dynein can step along a single protofilament. Here, we examined dynein and kinesin motility on zinc-induced tubulin sheets (zinc-sheets) which have only one protofilament available as a track for motor proteins. Single molecules of both dynein and kinesin moved at similar velocities on zinc-sheets compared to microtubules, clearly demonstrating that dynein and kinesin can walk on a single protofilament and multiple rows of parallel protofilaments are not essential for their motility. Considering the size and the motile properties of dynein, we suggest that dynein may step by an inchworm mechanism rather than a hand-over-hand mechanism.  相似文献   

5.
In the budding yeast Saccharomyces cerevisiae, movement of the mitotic spindle to a predetermined cleavage plane at the bud neck is essential for partitioning chromosomes into the mother and daughter cells. Astral microtubule dynamics are critical to the mechanism that ensures nuclear migration to the bud neck. The nucleus moves in the opposite direction of astral microtubule growth in the mother cell, apparently being "pushed" by microtubule contacts at the cortex. In contrast, microtubules growing toward the neck and within the bud promote nuclear movement in the same direction of microtubule growth, thus "pulling" the nucleus toward the bud neck. Failure of "pulling" is evident in cells lacking Bud6p, Bni1p, Kar9p, or the kinesin homolog, Kip3p. As a consequence, there is a loss of asymmetry in spindle pole body segregation into the bud. The cytoplasmic motor protein, dynein, is not required for nuclear movement to the neck; rather, it has been postulated to contribute to spindle elongation through the neck. In the absence of KAR9, dynein-dependent spindle oscillations are evident before anaphase onset, as are postanaphase dynein-dependent pulling forces that exceed the velocity of wild-type spindle elongation threefold. In addition, dynein-mediated forces on astral microtubules are sufficient to segregate a 2N chromosome set through the neck in the absence of spindle elongation, but cytoplasmic kinesins are not. These observations support a model in which spindle polarity determinants (BUD6, BNI1, KAR9) and cytoplasmic kinesin (KIP3) provide directional cues for spindle orientation to the bud while restraining the spindle to the neck. Cytoplasmic dynein is attenuated by these spindle polarity determinants and kinesin until anaphase onset, when dynein directs spindle elongation to distal points in the mother and bud.  相似文献   

6.
Many cellular components are transported using a combination of the actin- and microtubule-based transport systems. However, how these two systems work together to allow well-regulated transport is not clearly understood. We investigate this question in the Xenopus melanophore model system, where three motors, kinesin II, cytoplasmic dynein, and myosin V, drive aggregation or dispersion of pigment organelles called melanosomes. During dispersion, myosin V functions as a "molecular ratchet" to increase outward transport by selectively terminating dynein-driven minus end runs. We show that there is a continual tug-of-war between the actin and microtubule transport systems, but the microtubule motors kinesin II and dynein are likely coordinated. Finally, we find that the transition from dispersion to aggregation increases dynein-mediated motion, decreases myosin V--mediated motion, and does not change kinesin II--dependent motion. Down-regulation of myosin V contributes to aggregation by impairing its ability to effectively compete with movement along microtubules.  相似文献   

7.
Artificial nanotransport systems inspired by intracellular transport processes have been investigated for over a decade using the motor protein kinesin and microtubules. However, only unidirectional cargo transport has been achieved for the purpose of nanotransport in a microfluidic system. Here, we demonstrate bidirectional nanotransport by integrating kinesin and dynein motor proteins. Our molecular system allows microtubule orientation of either polarity in a microfluidic channel to construct a transport track. Each motor protein acts as a nanoactuators that transports microspheres in opposite directions determined by the polarity of the oriented microtubules: kinesin-coated microspheres move toward the plus end of microtubules, whereas dynein-coated microspheres move toward the minus end. We demonstrate both unidirectional and bidirectional transport using kinesin- and dynein-coated microspheres on microtubules oriented and glutaraldehyde-immobilized in a microfluidic channel. Tracking and statistical analysis of microsphere movement demonstrate that 87-98% of microspheres move in the designated direction at a mean velocity of 0.22-0.28 microm/s for kinesin-coated microspheres and 0.34-0.39 microm/s for dynein-coated microspheres. This bidirectional nanotransport goes beyond conventional unidirectional transport to achieve more complex artificial nanotransport in vitro.  相似文献   

