首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roberts MA  Schwartz TS  Karl SA 《Genetics》2004,166(4):1857-1870
We assessed the degree of population subdivision among global populations of green sea turtles, Chelonia mydas, using four microsatellite loci. Previously, a single-copy nuclear DNA study indicated significant male-mediated gene flow among populations alternately fixed for different mitochondrial DNA haplotypes and that genetic divergence between populations in the Atlantic and Pacific Oceans was more common than subdivisions among populations within ocean basins. Even so, overall levels of variation at single-copy loci were low and inferences were limited. Here, the markedly more variable microsatellite loci confirm the presence of male-mediated gene flow among populations within ocean basins. This analysis generally confirms the genetic divergence between the Atlantic and Pacific. As with the previous study, phylogenetic analyses of genetic distances based on the microsatellite loci indicate a close genetic relationship among eastern Atlantic and Indian Ocean populations. Unlike the single-copy study, however, the results here cannot be attributed to an artifact of general low variability and likely represent recent or ongoing migration between ocean basins. Sequence analyses of regions flanking the microsatellite repeat reveal considerable amounts of cryptic variation and homoplasy and significantly aid in our understanding of population connectivity. Assessment of the allele frequency distributions indicates that at least some of the loci may not be evolving by the stepwise mutation model.  相似文献   

2.
Studies that span entire species ranges can provide insight into the relative roles of historical contingency and contemporary factors that influence population structure and can reveal patterns of genetic variation that might otherwise go undetected. American shad is a wide ranging anadromous clupeid fish that exhibits variation in demographic histories and reproductive strategies (both semelparity and iteroparity) and provides a unique perspective on the evolutionary processes that govern the genetic architecture of anadromous fishes. Using 13 microsatellite loci, we examined the magnitude and spatial distribution of genetic variation among 33 populations across the species' range to (i) determine whether signals of historical demography persist among contemporary populations and (ii) assess the effect of different reproductive strategies on population structure. Patterns of genetic diversity and differentiation among populations varied widely and reflect the differential influences of historical demography, microevolutionary processes and anthropogenic factors across the species' range. Sequential reductions of diversity with latitude among formerly glaciated rivers are consistent with stepwise postglacial colonization and successive population founder events. Weak differentiation among U.S. iteroparous populations may be a consequence of human‐mediated gene flow, while weak differentiation among semelparous populations probably reflects natural gene flow. Evidence for an effect of reproductive strategy on population structure suggests an important role for environmental variation and suggests that the factors that are responsible for shaping American shad life history patterns may also influence population genetic structure.  相似文献   

3.
A drastic decline has occurred in the size of the Uganda elephant population in the last 40 years, exacerbated by two main factors; an increase in the size of the human population and poaching for ivory. One of the attendant consequences of such a decline is a reduction in the amount of genetic diversity in the surviving populations due to increased effects of random genetic drift. Information about the amount of genetic variation within and between the remaining populations is vital for their future conservation and management. The genetic structure of the African elephant in Uganda was examined using nucleotide variation of mitochondrial control region sequences and four nuclear microsatellite loci in 72 individuals from three localities. Eleven mitochondrial DNA (mtDNA) haplotypes were observed, nine of which were geographically localized. We found significant genetic differentiation between the three populations at the mitochondrial locus while three out of the four microsatellite loci differentiated KV and QE, one locus differentiated KV and MF and no loci differentiated MF and QE. Expected heterozygosity at the four loci varied between 0.51 and 0.84 while nucleotide diversity at the mitochondrial locus was 1.4%. Incongruent patterns of genetic variation within and between populations were revealed by the two genetic systems, and we have explained these in terms of the differences in the effective population sizes of the two genomes and male-biased gene flow between populations.  相似文献   

