首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
We have determined the relative steady state concentration of the two Crithidia fasciculata guide (g)RNAs involved in editing the two domains of mRNAs for NADH dehydrogenase (ND) subunit 7. We found that, although there was an 8-fold difference between the molar ratio of these two gRNAs relative to the (pre)-mRNA, the two domains are edited with a very similar frequency (around 50%). Also, for the editing of a given domain, many gRNA species exist with the same 5' end but with a different 3' uridylation site. Approximately 20% of these short gRNAs do not contain the information required for editing a complete domain, which may explain the high incidence of partially edited RNAs. Remarkably, genomically encoded Us are missing from two sites of a few of the gRNAs involved in editing apocytochrome b RNA. We speculate that these species are created by editing-like events. Both the short and complete forms of the ND7 gRNAs are found in chimeric molecules, in which the gRNA is covalently linked via its 3'-terminus to an editing site of pre-edited ND7 RNA. Some features of the chimeric molecules are at odds with current models of RNA editing: (i) U residues are completely absent from the connecting sequence of a number of these molecules, (ii) the ND7 gRNAs are frequently hooked up to the wrong editing domain of ND7 RNA, although other gRNAs are not found at these positions and (iii) in some chimeric molecules the gRNA appears to be linked to the 5' end of pre-edited RNA.  相似文献   

8.
9.
10.
11.
12.
TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5′ ends of pan-edited RNAs than at their 3′ ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3′ to 5′ progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3′ ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA–RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3′ to 5′ progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs.  相似文献   

13.
14.
15.
16.
17.
B Blum  N Bakalara  L Simpson 《Cell》1990,60(2):189-198
A class of small RNA molecules possibly involved in RNA editing is present in the mitochondrion of Leishmania tarentolae. These "guide" RNA (gRNA) molecules are encoded in intergenic regions of the mitochondrial maxicircle DNA and contain sequences that represent precise complementary versions of the mature mRNAs within the edited regions. In addition, the 5' portions of several gRNAs can form hybrids with mRNAs just 3' of the preedited region. A model is presented in which a partial hybrid formed between the gRNA and preedited mRNA is substrate for multiple cycles of cleavage, addition or deletion of uridylates, and religation, eventually resulting in a complete hybrid between the gRNA and the mature edited mRNA.  相似文献   

18.
Organization of minicircle genes for guide RNAs in Trypanosoma brucei   总被引:23,自引:0,他引:23  
  相似文献   

19.
20.
Guide RNAs (gRNAs) are small RNAs that provide specificity for uridine addition and deletion during mRNA editing in trypanosomes. Terminal uridylyl transferase (TUTase) adds uridines to pre-mRNAs during RNA editing and adds a poly(U) tail to the 3' end of gRNAs. The poly(U) tail may stabilize the association of gRNAs with cognate mRNA during editing. Both TUTase and gRNAs associate with two ribonucleoprotein complexes, I (19S) and II (35S to 40S). Complex II is believed to be the fully assembled active editing complex, since it contains pre-edited mRNA and enzymes thought necessary for editing. Purification of TUTase from mitochondrial extracts resulted in the identification of two chromatographically distinct TUTase activities. Stable single-uridine addition to different substrate RNAs is performed by the 19S complex, despite the presence of a uridine-specific 3' exonuclease within this complex. Multiple uridines are added to substrate RNAs by a 10S particle that may be an unstable subunit of complex I lacking the uridine-specific 3' exonuclease. Multiple uridines could be stably added onto gRNAs by complex I when the cognate mRNA is present. We propose a model in which the purine-rich region of the cognate mRNA protects the uridine tail from a uridine exonuclease activity that is present within the complex. To test this model, we have mutated the purine-rich region of the pre-mRNA to abolish base-pairing interaction with the poly(U) tail of the gRNA. This RNA fails to protect the uridine tail of the gRNA from exoribonucleolytic trimming and is consistent with a role for the purine-rich region of the mRNA in gRNA maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号