首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat shock denatures cellular protein and induces both a state of acquired thermotolerance, defined as resistance to a subsequent heat shock, and the synthesis of a category of proteins referred to as heat-shock proteins (HSPs). Thermotolerance may be due to the stabilization of thermolabile proteins that would ordinarily denature during heat shock, either by HSPs or some other factors. We show by differential scanning calorimetry (DSC) that mild heat shock irreversibly denatures a small fraction of Chinese hamster lung V79-WNRE cell protein (i.e., the enthalpy change, which is proportional to denaturation, on scanning to 45 degrees C at 1 degree C/min is approximately 2.3% of the total calorimetric enthalpy). Thermostability, defined by the extent of denaturation during heat shock and determined from DSC scans of whole cells, increases as the V79 cells become thermotolerant. Cellular stabilization appears to be due to an increase in the denaturation temperature of the most thermolabile proteins; there is no increase in the denaturation temperatures of the most thermally resistant proteins, i.e., those denaturing above 65 degrees C. Cellular stabilization is also observed in the presence of glycerol, which is known to increase resistance to heat shock and to stabilize proteins in vitro. A model is presented, based on a direct relationship between the extent of hyperthermic killing and the denaturation or inactivation of a critical target that defines the rate-limiting step in killing, which predicts a transition temperature (Tm) of the critical target for control V79-WNRE cells of 46.0 degrees C and a Tm of 47.3 degrees C for thermotolerant cells. This shift of 1.3 degrees C is consistent with the degree of stabilization detected by DSC.  相似文献   

2.
Differential scanning calorimetry (DSC) was used to assay thermal transitions that might be responsible for cell death and other responses to hyperthermia or heat shock, such as induction of heat shock proteins (HSP), in whole Chinese hamster lung V79 cells. Seven distinct peaks, six of which are irreversible, with transition temperatures from 49.5 degrees C to 98.9 degrees C are detectable. These primarily represent protein denaturation with minor contributions from DNA and RNA melting. The onset temperature of denaturation, 38.7 degrees C, is shifted to higher temperatures by prior heat shock at 43 degrees and 45 degrees C, indicative of irreversible denaturation occurring at these temperatures. Thus, using DSC it is possible to demonstrate significant denaturation in a mammalian cell line at temperatures and times of exposure sufficient to induce hyperthermic damage and HSP synthesis. A model was developed based on the assumption that the rate limiting step of hyperthermic cell killing is the denaturation of a critical target. A transition temperature of 46.3 degrees C is predicted for the critical target in V79 cells. No distinct transition is detectable by DSC at this temperature, implying that the critical target comprises a small fraction of total denaturable material. The short chain alcohols methanol, ethanol, isopropanol, and t-butanol are known hyperthermic sensitizers and ethanol is an inducer of HSP synthesis. These compounds non-specifically lower the denaturation temperature of cellular protein. Glycerol, a hyperthermic protector, non-specifically raises the denaturation temperature for proteins denaturing below 60 degrees C. Thus, there is a correlation between the effect of these compounds on protein denaturation in vivo and their effect on cellular sensitivity to hyperthermia.  相似文献   

3.

1. 1.|We investigated the mechanism of cycloheximide-induced heat protection. We proposed a hypothesis to account for the mechanism [Lee and Dewey (1986) Radiat. Res. 106, 98–110].

2. 2.|Cycloheximide protects cells from hyperthermic killing by means of protecting thermolabile proteins from denaturation.

3. 3.|For this study, we have employed temperature-sensitive mutant tsH1 which contains a thermolabile leucyl-tRNA synthetase.

4. 4.|By 15 h of incubation at the nonpermissive temperature of 39.5 or 40°C, 40 or 93% of mutant cells respectively, were killed. In contrast, wild type SC cells did not lose viability after this same incubation.

5. 5.|Although killing of tsH1 by incubation at the nonpermissive temperatures was mainly due to denaturation of a thermolabile leucyl-tRNA synthetase, cycloheximide did not protect mutant cells from killing. However, tsH1 and SC cells exhibited similar sensitivities to killing at 43°C and above. Furthermore, cycloheximide protected both cell types from hyperthermic killing.