4.
Relationships of genetic diversity at microsatellite loci and quantitative traits were examined in hatchery-produced populations of Japanese flounder using a relatively straightforward experiment. Five hatchery populations produced by wild-caught and domesticated broodstocks were used to examine the effects of different levels (one to three generations) of domestication on the genetic characteristics of hatchery populations. Allelic richness at seven microsatellite loci in all hatchery populations was lower than that in a wild population. Genetic variation measured by allelic richness and heterozygosity tended to decrease with an increase in generations of domestication. In addition, the degree of genetic differentiation from a wild population increased with an increase in generations of domestication. Significant differences in three morphometric traits (dorsal and anal fin ray counts and vertebral counts) and three physiological traits (high temperature, salinity and formalin tolerance) were observed among the hatchery populations. The degree of phenotypic difference among populations was larger in morphometric traits than in physiological traits. The divergence pattern of some quantitative traits was similar to that observed at microsatellite loci, suggesting that domestication causes the decrease of genetic variation and the increase of genetic differentiation for some quantitative traits concomitantly with those for microsatellite loci. Significant positive correlation was observed between F ST and the degree of phenotypic difference in the three morphometric traits and formalin tolerance, indicating that genetic variation at microsatellite loci predicts the degree of phenotypic divergence in some quantitative traits.  相似文献   

5.
The black tiger shrimp (Penaeus monodon) is an ecologically and economically important penaeid species and is widely distributed in the Indo-Pacific region. Here we investigated the genetic diversity of P. monodon (n = 355) from eight geographical regions by genotyping at 10 microsatellite loci. The average observed heterozygosity at various loci ranged from 0.638 to 0.743, indicating a high level of genetic variability in this region. Significant departures from Hardy-Weinberg equilibrium caused by heterozygote deficiency were recorded for most loci and populations. Pairwise F(ST) and R(ST) values revealed genetic differentiation among the populations. Evidence from the assignment test showed that the populations in the West Indian Ocean were unique, whereas other populations examined were partially admixed. In addition, the non-metric multidimensional scaling analysis indicated the presence of three geographic groups in the Indo-Pacific region, i.e. the African populations, a population from western Thailand and the remaining populations as a whole. We also sequenced and analysed the mitochondrial control region (mtCR) in these shrimp stocks to determine whether the nuclear and mitochondrial genomes show a similar pattern of genetic differentiation. A total of 262 haplotypes were identified, and nucleotide divergence among haplotypes ranged from 0.2% to 16.3%. Haplotype diversity was high in all populations, with a range from 0.969 to 1. Phylogenetic analysis using the mtCR data revealed that the West Indian Ocean populations were genetically differentiated from the West Pacific populations, consistent with the microsatellite data. These results should have implications for aquaculture management and conservation of aquatic diversity.  相似文献   

6.
Historic events and contemporary processes work in concert to create and maintain geographically partitioned variation and are instrumental in the generation of biodiversity. We sought to gain a better understanding of how contemporary processes such as movement and isolation influence the genetic structure of widely distributed vagile species such as birds. Song sparrows (Melospiza melodia) in western North America provide a natural system for examining the genetics of populations that have different patterns of geographic isolation and migratory behavior. We examined the population genetics of 576 song sparrows from 23 populations using seven microsatellite loci to assess genetic differentiation among populations and to estimate the effects of drift and immigration (gene flow) on each population. Sedentary, isolated populations were characterized by low levels of immigration and high levels of genetic drift, whereas those populations less isolated displayed signals of high gene flow and little differentiation from other populations. Contemporary dispersal rates from migratory populations, estimated by assignment test, were higher and occurred over larger distances than dispersal from sedentary populations but were also probably too low to counter the effects of drift in most populations. We suggest that geographic isolation and limited gene flow facilitated by migratory behavior are responsible for maintaining observed levels of differentiation among Pacific coastal song sparrow populations.  相似文献   

7.
Labial surface convexity of the maxillary central incisors (ILC) is classified with a new five grade ranked scale. More than 2,000 individuals representing 20 worldwide populations were studied. Principle findings are 1) sexual dimorphism is not significant, 2) antimere asymmetry is moderate, 3) labial convexity is negatively associated (r = ?0.48) with labial surface double-shovelling, and 4) significant differences occur between several populations. Convexity is most marked in African and Asiatic Indian populations, particularly Bushmen. Europeans have intermediate degrees of convexity, and American Indians the least; Eskimos have the highest amount of convexity among Native Americans. Pacific Islanders are intermediate; Melanesians show the strongest expression of incisor labial convexity in the Pacific.  相似文献   

8.
Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA‐DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (Ne < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift.  相似文献   

9.
Relatively little genetic variation has been uncovered in surveys across North American wolf populations. Pacific Northwest coastal wolves, in particular, have never been analysed. With an emphasis on coastal Alaska wolf populations, variation at 11 microsatellite loci was assessed. Coastal wolf populations were distinctive from continental wolves and high levels of diversity were found within this isolated and relatively small geographical region. Significant genetic structure within southeast Alaska relative to other populations in the Pacific Northwest, and lack of significant correlation between genetic and geographical distances suggest that differentiation of southeast Alaska wolves may be caused by barriers to gene flow, rather than isolation by distance. Morphological research also suggests that coastal wolves differ from continental populations. A series of studies of other mammals in the region also has uncovered distinctive evolutionary histories and high levels of endemism along the Pacific coast. Divergence of these coastal wolves is consistent with the unique phylogeographical history of the biota of this region and re-emphasizes the need for continued exploration of this biota to lay a framework for thoughtful management of southeast Alaska.  相似文献   

10.

