首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutagenic azide metabolite was purified from the medium in which Salmonella typhimurium cells were grown in the presence of azide. This metabolite was identified to be azidoalanine based on infrared and mass spectroscopy and elemental analysis. This compound appeared to be identical to the mutagenic compound synthesized in vitro from azide and O-acetylserine by partially purified O-acetylserine sulfhydrylase. The metabolite (azidoalanine) mutagenic efficiency and spectrum in S. typhimurium was similar to that of inorganic azide. The compounds 2-azidoethylamine, 2-bromoethylamine, 3-bromopropionic acid and N-(azidomethyl) phthalimide were also mutagenic with a similar spectrum to azide and azidoalanine, but with lower efficiency. The compounds 3-azidopropylamine, 4-azidobutylamine, 3-chloroalanine and ethylamine were only weakly or nonmutagenic. Numerous other chloro, bromo and azido phthalimide derivatives tested were nonmutagenic. It is suggested that the lack of azide mutagenicity (and perhaps carcinogenicity) in mammalian cells may be due to their inability to convert azide to azidoalanine.  相似文献   

2.
Sodium azide is a potent mutagen of maize (Zea mays L.) kernels that may have potential as a point mutagen for inducing biochemical mutations in maize tissue cultures. Azide mutagenicity was evaluated in friable, embryogenic maize callus and a nonregenerable maize suspension culture by determining the number of resistant variant cell lines able to grow on media containing inhibitory concentrations of lysine plus threonine (LT). The number of LT-resistant variants selected from either culture type did not increase in response to azide treatment. In addition, there was no increase in somatic mutations in more than 100 plants regenerated from azide treated LT-resistant lines. The levels of mutagenic metabolite of azide (presumably azidoalanine), were determined by bioassay in the two azide-treated maize callus types and compared to levels of mutagenic metabolite in embryos isolated from azide-treated kernels. The two types of maize tissue cultures and isolated embryos contained similar levels of mutagenic metabolite 4 h after azide treatment indicating similar uptake and conversion of azide to mutagenic metabolite in the three tissues. Mutagenic metabolite in azide-treated embryos did not significantly decrease after 40 h. However, mutagenic metabolite levels in both azide-treated tissue cultures decreased to near background levels within 20 h providing evidence for rapid metabolism of the azide mutagenic metabolite. The lack of evidence for azide mutagenicity in maize callus and its known potent mutagenicity in kernels appears to be associated with specific differences in azide metabolism between callus tissues and kernel embryos.  相似文献   

3.
Sodium azide is unique among mutagens. It is highly mutagenic in many plant and bacterial species but marginally mutagenic in mammalian cells. A possible explanation for this difference in mutagenic efficiency may lie in the inability of mammalian cells to convert azide to the putative ultimate mutagen. Normal human fibroblasts and Chinese hamster cells or cell-free extracts from these cell lines were treated with azide and the sonicates tested for mutagenicity in Salmonella strain TA1530. The data suggest that neither cell line was capable of converting azide to a mutagenic intermediate. In addition, both cell lines expressed the enzyme O-acetylserine(thio)-lyase which is responsible for the conversion of azide to azidoalanine, the putative mutagenic intermediate. Although mammalian cells possess the enzyme responsible for the conversion of azide to azidoalanine, they appear incapable of converting azide into a mutagenic intermediate in appreciable quantities. Further, the data support the conclusion that azide may be further modified in mammalian cells to an intermediate that is not genotoxic.  相似文献   

4.
Sadiq MF  Owais WM 《Mutation research》2000,469(2):253-257
The mutagenic and toxic activities of sodium azide (NaN(3) ) and its organic metabolite L-azidoalanine [N(3)-CH(2)-CH(NH)(2)-COOH] were examined in the different stages of spermatogenesis in Drosophila melanogaster. Both azide and azidoalanine were toxic to the injected males, but azidoalanine was significantly less toxic than sodium azide. Following the injection with 0.2 microl of these compounds in the hemocoel of young adult wild-type males, the minimum concentrations of these compounds with complete toxic effects (zero survival) were 40 mM sodium azide and 160 mM azidoalanine. Sex-linked recessive lethals were scored by the Muller-5 method in three successive broods, representing sperms (brood A), spermatids (brood B), and a compiled group of meiotic and premeiotic germ cell stages (brood C). The results provide strong experimental evidence that azidoalanine is significantly (p<0.01) mutagenic to all stages of spermatogenesis in Drosophila melanogaster. Sodium azide, however, was not significantly (p>0.05) mutagenic and did not increase the rate of sex-linked recessive lethals over those produced by the control group injected with 0.45% NaCl. These results indicate the requirement of metabolic activation of azide in Drosophila as a prerequisite for its mutagenic effects.  相似文献   