6. 6.|There was a 200- or 700-fold increase in survival after 2.5 h at 43°C by treatment with cycloheximide in tsH1 or SC cell type, respectively. Thus, the cellular target(s) for hyperthermic killing at this temperature apparently are similar in both types of cells.

7. 7.|The data indicate that the mechanism behind cycloheximide-induced heat protection is probably not the prevention of protein denaturation.

Author Keywords: Cycloheximide; temperature-sensitive mutant; hyperthermic killing  相似文献   


4.
Hyperthermia increases levels of nuclear-associated proteins in a manner that correlates with cell killing. If the increase in nuclear-associated proteins represents a lethal lesion then treatments that protect against killing by heat should reduce and/or facilitate the recovery of levels of the proteins in heated cells. This hypothesis was tested using three heat protection treatments: cycloheximide, D2O, and thermotolerance. All three treatments reduced levels of the proteins measured immediately following hyperthermia at 43.0 or 45.5 degrees C, with the greatest reduction occurring at 43.0 degrees C. In addition to reducing the proteins, thermotolerance facilitated the recovery of the proteins to control levels following hyperthermia. Thus thermotolerance may protect cells by both reducing the initial heat damage and facilitating recovery from that damage. Cycloheximide and D2O did not facilitate recovery of nuclear-associated proteins, suggesting that their protection against cytotoxicity related to the proteins resulted solely from their reduction of increases in levels of the proteins. All three treatments have been shown to stabilize cellular proteins against thermal denaturation. The results of this study suggest that the increase in nuclear-associated proteins may result from thermally denatured proteins adhering to the nucleus and that it is the ability of cycloheximide, D2O, and thermotolerance to thermostabilize proteins that reduces the increase in levels of the proteins within heated cells.  相似文献   

5.
《The Journal of cell biology》1993,122(6):1267-1276
There is circumstantial evidence that protein denaturation occurs in cells during heat shock at hyperthermic temperatures and that denatured or damaged protein is the primary inducer of the heat shock response. However, there is no direct evidence regarding the extent of denaturation of normal cellular proteins during heat shock. Differential scanning calorimetry (DSC) is the most direct method of monitoring protein denaturation or unfolding. Due to the fundamental parameter measured, heat flow, DSC can be used to detect and quantitate endothermic transitions in complex structures such as isolated organelles and even intact cells. DSC profiles with common features are obtained for isolated rat hepatocytes, liver homogenate, and Chinese hamster lung V79 fibroblasts. Five main transitions (A-E), several of which are resolvable into subcomponents, are observed with transition temperatures (Tm) of 45-98 degrees C. The onset temperature is approximately 40 degrees C, but some transitions may extend as low as 37-38 degrees C. In addition to acting as the primary signal for heat shock protein synthesis, the inactivation of critical proteins may lead to cell death. Critical target analysis implies that the rate limiting step of cell killing for V79 cells is the inactivation of a protein with Tm = 46 degrees C within the A transition. Isolated microsomal membranes, mitochondria, nuclei, and a cytosolic fraction from rat liver have distinct DSC profiles that contribute to different peaks in the profile for intact hepatocytes. Thus, the DSC profiles for intact cells appears to be the sum of the profiles of all subcellular organelles and components. The presence of endothermic transitions in the isolated organelles is strong evidence that they are due to protein denaturation. Each isolated organelle has an onset for denaturation near 40 degrees C and contains thermolabile proteins denaturing at the predicted Tm (46 degrees C) for the critical target. The extent of denaturation at any temperature can be approximately by the fractional calorimetric enthalpy. After scanning to 45 degrees C at 1 degree C/min and immediately cooling, a relatively mild heat shock, an estimated fraction denaturation of 4-7% is found in hepatocytes, V79 cells, and the isolated organelles other than nuclei, which undergo only 1% denaturation because of the high thermostability of chromatin. Thus, thermolabile proteins appear to be present in all cellular organelles and components, and protein denaturation is widespread and extensive after even mild heat shock.  相似文献   