Objective:

Several genome–wide association studies (GWAS) have demonstrated that common genetic variants contribute to obesity. However, studies of this complex trait have focused on ancestrally European populations, despite the high prevalence of obesity in some minority groups.

Design and Methods:

As part of the “Population Architecture using Genomics and Epidemiology (PAGE)” Consortium, we investigated the association between 13 GWAS‐identified single‐nucleotide polymorphisms (SNPs) and BMI and obesity in 69,775 subjects, including 6,149 American Indians, 15,415 African‐Americans, 2,438 East Asians, 7,346 Hispanics, 604 Pacific Islanders, and 37,823 European Americans. For the BMI‐increasing allele of each SNP, we calculated β coefficients using linear regression (for BMI) and risk estimates using logistic regression (for obesity defined as BMI ≥ 30) followed by fixed‐effects meta‐analysis to combine results across PAGE sites. Analyses stratified by racial/ethnic group assumed an additive genetic model and were adjusted for age, sex, and current smoking. We defined “replicating SNPs” (in European Americans) and “generalizing SNPs” (in other racial/ethnic groups) as those associated with an allele frequency‐specific increase in BMI.

Results:

By this definition, we replicated 9/13 SNP associations (5 out of 8 loci) in European Americans. We also generalized 8/13 SNP associations (5/8 loci) in East Asians, 7/13 (5/8 loci) in African Americans, 6/13 (4/8 loci) in Hispanics, 5/8 in Pacific Islanders (5/8 loci), and 5/9 (4/8 loci) in American Indians.

Conclusion:

Linkage disequilibrium patterns suggest that tagSNPs selected for European Americans may not adequately tag causal variants in other ancestry groups. Accordingly, fine‐mapping in large samples is needed to comprehensively explore these loci in diverse populations.  相似文献   

11.
Anadenanthera colubrina var. cebil is a native South American tree species inhabiting seasonally dry tropical forests (SDTFs). Its current disjunct distribution presumably represents fragments of a historical much larger area of this forest type, which has also been highly impacted by human activities. In this way the hypothesis of this study is that the natural populations of A. colubrina var. cebil from Northern Argentina represent vestiges of ancient fragmentation, but they are additionally influenced by a certain degree of gene flow among them. We aimed to analyze the genetic structure of both nuclear and chloroplast DNA to evaluate the relative role of ancient and recent fragmentation on intraspecific diversity patterns. Sixty-nine individuals of four natural populations were analyzed using eight nuclear microsatellites (ncSSR) and four chloroplast microsatellite loci (cpSSR). The level and distribution of genetic variation were estimated by standard population genetic parameters and Neighbor Joining as well as Bayesian analyses. The eight ncSSR loci were highly polymorphic, while genetic diversity of cpSSRs was low. Nuclear SSRs displayed lower genetic differentiation among populations than cpSSR haplotypes (F ST 0.11 and 0.95, respectively). However, high differentiation between phytogeographic provinces was observed in both genomes. The high genetic differentiation detected emphasizes the role of ancient fragmentation. However, the Paranaense province also shows the effects of recent fragmentation on genetic structure, whereas gene flow by pollen preserves the effects of genetic drift in the Yungas province.  相似文献   

12.
Twenty microsatellite loci were examined to assess genetic variation among six cultured populations of rainbow trout introduced to China. Fourteen polymorphic loci showed moderate levels of diversity within and between populations.  相似文献   