5.
Azide mutagenicity in susceptible non-mammalian systems involves the requisite formation of L-azidoalanine, a novel mutagenic amino acid. The biochemical mechanism(s) of azidoalanine-induced mutagenesis, however, is not known. Previous studies of the structural requirements for azidoalanine mutagenicity suggested the importance of free L-amino acid character, and that bioactivation of azidoalanine to the ultimate mutagenic species is required. To gain more insight into possible enzymatic processing, the alpha-methyl analogue, alpha-methyl-azidoalanine, and the homologue, 2-amino-4-azidobutanoic acid, were synthesized and tested for mutagenic potency in Salmonella typhimurium strain TA1530. In addition, azidoacetic acid, a possible azidoalanine metabolite, was prepared and tested. The results show that alpha-methyl substitution effectively blocks the mutagenic effects of azidoalanine with alpha-methyl-azidoalanine being nearly devoid of mutagenic activity. In contrast, homologation of azidoalanine to yield 2-amino-4-azidobutanoic acid produces a marked increase in molar mutagenic potency. As with azidoalanine, the mutagenic activity of this homologue is associated with the L-isomer. Azidoacetic acid, however, was only very weakly mutagenic when tested as either the free acid or ethyl ester. This low mutagenic potency may indicate that bioactivation does not involve the entry of azide-containing azidoalanine catabolite into the Kreb's cycle. The high potency of 2-amino-4-azidobutanoic acid may be indicative of more efficient bioactivation and/or greater intrinsic activity. Importantly, the latter finding clearly shows that potent azido-amino acid mutagenicity is not limited to azidoalanine alone.  相似文献   

6.
The L- and D-isomers of azidoalanine (azide metabolite) have been chemically synthesized with 60% yield using corresponding N-(tert-butoxycarbonyl)-serine as starting materials. The mutagenic properties of synthesized L-azidoalanine are very similar to those of azide and in vivo synthesized azidoalanine. Synthetic D-azidoalanine shows very low mutagenic activity on Salmonella typhimurium TA1530 strain compared to that of the L-isomer. Thus a stereoselective process is involved in azidoalanine mutagenicity. The data presented in this study suggest that further biochemical activation is required for L-azidoalanine to produce its mutagenic activity.  相似文献   

7.
Azide mutagenicity in susceptible non-mammalian systems involves the requisite formation of l-azidoalanine, a novel mutagenic amino acid. The biochemical mechanism(s) of azidoalanine-induced mutagenesis, however, is not known. Previous studies of the structural requirements for azidoalanine mutagenicity suggested the importance of free l-amino acid character, and that bioactivation of azidoalanine to the ultimate mutagenic species is required. To gain more insight into possible enzymatic processing, the α-methyl analogue, α-methylazidialanine, and the homologue, 2-amino-4-azidobutonoic acid, were synthesized and tested for mutagenic potency in Salmonella typhimurium strain TA1530. In addition, azidoacetic acid, a possible azidoalanine metabolite, was prepared and tested. The results show that α-methyl substitution effectively blocks the mutagenic effects of azidoalanine with α-methyl-azidoalanine being nearly devoid of mutagenic activity. In contrast, homologation of azidoalanine to yield 2-amino-4-azidobutanoic acid produces a marked increase in molar mutagenic potency. As with azidoalanine, the mutagenic activity of this homologue is associated with the l-isomer. Azidoacetic acid, however, was only very weakly mutagenic when tested as either the free acid or ethyl ester. This low mutagenic potency may indicate that bioactivation does not involve the entry of azide-containing azidoalanine catabolite into the Kreb's cycle. The high potency of 2-amino-4-azidobutanoic acid may be indicative of more efficient bioactivation and/or greater intrinsic activity. Importantly, the latter finding clearly shows that potent azido-amino acid mutagenicity is not limited to azidoalanine alone.  相似文献   

