首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fei Du  Haiyun Ren 《Protoplasma》2011,248(2):239-250
The actin cytoskeleton is one of the most important components of eukaryotic cytoskeletons. It participates in numerous crucial procedures of cells and has been studied by using various methods. The development and application of appropriate probes for actin visualization is the first and foremost step for functional analysis of actin in vivo. Since the actin cytoskeleton is a highly dynamic and sensitive structure, methods previously used to visualize actin often harm cells and cannot reveal the native state of the actin cytoskeleton in living cells. The development of labeling technologies for living plant cells, especially the emergence and application of green fluorescent protein-tagged actin markers, has provided new insights into the structure and function of the actin cytoskeleton in vivo. There has been a number of probes for actin labeling in living plant cells though they each present different advantages and defects. In this review, we discuss and compare those widely used methods for actin visualization and analysis.  相似文献   

2.
Cysteine-rich protein 1 (CRP1) has a unique structure with two well separated LIM domains, each followed by a glycine-rich region. Although CRP1 has been shown to interact with actin-binding proteins and actin filaments, the mechanism regulating localization to the actin cytoskeleton in cells is not clear. Experiments using truncated forms showed that the first LIM domain and glycine-rich region are necessary for CRP1 bundling of actin filaments and localization to the actin cytoskeleton. Furthermore, domain swapping experiments replacing the first glycine-rich region with the second resulted in the loss of CRP1 bundling activity and localization to the actin cytoskeleton, identifying seven critical amino acid residues. These results highlight the importance of the first glycine-rich region for CRP1 bundling activity and localization to the actin cytoskeleton. In addition, this work identifies the first LIM domain and glycine-rich region as a distinct actin filament bundling module.  相似文献   

3.
The role of the actin cytoskeleton during receptor-mediated endocytosis (RME) has been well characterized in yeast for many years. Only more recently has the interplay between the actin cytoskeleton and RME been extensively explored in mammalian cells. These studies have revealed the central roles of BAR proteins in RME, and have demonstrated significant roles of BAR proteins in linking the actin cytoskeleton to this cellular process. The actin cytoskeleton generates and transmits mechanical force to promote the extension of receptor-bound endocytic vesicles into the cell. Many adaptor proteins link and regulate the actin cytoskeleton at the sites of endocytosis. This review will cover key effectors, adaptors and signalling molecules that help to facilitate the invagination of the cell membrane during receptor-mediated endocytosis, including recent insights gained on the roles of BAR proteins. The final part of this review will explore associations of alterations to genes encoding BAR proteins with cancer.  相似文献   

4.
Epidermal growth factor (EGF) induces changes in cell morphology, actin cytoskeleton, and adhesion processes in cultured infantile pituitary cells. The extracellular matrix, through integrin engagement, collaborates with growth factors in cell signaling. We have examined the participation of collagen I/III and collagen plus fibronectin in the EGF response of infantile pituitary cells with respect to their cell morphology and actin cytoskeleton. As a comparison, we have used poly-lysine as a substrate. Infantile cells elicit the EGF response when they are associated with extracellular matrix proteins, but no response can be obtained with poly-lysine as the substrate. Cells acquire a flattened shape and organize their actin filaments and vinculin as in focal adhesions. Because the EGF receptor (EGFR) is linked to the actin cytoskeleton in other cells structuring a microdomain in cell signaling, we have investigated this association and substrate adhesion participation in infantile pituitary cells. The proportion of EGFR associated with the actin cytoskeleton is approximately 31%; no difference has been observed between the substrates used. Cells in suspension show actin-associated EGFR, suggesting an association independent of cell adhesion. However, no colocalization of EGFRs with actin fibers has been observed, suggesting an indirect association. Compared with β1-integrin, which is linked to actin fibers through structural proteins, EGFR binds more strongly with the actin cytoskeleton. This study thus shows cell adhesion dependence on the EGF effect in the actin cytoskeleton arrangement; this is probably favored by the actin fiber/EGFR association that facilitates the cell signaling pathways for actin cytoskeleton organization in infantile pituitary cells.This work was supported by the National Council of Science and Technology of México (grant 44619, and a fellowship to C.T.).  相似文献   

5.
The human immunodeficiency virus (HIV) protein Nef has been shown to increase the infectivity of HIV at an early point during infection. Since Nef is known to interact with proteins involved in actin cytoskeleton rearrangements, we tested the possibility that Nef may enhance HIV infectivity via a mechanism that involves the actin cytoskeleton. We find that disruption of the actin cytoskeleton complements the Nef infectivity defect. The ability of disruption of the actin cytoskeleton to complement the Nef defect was specific to envelopes that fuse at the cell surface, including a variety of HIV envelopes and the murine leukemia virus amphotropic envelope. In contrast, the infectivity of HIV virions pseudotyped to enter cells via endocytosis, which is known to complement the HIV Nef infectivity defect and can naturally penetrate the cortical actin barrier, was not altered by actin cytoskeleton disruption. The results presented here suggest that Nef functions to allow the HIV genome to penetrate the cortical actin network, a known barrier for intracellular parasitic organisms.  相似文献   