13.
While studies have implicated alleles at the CAG and GGC trinucleotide repeats of the androgen receptor gene with high-grade, aggressive prostate cancer disease, little is known about the normal range of variation for these two loci, which are separated by about 1.1 kb. More importantly, few data exist on the extent of linkage disequilibrium (LD) between the two loci in different human populations. Here we present data on CAG and GGC allelic variation and LD in six diverse populations. Alleles at the CAG and GGC repeat loci of the androgen receptor were typed in over 1000 chromosomes from Africa, Asia, and North America. Levels of linkage disequilibrium between the two loci were compared between populations. Haplotype variation and diversity were estimated for each population. Our results reveal that populations of African descent possess significantly shorter alleles for the two loci than non-African populations (P<0.0001). Allelic diversity for both markers was higher among African Americans than any other population, including indigenous Africans from Sierra Leone and Nigeria. Analysis of molecular variance revealed that approx. 20% of CAG and GGC repeat variance could be attributed to differences between the populations. All non-African populations possessed the same common haplotype while the three populations of African descent possessed three divergent common haplotypes. Significant LD was observed in our sample of healthy African Americans. The LD observed in the African American population may be due to several reasons; recent migration of African Americans from diverse rural communities following urbanization, recurrent gene flow from diverse West African populations, and admixture with European Americans. This study represents the largest genotyping effort to be performed on the two androgen receptor trinucleotide repeat loci in diverse human populations.  相似文献   

14.
The extent and geographic patterns of molecular genetic diversity of the largest remaining free-ranging cheetah population were described in a survey of 313 individuals from throughout Namibia. Levels of relatedness, including paternity/maternity (parentage), were assessed across all individuals using 19 polymorphic microsatellite loci, and unrelated cheetahs (n = 89) from 7 regions were genotyped at 38 loci to document broad geographical patterns. There was limited differentiation among regions, evidence that this is a generally panmictic population. Measures of genetic variation were similar among all regions and were comparable with Eastern African cheetah populations. Parentage analyses confirmed several observations based on field studies, including 21 of 23 previously hypothesized family groups, 40 probable parent/offspring pairs, and 8 sibling groups. These results also verified the successful integration and reproduction of several cheetahs following natural dispersal or translocation. Animals within social groups (family groups, male coalitions, or sibling groups) were generally related. Within the main study area, radio-collared female cheetahs were more closely interrelated than similarly compared males, a pattern consistent with greater male dispersal. The long-term maintenance of current patterns of genetic variation in Namibia depends on retaining habitat characteristics that promote natural dispersal and gene flow of cheetahs.  相似文献   

15.
Thirteen microsatellite loci were used to address three hypotheses regarding genetic diversity in the humpback whitefish Coregonus clupeaformis complex in Alaska. The test results provided further insight into the factors influencing C. clupeaformis complex population structure and level of genetic variation. First, the microsatellite data did not provide evidence of two spatially distinct Beringian and Eurasian refugial groups as revealed in previous phylogeographic analyses of mitochondrial DNA variation. Rather, the population structure inferred from the microsatellite variation appears to reveal the influence of factors on a more recent time scale, including gene flow among the refugial groups and isolation of some anadromous and freshwater resident populations. Second, anadromous C. clupeaformis complex collections exhibited higher intra‐population genetic diversity than freshwater resident collections. This outcome is consistent with previous meta analyses suggesting that freshwater resident populations probably have smaller historical effective population sizes and less conspecific gene flow because the habitat tends to be smaller and supports fewer and smaller populations. Finally, the analysis of contemporary immigration rates was consistent with, but did not provide statistical support for, the hypothesis that gene flow among anadromous C. clupeaformis complex populations along coastal Alaska is influenced by the Alaska Coastal Current. Further studies are needed to evaluate gene flow among coastal Alaska C. clupeaformis complex populations.  相似文献   

16.
Polyploidy and gametophytic apomixis are two important and associated processes in plants. Many hawthorn species are polyploids and can reproduce both sexually and apomictically. However, the population genetic structure of these species is poorly understood. Crataegus douglasii is represented exclusively by self-compatible tetraploid pseudogamous apomicts across North America, whereas Crataegus suksdorfii found in the Pacific Northwest is known to include self-incompatible diploid sexuals as well as polyploid apomicts. We compare population structure and genetic variability in these two closely related taxa using microsatellite and chloroplast sequence markers. Using 13 microsatellite loci located on four linkage groups, 251 alleles were detected in 239 individuals sampled from 15 localities. Within-population multilocus genotypic variation and molecular diversity are greatest in diploid sexuals and lowest in triploid apomicts. Apart from the isolation of eastern North American populations of C. douglasii , there is little evidence of isolation by distance in this taxon. Genetic diversity in western populations of C. douglasii suggests that gene flow is frequent, and that colonization and establishment are often successful. In contrast, local populations of C. suksdorfii are more markedly differentiated. Gene flow appears to be limited primarily by distance in diploids and by apomixis and self-compatibility in polyploids. We infer that apomixis and reproductive barriers between cytotypes are factors that reduce the frequency of gene flow among populations, and may ultimately lead to allopatric speciation in C. suksdorfii . Our findings shed light on evolution in woody plants that show heterogeneous ploidy levels and reproductive systems.  相似文献   