8.
The mutagenicity of sodium azide in both higher plants and bacteria is well documented. However, in mammalian cells, research on the effects of azide on gene mutations has produced conflicting results. Furthermore, no research has been conducted on the effects of azide and its proximal mutagen (mutagenic metabolite) on DNA single-strand breaks. Experiments were designed to overcome this lack of information on azide mutagenicity and to evaluate the potential hazard of azide exposure to man.Chinese hamster V79 cells were treated with either azide or its proximal mutagen(s) for 2 or 6 h, respectively, and analyzed by alkaline elution for single-strand breaks. The data showed that neither azide nor the proximal mutagen(s) induced single-strand DNA breaks or DNA-protein cross-links.Therefore it appears that neither azide nor its proximal mutagen(s) interact directly with DNA and this suggests that azide may be an indirect-acting mutagen. Furthermore, this lack of interaction with DNA may account for azide's lack of carcinogenicity.  相似文献   

9.
The Bacillus subtilis ATCC 6633 strain synthesizes a mutagenic metabolite from sodium azide and O-acetylserine. Mutagenicity of azide was decreased in growth media containing 10(-4) M glutathione, L-cysteine or L-djenkolic acid whereas dithiothritol (DTT) added at the same concentration did not reduce the mutagenicity of azide. Likewise, glutathione, L-cysteine, L-djenkolic acid, and DTT were found to have no effect in reducing the mutagenicity of the in vitro produced metabolite using bacterial cell-free extract. These results suggest that O-acetyl-serine sulfhydrylase catalyzes the reaction of azide and O-acetylserine to form a mutagenic metabolite, which is ninhydrin positive and migrates in TLC to an Rf value similar to that of azidoalanine in both acidic and basic solvent systems.  相似文献   

10.
DL-p-chlorophenylalanine (PCPA) and its derivatives were evaluated for genotoxic effects using Escherichia coli and Bacillus subtilis strains lacking various DNA-repair mechanisms in spottest and in suspension test. The mutagenic activity of studied compounds was determined by the Ames test. Reverse mutation test was performed with Salmonella typhimurium strains TA98, TA100, TA1535 and TA1537 without S9 mix. 0.02 M nitrosomethylurea (NMU) standard mutagen was used as a positive control. The results showed that the parent nonessential amino acid PCPA had no detectable genotoxic and mutagenic activities in bacteria. The methyl ester of this amino acid and its N-phenylacetyl derivative possessed weak genotoxicity. Meanwhile N-sec-butyloxycarbonyl, N-benzyloxycarbonyl, N-(p-nitrophenylacetyl) and N-(p-nitrophenoxyacetyl) derivatives of DL-p-chlorophenylalanine exhibited appreciable genotoxicity. Among the seven tested compounds only N-benzyloxycarbonyl and N-(p-nitrophenoxyacetyl) derivatives of DL-p-chlorophenylalanine have been found to be mutagenic. Only parent PCPA possessed antimutagenic properties in respect of nitrosomethylurea. The structural modification, which strongly affects genotoxicity and mutagenicity perhaps may be due to steric hydrance of the substituents, causing interference with enzyme and DNA interactions.  相似文献   

11.
L-Cystine and L-cysteine specifically reverse the mutagenic action of azide in Salmonella typhimurium and Escherichia coli. To establish whether the L-cysteine biosynthetic pathway is involved in azide-induced mutagenesis, several derivatives of a mutagen tester-strain of S. typhimurium bearing mutations in different cys genes were isolated. No mutagenic effect of azide was observed in a strain carrying mutation in the cysE gene, unless the incubation medium was supplemented with exogenous O-acetylserine. Out of 16 cysK mutants 14 were mutagenized by azide very poorly or not at all. These results indicate that the activity of O-acetylserine sulfhydrylase A, and the availability of O-acetylserine, one of the two co-substrates of the enzyme, are essential for the mutagenic action of azide in S. typhimurium  相似文献   