6.
A single hyperthermic exposure can render cells transiently resistant to subsequent high temperature stresses. Treatment of rat embryonic fibroblasts with cycloheximide for 6 h after a 20-min interval at 45 degrees C inhibits protein synthesis, including heat shock protein (hsp) synthesis, and results in an accumulation of hsp 70 mRNA, but has no effect on subsequent survival responses to 45 degrees C hyperthermia. hsp 70 mRNA levels decreased within 1 h after removal of cycloheximide but then appeared to stabilize during the next 2 h (3 h after drug removal and 9 h after heat shock). hsp 70 mRNA accumulation could be further increased by a second heat shock at 45 degrees C for 20 min 6 h after the first hyperthermic exposure in cycloheximide-treated cells. Both normal protein and hsp synthesis appeared increased during the 6-h interval after hyperthermia in cultures which received two exposures to 45 degrees C for 20 min compared with those which received only one treatment. No increased hsp synthesis was observed in cultures treated with cycloheximide, even though hsp 70 mRNA levels appeared elevated. These data indicate that, although heat shock induces the accumulation of hsp 70 mRNA in both normal and thermotolerant cells, neither general protein synthesis nor hsp synthesis is required during the interval between two hyperthermic stresses for Rat-1 cells to express either thermotolerance (survival resistance) or resistance to heat shock-induced inhibition of protein synthesis.  相似文献   

7.
Previous studies suggested that a 26 kDa protein might play an important role in protein synthesis-independent thermotolerance development in CHO cells. To determine if this phenomenon was universal, four mammalian cell lines, viz., CHO, HA-1, murine Swiss 3T3, and human HeLa, were studied. Cells were heated at 42 degrees C, and the level of 26 kDa protein in the nucleus was measured, together with clonogenic survival and protein synthesis. The results demonstrated that 1) the 26-kDa protein was present in the four different cell lines, and 2) the level of the 26 kDa protein in their nuclei was decreased by 30-70% after heating at 42 degrees C for 1 hr. However, restoration of this protein occurred along with development of chronic thermotolerance. The protein synthesis inhibitor cycloheximide (10 micrograms/ml) neither inhibited the development of chronic thermotolerance nor affected the restoration of the 26 kDa protein in the nucleus. In fact, this drug protected cells from hyperthermic killing and heat-induced reduction of 26 kDa protein in the nucleus. Heat sensitizers, quercetin (0.1 mM), 3,3'-dipentyloxacarbocyanine iodide (DiOC5[3]: 5 micrograms/ml), and stepdown heating (45 degrees C-10 min----42 degrees C), potentiated hyperthermic killing and inhibited or delayed the restoration of the 26 kDa protein to the nucleus. These results support a correlated, perhaps causal relationship between the restoration of the 26 kDa protein and chronic thermotolerance development in four different mammalian cell lines.  相似文献   

8.
A whole-cell assay technique for DNA polymerase alpha and beta was used to measure the activities of both enzymes in Chinese hamster ovary cells after hyperthermic treatment at 43 degrees C in the presence or absence of 10 micrograms/ml cycloheximide (CHM). In the same experiments, the effect of CHM on heat killing and heat radiosensitization was also investigated. CHM treatment before and during heating protected the cells for all three end points, i.e., heat-induced cell killing, radiosensitization, and loss of cellular DNA polymerase activities.  相似文献   

9.
Osmolytes stabilize proteins to thermal and chemical denaturation. We have studied the effects of the osmolytes sarcosine, betaine, trimethylamine-N-oxide, and taurine on the structure and stability of the protein.peptide complex RNase S using x-ray crystallography and titration calorimetry, respectively. The largest degree of stabilization is achieved with 6 m sarcosine, which increases the denaturation temperatures of RNase S and S pro by 24.6 and 17.4 degrees C, respectively, at pH 5 and protects both proteins against tryptic cleavage. Four crystal structures of RNase S in the presence of different osmolytes do not offer any evidence for osmolyte binding to the folded state of the protein or any perturbation in the water structure surrounding the protein. The degree of stabilization in 6 m sarcosine increases with temperature, ranging from -0.52 kcal mol(-1) at 20 degrees C to -5.4 kcal mol(-1) at 60 degrees C. The data support the thesis that osmolytes that stabilize proteins, do so by perturbing unfolded states, which change conformation to a compact, folding competent state in the presence of osmolyte. The increased stabilization thus results from a decrease in conformational entropy of the unfolded state.  相似文献   