8.
The microtubule motors, cytoplasmic dynein and kinesin II, drive pigmented organelles in opposite directions in Xenopus melanophores, but the mechanism by which these or other motors are regulated to control the direction of organelle transport has not been previously elucidated. We find that cytoplasmic dynein, dynactin, and kinesin II remain on pigment granules during aggregation and dispersion in melanophores, indicating that control of direction is not mediated by a cyclic association of motors with these organelles. However, the ability of dynein, dynactin, and kinesin II to bind to microtubules varies as a function of the state of aggregation or dispersion of the pigment in the cells from which these molecules are isolated. Dynein and dynactin bind to microtubules when obtained from cells with aggregated pigment, whereas kinesin II binds to microtubules when obtained from cells with dispersed pigment. Moreover, the microtubule binding activity of these motors/dynactin can be reversed in vitro by the kinases and phosphatase that regulate the direction of pigment granule transport in vivo. These findings suggest that phosphorylation controls the direction of pigment granule transport by altering the ability of dynein, dynactin, and kinesin II to interact with microtubules.  相似文献   

9.
The endoplasmic reticulum (ER) in animal cells uses microtubule motor proteins to adopt and maintain its extended, reticular organization. Although the orientation of microtubules in many somatic cell types predicts that the ER should move toward microtubule plus ends, motor-dependent ER motility reconstituted in extracts of Xenopus laevis eggs is exclusively a minus end-directed, cytoplasmic dynein-driven process. We have used Xenopus egg, embryo, and somatic Xenopus tissue culture cell (XTC) extracts to study ER motility during embryonic development in Xenopus by video-enhanced differential interference contrast microscopy. Our results demonstrate that cytoplasmic dynein is the sole motor for microtubule-based ER motility throughout the early stages of development (up to at least the fifth embryonic interphase). When egg-derived ER membranes were incubated in somatic XTC cytosol, however, ER tubules moved in both directions along microtubules. Data from directionality assays suggest that plus end-directed ER tubule extensions contribute approximately 19% of the total microtubule-based ER motility under these conditions. In XTC extracts, the rate of ER tubule extensions toward microtubule plus ends is lower ( approximately 0.4 microm/s) than minus end-directed motility ( approximately 1.3 microm/s), and plus end-directed motility is eliminated by a function-blocking anti-conventional kinesin heavy chain antibody (SUK4). In addition, we provide evidence that the initiation of plus end-directed ER motility in somatic cytosol is likely to occur via activation of membrane-associated kinesin.  相似文献   

10.
Lissencephaly is a devastating neurological disorder caused by defective neuronal migration. The LIS1 (or PAFAH1B1) gene was identified as the gene mutated in lissencephaly patients, and was found to regulate cytoplasmic dynein function and localization. In particular, LIS1 is essential for anterograde transport of cytoplasmic dynein as a part of the cytoplasmic dynein–LIS1–microtubule complex in a kinesin‐1‐dependent manner. However, the underlying mechanism by which a cytoplasmic dynein–LIS1–microtubule complex binds kinesin‐1 is unknown. Here, we report that mNUDC (mammalian NUDC) interacts with kinesin‐1 and is required for the anterograde transport of a cytoplasmic dynein complex by kinesin‐1. mNUDC is also required for anterograde transport of a dynactin‐containing complex. Inhibition of mNUDC severely suppressed anterograde transport of distinct cytoplasmic dynein and dynactin complexes, whereas motility of kinesin‐1 remained intact. Reconstruction experiments clearly demonstrated that mNUDC mediates the interaction of the dynein or dynactin complex with kinesin‐1 and supports their transport by kinesin‐1. Our findings have uncovered an essential role of mNUDC for anterograde transport of dynein and dynactin by kinesin‐1.  相似文献   