17.
Sivasundar A  Hey J 《Genetics》2003,163(1):147-157
Caenorhabditis elegans has become one of the most widely used model research organisms, yet we have little information on evolutionary processes and recent evolutionary history of this widespread species. We examined patterns of variation at 20 microsatellite loci in a sample of 23 natural isolates of C. elegans from various parts of the world. One-half of the loci were monomorphic among all strains, and overall genetic variation at microsatellite loci was low, relative to most other species. Some population structure was detected, but there was no association between the genetic and geographic distances among different natural isolates. Thus, despite the nearly worldwide occurrence of C. elegans, little evidence was found for local adaptation in strains derived from different parts of the world. The low levels of genetic variation within and among populations suggest that recent colonization and population expansion might have occurred. However, the patterns of variation are not consistent with population expansion. A possible explanation for the observed patterns is the action of background selection to reduce polymorphism, coupled with ongoing gene flow among populations worldwide.  相似文献   

18.
Genetic analyses contribute to studies of biological invasions by mapping the origin and dispersal patterns of invasive species occupying new territories. Using microsatellite loci, we assessed the genetic diversity and spatial population structure of mosquitofish (Gambusia holbrooki) that had invaded Spanish watersheds, along with the American locations close to the suspected potential source populations. Mosquitofish populations from the Spanish streams that were studied had similar levels of genetic diversity to the American samples; therefore, these populations did not appear to have undergone substantial losses of genetic diversity during the invasion process. Population structure analyses indicated that the Spanish populations fell into four main clusters, which were primarily associated with hydrography. Dispersal patterns indicated that local populations were highly connected upstream and downstream through active dispersal, with an average of 21.5% fish from other locations in each population. After initially introducing fish to one location in a given basin, such dispersal potential might contribute to the spread and colonization of suitable habitats throughout the entire river basin. The two-dimension isolation-by-distance pattern here obtained, indicated that the human-mediated translocation of mosquitofish among the three study basins is a regular occurrence. Overall, both phenomena, high natural dispersal and human translocation, favor gene flow among river basins and the retention of high genetic diversity, which might help retain the invasive potential of mosquitofish populations.  相似文献   

19.
Two hundred and thirty-six mitochondrial DNA nucleotide sequences were used in combination with polymorphism at four nuclear microsatellite loci to assess the amount and distribution of genetic variation within and between African savannah elephants. They were sampled from 11 localities in eastern, western and southern Africa. In the total sample, 43 haplotypes were identified and an overall nucleotide diversity of 2.0% was observed. High levels of polymorphism were also observed at the microsatellite loci both at the level of number of alleles and gene diversity. Nine to 14 alleles per locus across populations and 44 alleles in the total sample were found. The gene diversity ranged from 0.51 to 0.72 in the localities studied. An analysis of molecular variance showed significant genetic differentiation between populations within regions and also between regions. The extent of subdivision between populations at the mtDNA control region was approximately twice as high as shown by the microsatellite loci (mtDNA F(ST) = 0.59; microsatellite R(ST) = 0.31). We discuss our results in the light of Pleistocene refugia and attribute the observed pattern to population divergence in allopatry accompanied by a recent population admixture following a recent population expansion.  相似文献   

20.
The ability to assess genetic variation is critical for determining genetic diversity and population structure. In corals, slow evolutionary rates in mitochondrial genomes have left allozymes as the only markers presently available to investigate patterns of intraspecific genetic variation. Characteristics of microsatellites render them more informative than allozymes for such analyses; however, few coral microsatellites are available. This study describes polymorphic microsatellite loci isolated from two scleractinian coral species. Most loci exhibit significant heterozygote deficiencies, likely due to nonrandom mating or Wahlund effects. These markers are being used to investigate gene flow among populations, providing insight into reef connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号