10.
The amino acid pools in Chinese hamster lung V79 cells were measured as a function of time during hyperthermic exposure at 40.5 degrees and 45.0 degrees C. Sixteen of the 20 protein amino acids were present in sufficient quantity to measure accurately. The total amino acid pool and all individual amino acids, except glutamine, remained relatively constant for at least 90 min at 40.5 degrees C and for 30 min at 45 degrees C. The glutamine pool decreased rapidly to 20% of its control value within 30 min at 40.5 degrees C with a T1/2 = 15 min. At 45 degrees C, the decrease was 36%. Thermotolerance developed at 40.5 degrees C with a T1/2 = 30 min; thus, glutamine depletion preceeds the development of thermotolerance. The depletion of glutamine is probably due to increased metabolism and oxidation of glutamine through the TCA cycle at hyperthermic temperatures. Glutamine, as is true for other amino acids, was shown to protect proteins from thermal inactivation and V79 cells from hyperthermic killing when added in excess (4-10 mM) to the medium during heat stress. However, the stability of the total amino acid pool during the development of thermotolerance indicates that resistance to heat does not result from the accumulation of amino acids which then protect against thermal damage. The effects of the large decrease in the glutamine pool are unknown, although glutamine depletion may act as a signal for part of the heat shock response.  相似文献   

11.
In this study we investigated the effect of heat on the proteins of the particulate fraction (PF) of HeLa S3 cells using electron spin resonance (ESR) and thermal gel analysis (TGA). ESR detects overall conformational changes in proteins, while TGA detects denaturation (aggregation due to formation of disulfide bonds) in specific proteins. For ESR measurements the -SH groups of the proteins were labelled with a maleimido bound spin label (4-maleimido-tempo). The sample was heated inside the ESR spectrometer at a rate of 1 degree C/min. ESR spectra were made every 2-3 degrees C between 20 degrees C and 70 degrees C. In the PF of untreated cells conformational changes in proteins were observed in three temperature stretches: between 38 and 44 degrees C (transition A, TA); between 47 and 53 degrees C (transition B, TB); and above 58 degrees C (transition C, TC). With TGA, using the same heating rate, we identified three proteins (55, 70, and 90 kD) which denatured during TB. No protein denaturation was observed during TA, while during TC denaturation of all remaining proteins in the PF occurred. When the ESR and TGA measurements were done with the PF of (heat-induced) thermotolerant cells, TA was unchanged while TB and TC started at higher temperatures. The temperature shift for the onset of these transitions correlated with the degree of thermotolerance that was induced in the cells. These results suggest that protection against heat-induced denaturation of proteins in the PF is involved in heat induced thermotolerance.  相似文献   

12.
Chinese hamster ovary (CHO) cells were exposed to a 43 degrees C, 15-min heat shock to study the relationship between protein synthesis and the development of thermotolerance. The 43 degrees C heat shock triggered the synthesis of three protein families having molecular weights of 110,000, 90,000, and 65,000 (HSP). These proteins were synthesized at 37 and 46 degrees C. This heat shock also induced the development of thermotolerance, which was measured by incubating the cells at 46 degrees C 4 h after the 43 degrees C heat treatment. CHO cells were also exposed to 20 micrograms/ml of cycloheximide for 30 min at 37 degrees C, 15 min at 43 degrees C, and 4 h at 37 degrees C. This treatment inhibited the enhanced synthesis of the Mr 110,000, 90,000, and 65,000 proteins. The cycloheximide was then washed out and the cells were incubated at 46 degrees C. HSP synthesis did not recover during the 46 degrees C incubation. This cycloheximide treatment also partially inhibited the development of thermotolerance. These results suggest that for CHO cells to express thermotolerance when exposed to the supralethal temperature of 46 degrees C protein synthesis is necessary.  相似文献   