11.
We present evidence that vimentin intermediate filament (IF) motility in vivo is associated with cytoplasmic dynein. Immunofluorescence reveals that subunits of dynein and dynactin are associated with all structural forms of vimentin in baby hamster kidney-21 cells. This relationship is also supported by the presence of numerous components of dynein and dynactin in IF-enriched cytoskeletal preparations. Overexpression of dynamitin biases IF motility toward the cell surface, leading to a perinuclear clearance of IFs and their redistribution to the cell surface. IF-enriched cytoskeletal preparations from dynamitin-overexpressing cells contain decreased amounts of dynein, actin-related protein-1, and p150Glued relative to controls. In contrast, the amount of dynamitin is unaltered in these preparations, indicating that it is involved in linking vimentin cargo to dynactin. The results demonstrate that dynein and dynactin are required for the normal organization of vimentin IF networks in vivo. These results together with those of previous studies also suggest that a balance among the microtubule (MT) minus and plus end-directed motors, cytoplasmic dynein, and kinesin are required for the assembly and maintenance of type III IF networks in interphase cells. Furthermore, these motors are to a large extent responsible for the long recognized relationships between vimentin IFs and MTs.  相似文献   

12.
Plus- and minus-end vesicle populations from squid axoplasm were isolated from each other by selective extraction of the minus-end vesicle motor followed by 5'-adenylyl imidodiphosphate (AMP-PNP)- induced microtubule affinity purification of the plus-end vesicles. In the presence of cytosol containing both plus- and minus-end motors, the isolated populations moved strictly in opposite directions along microtubules in vitro. Remarkably, when treated with trypsin before incubation with cytosol, purified plus-end vesicles moved exclusively to microtubule minus ends instead of moving in the normal plus-end direction. This reversal in the direction of movement of trypsinized plus-end vesicles, in light of further observation that cytosol promotes primarily minus-end movement of liposomes, suggests that the machinery for cytoplasmic dynein-driven, minus-end vesicle movement can establish a functional interaction with the lipid bilayers of both vesicle populations. The additional finding that kinesin overrides cytoplasmic dynein when both are bound to bead surfaces indicates that the direction of vesicle movement could be regulated simply by the presence or absence of a tightly bound, plus-end kinesin motor; being processive and tightly bound, the kinesin motor would override the activity of cytoplasmic dynein because the latter is weakly bound to vesicles and less processive. In support of this model, it was found that (a) only plus-end vesicles copurified with tightly bound kinesin motors; and (b) both plus- and minus-end vesicles bound cytoplasmic dynein from cytosol.  相似文献   

13.
Winey M  Bloom K 《Genetics》2012,190(4):1197-1224
The Saccharomyces cerevisiae mitotic spindle in budding yeast is exemplified by its simplicity and elegance. Microtubules are nucleated from a crystalline array of proteins organized in the nuclear envelope, known as the spindle pole body in yeast (analogous to the centrosome in larger eukaryotes). The spindle has two classes of nuclear microtubules: kinetochore microtubules and interpolar microtubules. One kinetochore microtubule attaches to a single centromere on each chromosome, while approximately four interpolar microtubules emanate from each pole and interdigitate with interpolar microtubules from the opposite spindle to provide stability to the bipolar spindle. On the cytoplasmic face, two to three microtubules extend from the spindle pole toward the cell cortex. Processes requiring microtubule function are limited to spindles in mitosis and to spindle orientation and nuclear positioning in the cytoplasm. Microtubule function is regulated in large part via products of the 6 kinesin gene family and the 1 cytoplasmic dynein gene. A single bipolar kinesin (Cin8, class Kin-5), together with a depolymerase (Kip3, class Kin-8) or minus-end-directed kinesin (Kar3, class Kin-14), can support spindle function and cell viability. The remarkable feature of yeast cells is that they can survive with microtubules and genes for just two motor proteins, thus providing an unparalleled system to dissect microtubule and motor function within the spindle machine.  相似文献   