12.
Cell-free extracts of Salmonella typhimurium synthesize a mutagenic azide metabolite from sodium azide and O-acetylserine. S. typhimurium mutant DW379 (O-acetylserine sulfhydrylase-deficient) extracts were neither able to carry out this reaction nor produce the mutagenic azide metabolite in vivo. The in vitro reaction was inhibited by sulfide but not by l-cysteine. The catalytic activity responsible for the mutagenic metabolite synthesis was stable to brief heating up to 55°C and had a pH optimum between 7–7.4. These results suggest that the enzyme O-acetylserine sulfhydrylase catalyzes the reaction of azide with O-acetylserine to form a mutagenic azide metabolite.  相似文献   

13.
L-Cystine and L-cysteine specifically reverse the mutagenic action of azide in Salmonella typhimurium and Escherichia coli. To establish whether the L-cysteine biosynthetic pathway is involved in azide-induced mutagenesis, several derivatives of a mutagen tester-strain of S. typhimurium bearing mutations in different cys genes were isolated. No mutagenic effect of azide was observed in a strain carrying mutation in the cysE gene, unless the incubation medium was supplemented with exogenous O-acetylserine. Out of 16 cysK mutants 14 were mutagenized by azide very poorly or not at all. These results indicate that the activity of O-acetylserine sulfhydrylase A, and the availability of O-acetylserine, one of the two co-substrates of the enzyme, are essential for the mutagenic action of azide in S. typhimurium  相似文献   

14.
Azide mutagenicity involves the requisite formation of the putative novel aminoacid metabolite, beta-azidoalanine. The role of this metabolite, however, is unclear. In order to confirm the identity of this metabolite and provide additional information on possible stereochemical requirements for mutagenicity, authentic racemic and L-azidoalanine were synthesized by an unambiguous route and tested for mutagenicity in Salmonella typhimurium TA100, TA1535, hisG46 and Escherichia coli WP2-. A marked antipodal potency ratio was observed in strains TA100 and TA1535 when racemic and L-azidoalanine were compared. The mutagenic activity resided primarily in the L-isomer. The molar potency of L-azidoalanine in TA100 and TA1535 was nearly identical to that of azide. The lack of mutagenic response for racemic or L-azidoalanine in hisG46 and E. coli WP2- was like that reported for azide and is consistent with similar modes of action for these agents.  相似文献   

15.
Paraquat is univalently reduced to the relatively stable, but oxygen-sensitive, paraquat radical (PQ.+). This PQ.+ can react with dioxygen to generate the superoxide radical, which can further generate other more deleterious species of oxygen free radicals (i.e., hydroxyl radical, OH.). These oxygen free radicals are known to cause chromosomal breaks; therefore, it was logical to postulate that paraquat is a mutagen. This proved to be the case when tested in a modified Ames test using a liquid incubation assay. Salmonella typhimurium strains TA98 and TA100 were grown in the presence of various concentrations of PQ, as well as in the presence of known mutagenic compounds: mitomycin C, azide, and proflavine. Paraquat was much more toxic and mutagenic in a simple nutritionally restricted medium than in a rich complex medium and these toxic and mutagenic effects were oxygen dependent. Furthermore, cells containing high levels of superoxide dismutase were more resistant to the toxic and mutagenic effects of paraquat than were cells containing a normal level of this enzyme.  相似文献   

16.
The effects of sodium azide (NaN3) in combination with diethyl sulfate (dES) or N-methyl-N′-nitrosourea (MNH) on mutation frequency in barley were studied. It was found that sodium azide produced high frequencies of chlorophyll mutations when used alone and has a synergistic effect on mutation yields following MNH treatments. However, the mutation frequency was decreased whe azide was applied following dES treatment of seeds. The mutagenic efficiency of azide was found to be high, possibly because of low “physiological” damage. The synergistic increase in mutation yields by MNH and azide treatment indicates that azide has unusual promise as a mutagen for both practical and research applications.  相似文献   