13.
We have recently concluded from the heat-induced denaturation studies that polyols do not affect deltaG(D) degrees (the Gibbs free energy change (deltaG(D)) at 25 degrees C) of ribonuclease-A and lysozyme at physiological pH and temperature, and their stabilizing effect increases with decrease in pH. Since the estimation of deltaG(D) degrees of proteins from heat-induced denaturation curves requires a large extrapolation, the reliability of this procedure for the estimation of deltaG(D) degrees is always questionable, and so are conclusions drawn from such studies. This led us to measure deltaG(D) degrees of ribonuclease-A and lysozyme using a more accurate method, i.e., from their isothermal (25 degrees C) guanidinium chloride (GdmCl)-induced denaturations. We show that our earlier conclusions drawn from heat-induced denaturation studies are correct. Since the extent of unfolding of heat- and GdmCl-induced denatured states of these proteins is not identical, the extent of stabilization of the proteins by polyols against heat and GdmCl denaturations may also differ. We report that in spite of the differences in the structural nature of the heat- and GdmCl-denatured states of each protein, the extent of stabilization by a polyol is same. We also report that the functional dependence of deltaG(D) of proteins in the presence of polyols on denaturant concentration is linear through the full denaturant concentration range. Furthermore, polyols do not affect the secondary and tertiary structures of the native and GdmCl-denatured states.  相似文献   

14.
15.
The induction of thermotolerance was studied in a temperature sensitive mouse cell line, ts85, and results were compared with those for the wild-type FM3A cells. At the nonpermissive temperature of 39 degrees C, ts85 cells are defective in the degradation of short-lived abnormal proteins, apparently because of loss of activity of a ubiquitin-activating enzyme. The failure of the ts85 cells to develop thermotolerance to 41-43 degrees C after incubation at the nonpermissive temperature of 39 degrees C correlated with the failure of the cells to degrade short-lived abnormal proteins at 39 degrees C. However, the failure of the ts85 cells to develop thermotolerance to 43 degrees C during incubation at 33 degrees C after either arsenite treatment or heating at 45.5 degrees C for 6 or 10 min did not correlate with protein degradation rates. Although the rate of degrading abnormal protein was reduced after heating at 45.5 degrees C for 10 min, the rates were normal after arsenite treatment or heating at 45.5 degrees C for 6 min. In addition, when protein synthesis was inhibited with cycloheximide both during incubation at 33 degrees C or 39 degrees C and during heating at 41-43 degrees C, resistance to heating was observed, but protein degradation rates at 39 degrees C or 43 degrees C were not altered by the cycloheximide treatment. Therefore, there is apparently no consistent relationship between rates of degrading abnormal proteins and the ability of cells to develop thermotolerance and resistance to heating in the presence of cycloheximide.  相似文献   

16.
Thermal stabilization resulting from protein . protein association between two protein inhibitors (coded as 0.19, a dimer, and 0.28, a monomer) from wheat flour and the alpha-amylase from Tenebrio molitor L. (yellow mealworm) larvae was investigated by differential scanning calorimetry (heating rate 10 degrees C/min). Thermograms (plots of heat flow vs. temperature) for the two inhibitors showed broad endothermic peaks with the same extrema (denaturation temperatures) at 93 degrees C, and equal, small enthalpies of denaturation (2 cal/g). The amylase produced a sharp endotherm at 70.5 degrees C, but a larger enthalpy change on denaturation (6 cal/g). The amylase . inhibitor complexes differed in thermal stability, but both showed significant stabilization relative to free enzyme. The complex formed with monomeric inhibitor 0.28 showed a higher denaturation temperature (85.0 degrees C) than that formed with dimeric inhibitor 0.19 (80.5 degrees C). This order of stabilization agrees with the relative affinities of the inhibitors for the amylase. These thermograms are consistent with previous results which indicated that 1 mol of amylase binds 1 mol of inhibitor 0.19.  相似文献   