14.
Active transport along the microtubule lattice is a complex process that involves both the Kinesin and Dynein superfamily of motors. Transportation requires sophisticated regulation much of which occurs through the motor's tail domain. However, a significant portion of this regulation also occurs through structural changes that arise in the motor and the microtubule upon binding. The most obvious structural change being the manifestation of asymmetry. To a first approximation in solution, kinesin dimers exhibit twofold symmetry, and microtubules exhibit helical symmetry. The higher symmetries of both the kinesin dimers and microtubule lattice are lost on formation of the kinesin–microtubule complex. Loss of symmetry has functional consequences such as an asymmetric hand‐over‐hand mechanism in plus‐end‐directed kinesins, asymmetric microtubule binding in the Kinesin‐14 family, spatially biased stepping in dynein and cooperative binding of additional motors to the microtubule. This review focusses on how the consequences of asymmetry affect regulation of motor heads within a dimer, dimers within an ensemble of motors, and suggests how these asymmetries may affect regulation of active transport within the cell.  相似文献   

15.
The neuron uses two families of microtubule-based motors for fast axonal transport, kinesin, and cytoplasmic dynein. Cytoplasmic dynein moves membranous organelles from the distal regions of the axon to the cell body. Because dynein is synthesized in the cell body, it must first be delivered to the axon tip. It has recently been shown that cytoplasmic dynein is moved from the cell body along the axon by two different mechanisms. A small amount is associated with fast anterograde transport, the membranous organelles moved by kinesin. Most of the dynein is transported in slow component b, the actin-based transport compartment. Dynactin, a protein complex that binds dynein, is also transported in slow component b. The dynein in slow component b binds to microtubules in an ATP-dependent manner in vitro, suggesting that this dynein is enzymatically active. The finding that functionally active dynein, and dynactin, are associated with the actin-based transport compartment suggests a mechanism whereby dynein anchored to the actin cytoskeleton via dynactin provides the motive force for microtubule movement in the axon.  相似文献   

16.
The active transport of proteins and organelles is critical for cellular organization and function in eukaryotic cells. A substantial portion of long-distance transport depends on the opposite polarity of the kinesin and dynein family molecular motors to move cargo along microtubules. It is increasingly clear that many cargo molecules are moved bi-directionally by both sets of motors; however, the regulatory mechanism that determines the directionality of transport remains unclear. We previously reported that collapsin response mediator protein-2 (CRMP-2) played key roles in axon elongation and neuronal polarization. CRMP-2 was also found to associate with the anterograde motor protein Kinesin-1 and was transported with other cargoes toward the axon terminal. In this study, we investigated the association of CRMP-2 with a retrograde motor protein, cytoplasmic dynein. Immunoprecipitation assays showed that CRMP-2 interacted with cytoplasmic dynein heavy chain. Dynein heavy chain directly bound to the N-terminus of CRMP-2, which is the distinct side of CRMP-2's kinesin light chain-binding region. Furthermore, over-expression of the dynein-binding fragments of CRMP-2 prevented dynein-driven microtubule transport in COS-7 cells. Given that CRMP-2 is a key regulator of axon elongation, this interference with cytoplasmic dynein function by CRMP-2 might have an important role in axon formation, and neuronal development.  相似文献   