17.
The mutagenic activities toward S. typhimurium strains TA98 and TA100 of K-region derivatives of 1-nitropyrene and pyrene were determined. The compounds tested were trans-4,5-dihydro-4,5-dihydroxy-1-nitropyrene (Compound 3), trans-4,5-dihydro-4,5-dihydroxypyrene (Compound 4), 1-nitropyrene-4,5-quinone (Compound 5), 1-nitropyrene-9,10-quinone (Compound 6), pyrene-4,5-quinone (Compound 7), and the lactones, 1-nitro-5H-phenanthro[4,5-bcd]pyran-5-one (Compound 8), 3-nitro-5H-phenanthro[4,5-bcd]pyran-5-one (Compound 9), and 5H-phenanthro[4,5-bcd]pyran-5-one (Compound 10). Neither pyrene nor any of its K-region derivatives was mutagenic, either in the absence or presence of S9 mix at the doses tested. Of the K-region derivatives of 1-nitropyrene, the lactones (Compounds 8 and 9) were generally the most active; 0.25 microgram/plate induced 900-2200 revertants in TA98 or TA100 without activation. The 4,5-dihydrodiol (Compound 3), an established mammalian metabolite of 1-nitropyrene, was less mutagenic than was 1-nitropyrene in TA98, but was more mutagenic than was 1-nitropyrene in TA100, regardless of the presence of S9 mix. The quinones (Compounds 5 and 6) were less mutagenic than was 1-nitropyrene in the absence of S9 mix in both strains, but their activities were increased in the presence of S9 mix. The mutagenic activities of the lactones (Compounds 8 and 9) were lower in strains TA98NR and TA98/1,8-DNP6 than in TA98, indicating that nitro-reduction and esterification are involved in their activation. The results of this study indicate that K-region derivatives of 1-nitropyrene may be important in its metabolic activation.  相似文献   

18.
Pyrolyzates of 25 amino acids and 5 indole derivatives were tested for mutagenicity in the histidine-requiring mutant Salmonella typhimurium TA 98. Significant mutagenic activity was detected with pyrolyzates of most of the amino acids. These pyrolyzates required a liver microsomal fraction, as representative of mammalian metabolism, to be detected as mutagens. Among the pyrolyzates tested, the highest mutagenic activity was observed with that of L-tryptophan. As little as 10 microgram of the pyrolyzate of L-tryptophan had detectable mutagenic activity toward TA 98. The optimal pyrolysis temperatures for the formation of mutagenic products were shown to be 500 degrees C for L-tryptophan and 600 degrees C for the other amino acids. The results from pyrolyses of some indole derivatives suggest that an amino group at the alpha-position to the carboxyl group of L-tryptophan plays an important role in the formation of mutagens.  相似文献   

19.
Salmonella typhimurium TA1530 and G46 strains growing in minimal medium supplemented with sodium azide produce a stable mutagenic metabolite which is not azide. The production of this metabolite is restricted to the log phase of bacteria grown in the presence of azide. The metabolite is highly mutagenic in DNA-repair defective base-substitution strains TA1530 and TA1535, but ineffective in frameshift strains TA1538 and TA1537. The metabolite induces mutations in resting cells of the TA1530 strain.  相似文献   

20.
2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) is a potent bacterial mutagen formed during cooking of beef. IQ was administered intravenously to Sprague-Dawley rats at concentrations ranging from 7.5-50 mg/kg body weight. Urine was collected and analyzed for mutagenicity. Urinary mutagens were found which required activation by S9 mix, and reverted Ames test strains TA98 and TA100, but not TA1535 or TA1537. The amount of urinary mutagen(s) were related to IQ dose administered and were excreted within 48 h. Additional mutagenic activity was not released after incubation with beta-glucuronidase or aryl sulfatase. Analysis of urinary mutagens by HPLC indicates that the majority of mutagenic activity is due to unchanged IQ, but a small peak of mutagenic activity may correspond to N-acetyl or 3-N-demethylated metabolite. Since only 1% of the administered mutagenic activity is recovered in the urine, IQ may be readily detoxified in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号