17.
An overall increase of 40% in nuclear-associated protein has been shown to be one of the sequellae of exposure of eukaryotic cells to elevated temperatures. Several investigators have shown that the increased protein/DNA ratios correlated well with the degree of cytotoxicity. In previous investigations, we have shown that cycloheximide, which protects the cell from the killing effects of heat, produces a dramatic reduction of the bulk nuclear-associated proteins after heating. In this investigation, we studied a previously unobserved efflux of a 26 kDa protein after heat shock and the preferential accumulation of the 70 kDa protein. The 26 kDa protein was shown not to be a member of previously described heat shock protein families. Preferential reduction of a 26 kDa protein and accumulation of a 70 kDa protein was observed in nuclei isolated from Chinese hamster ovary cells after heating at 43 degrees C. After heat treatment, the 26 kDa protein in the nucleus was decreased to a level 0.1-0.3 times the original amount in unheated cells, and the 70 kDa protein in the nucleus increased by a factor of 1.6-1.8. The normal levels of these two proteins were restored when cells were incubated at 37 degrees C following heat shock. Cells treated with heat protectors, cycloheximide and histidinol, demonstrated approximately the same redistribution in nuclear 26 and 70 kDa proteins immediately after heating as those not exposed to these drugs. On the other hand, restoration to control levels was much faster in the protector-treated cells, suggesting that "repair" of heat-induced damage is an important factor in the cells ability to survive this insult. Return to normal protein levels did not require new protein synthesis.  相似文献   

18.
Topological linking of proteins is a new approach for stabilizing and controlling the oligomerization state of proteins that fold in an interwined manner. The recent design of a backbone cyclized protein catenane based on the p53tet domain suggested that topological cross-linking provided increased stability against thermal and chemical denaturation. However, the tetrameric structure complicated detailed biophysical analysis of this protein. Here, we describe the design, synthesis and thermodynamic characterization of a protein catenane based on a dimeric mutant of the p53tet domain (M340E/L344K). The formation of the catenane proceeded efficiently, and the overall structure and oligomerization of the domain was not affected by the formation of the topological link. Unfolding and refolding of the catenane was consistent with a two-state process. The topological link stabilized the dimer against thermal and chemical denaturation considerably, raising the apparent melting temperature by 59 degrees C and the midpoint of denaturation by 4.5M GuHCl at a concentration of 50 microM. The formation of the topological link increased the resistance of the dimer to proteolysis. However, the m value decreased by 1.7kcalmol(-1)M(-1), suggesting a decrease in accessible surface area in the unfolded state. This implies that the stabilization from the topological link is largely due to a destabilization of the unfolded state, similar to other cross-links in proteins. Topological linking therefore provides a powerful and orthogonal tool for the stabilization of peptide and protein oligomers.  相似文献   

19.
The purpose of this study was to investigate a possible involvement of poly(ADP-ribosyl)ation reactions in hyperthermic cell killing and hyperthermic DNA strand-break induction and repair in HeLa S3 cells. The inhibitors of poly(ADP-ribose) polymerase, 3-aminobenzamide (3AB) and 4-aminobenzamide (4AB), were used as tools in this study. Both inhibitors could sensitize the cells for hyperthermic cell killing equally well, although 3AB is known to be a more effective enzyme inhibitor. The heat sensitization at the level of cell killing could be reversed when the compounds were still present during a 4-h postincubation at 37 degrees C. More heat-induced DNA strand breaks were formed in the presence of 3AB and 4AB. Repair of strand breaks was inhibited during the postincubation at 37 degrees C. Thus the effect of 3AB and 4AB on DNA strand-break repair was different from the cited effect on cell survival. It is concluded that the sensitizing effect of 3AB and 4AB on hyperthermic cell killing is not caused by inhibition of poly(ADP-ribose) polymerase and is also not related to repair of DNA strand breaks.  相似文献   

20.
1. Oxidative stress by phenazine methosulfate stimulated proteolysis in erythrocytes. 2. Gamma-irradiation of erythrocytes in the range of 50-1000 Gy also resulted in the induction of proteolysis. 3. Though it has been suggested that hyperthermia imposes an oxidative stress on a cell, hyperthermic exposure of erythrocytes (30 min, 39-49 degrees C) did not stimulate proteolysis during subsequent incubation of whole cells or hemolysates. 4. Proteolytic degradation of spectrin was accelerated during incubation of membranes isolated from cells heated above 45 degrees C but this effect seems to be due rather to thermal denaturation of spectrin than to oxidative modification of cellular proteins by hyperthermia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号