17.
BACKGROUND: Kinesin and cytoplasmic dynein are force-generating molecules that move in opposite directions along microtubules. They have been implicated in the directed transport of a wide variety of cellular organelles, but it is unclear whether they have overlapping or largely independent functions. RESULTS: We analyzed organelle transport in kinesin and dynein single mutants, and in a kinesin and dynein double mutant of Neurospora crassa. Remarkably, the simultaneous mutation of kinesin and dynein was not lethal and resulted in an additive phenotype that combined the features of the single mutants. The mutation of kinesin and dynein had opposite effects on the apical and retrograde transport, respectively, of vesicular organelles. In the kinesin mutant, apical movement of submicroscopic, secretory vesicles to the Spitzenk?rper - an organelle in the hyphal apex - was defective, whereas the predominantly retrograde movement of microscopic organelles was only slightly reduced. In contrast, the dynein mutant still had a prominent Spitzenk?rper, demonstrating that apical transport was intact, but retrograde transport was essentially inhibited completely. A major defect in vacuole formation and dynamics was also evident. In agreement with the observations on apical transport, protein secretion into the medium was markedly inhibited in the kinesin mutant but not in the dynein mutant. CONCLUSIONS: Transport of secretory vesicles is necessary but not sufficient for normal apical extension. A component of retrograde transport, presumably precursors of the vacuole system, is also essential. Our findings provide new information on the role microtubule motors play in cell morphogenesis and suggest that kinesin and cytoplasmic dynein have largely independent functions within separate pathways.  相似文献   

18.
In microtubule (MT) translocation assays, using colloidal gold particles coupled to monoclonal tubulin antibodies to mark positions along MTs, we found that relative motion is possible between the gold particle and an MT, gliding on dynein or kinesin. Such motion evidently occurred by an affinity release and rebinding mechanism that did not require motor activity on the particle. As the MTs moved, particles drifted to the trailing edge of the MT and then were released. Sometimes the particles transferred from one MT to another, moving orthogonally. Although motion of the particles was uniformly rearward, movement was toward the (-) or (+) end of the MT, depending on whether dynein or kinesin, respectively, was used in the assay. These results open possibilities for physiological mechanisms of organelle and other movement that, although dependent on motor-driven microtubule transport, do not require direct motor attachment between the organelle and the microtubule. Our observations on the direction of particle drift and time of release may also provide confirmation in a dynamic system for the conclusion that beta tubulin is exposed at the (+) end of the MT.  相似文献   

19.
Cytoplasmic dynein and kinesin I are both unidirectional intracellular motors. Dynein moves cargo toward the cell center, and kinesin moves cargo toward the cell periphery. There is growing evidence that bi-directional motility is regulated in the cell, potentially through direct interactions between oppositely oriented motors. We have identified a direct interaction between cytoplasmic dynein and kinesin I. Using the yeast two-hybrid assay and affinity chromatography, we demonstrate that the intermediate chain of dynein binds to kinesin light chains 1 and 2. The interaction is both direct and specific. Co-immunoprecipitation experiments demonstrate an interaction between endogenous proteins in rat brain cytosol. Double-label immunocytochemistry reveals a partial co-localization of vesicle-associated motor proteins. Together these observations suggest that soluble motors can interact, potentially allowing kinesin I to actively localize dynein to cellular sites of function. There is also a vesicle population with both dynein and kinesin I bound that may be capable of bi-directional motility along cellular microtubules.  相似文献   

20.
Dynactin is required for bidirectional organelle transport   总被引:19,自引:0,他引:19       下载免费PDF全文
Kinesin II is a heterotrimeric plus end-directed microtubule motor responsible for the anterograde movement of organelles in various cell types. Despite substantial literature concerning the types of organelles that kinesin II transports, the question of how this motor associates with cargo organelles remains unanswered. To address this question, we have used Xenopus laevis melanophores as a model system. Through analysis of kinesin II-mediated melanosome motility, we have determined that the dynactin complex, known as an anchor for cytoplasmic dynein, also links kinesin II to organelles. Biochemical data demonstrates that the putative cargo-binding subunit of Xenopus kinesin II, Xenopus kinesin II-associated protein (XKAP), binds directly to the p150Glued subunit of dynactin. This interaction occurs through aa 530-793 of XKAP and aa 600-811 of p150Glued. These results reveal that dynactin is required for transport activity of microtubule motors of opposite polarity, cytoplasmic dynein and kinesin II, and may provide a new mechanism to coordinate their activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号