6.
Płachno BJ  Swiątek P 《Protoplasma》2012,249(3):663-670
The actin cytoskeleton in the mature female gametophyte of angiosperms has been examined in only a few dicot and monocot species. The main purposes of this study were to identify how the actin cytoskeleton is arranged in the mature extra-ovular embryo sac in Utricularia nelumbifolia (Lentibulariaceae). We found that the extra-ovular part of the central cell has a well-developed actin cytoskeleton: actin microfilaments formed of long strands which run longitudinally or transversally to the long axis of the embryo sac. The exerted part of the central cell, which is exposed to the environment of the ovary chamber, is highly vacuolated and in the thin peripheral cytoplasm possesses a complicated network of actin microfilaments. The epidermal cells of the placenta that are in contact with the extra-ovular part of the embryo sac are crushed. The ultrastructure data of these cells are presented. We detected the accumulation of the actin cytoskeleton between the micropylar parts of the synergids and the extra-ovular part of central cell. This actin accumulation is unusual because in typical angiosperms the micropylar parts of the synergids form the apex of the female gametophyte.  相似文献   

7.
Ultrastructural distribution of actin in dendrites, dendritic spines and presynaptic boutons of the hippocampal area CA3 of the guinea pig was investigated using decoration and immunocytochemical methods. The distribution of actin was non-homogeneous in all the parts of neurons. The highest concentration of this contractile protein was revealed in the spine cytoplasm. Here actin forms a dense cytoskeleton meshwork and is present also in postsynaptic densities. An intimate interaction between the spine actin cytoskeleton and the postsynaptic actin densities has been revealed. This feature may indicate the involvement of actin cytoskeleton in the organization and maintenance of dimensions, location and geometry of active zones.  相似文献   

8.
Reactive oxygen species (ROS) disrupt the barrier function of airway epithelial cells through a mechanism that appears to involve remodeling of the actin cytoskeleton. Similarly, keratinocyte growth factor (KGF) has been shown to protect against ROS-induced loss of barrier function through a mechanism that may also involve the actin cytoskeleton. To further determine the role of the actin cytoskeleton in ROS-induced barrier injury, we quantified the relative amount of total actin associated with the cytoskeleton following exposure to hydrogen peroxide (H(2)O(2)) and pretreatment with KGF. We also determined the role of the actin-myosin contractile mechanism in the process by quantifying the relative amount of myosin heavy chain (MHC) associated with the cytoskeleton. While the transepithelial resistance (TER) of a monolayer of airway epithelial cells (Calu-3) decreased after 2 h of continuous exposure to 0.5 mM H(2)O(2), actin and MHC, both dissociated from the cytoskeleton within 15 min of H(2)O(2) exposure. The TER of the monolayers remained depressed although both actin and myosin returned to the cytoskeleton by 4 h after the initiation of H(2)O(2) exposure. Filamentous actin (f-actin) staining suggested that the re-associating actin took the form of short fibers associated with cortical actin rather than long stress fibers. Furthermore, pretreatment with KGF prevented the loss of actin and MHC from the actin cytoskeleton but did not prevent the decrease in TER. These studies suggest that actin disassembly from the cytoskeleton is important in the loss of barrier function, but that it is not the overall amount of actin that is associated with the cytoskeleton that is important, rather it is the contribution this actin makes to the architectural cohesiveness of the cell that contributes to the barrier function.  相似文献   

9.
Toxoplasma gondii infects cells through dynamic events dependent on actin. Although the presence of cortical actin has been widely suggested, visualisation and localisation of actin filaments has not been reported. The subpellicular cytoskeleton network is a recently described structure possibly involved in the dynamic events. Using non-ionic detergent extractions, the cortical cytoskeleton network was enriched and used for the isolation and identification of actin. Actin was detected by Western blots in extracts of cytoskeleton networks, and it was localised by gold staining in the network and in both the apical end and the posterior polar ring. Actin was isolated from subpellicular cytoskeleton extracts by binding to DNase I, and it polymerised in vitro as filaments that were gold-decorated by a monoclonal anti-actin antibody. Filaments bound the subfragment 1 of heavy meromyosin, although with atypical arrangements in comparison with the arrowheads observed in muscle actin filaments. Treatment with cytochalasin D and colchicine altered the structural organisation of the subpellicular network indicating the participation of actin filaments and microtubules in the maintenance of its structure. Actin filaments and microtubules, in the subpellicular network, participate reciprocally in the maintaining of the parasite's shape and the gliding motility.  相似文献   

10.
Endocytosis is an essential process for normal function of all living cells. Cells get nutrients, and control the surface-expressional level of proteins as well as membrane hemostats through the endocytosis. Endocytosis process is regulated in response to functional status of a particular cell. Signaling events and the endocytosis process go hand in hand to fulfill cellular functions. Although our understanding of the endocytosis process has grown rapidly during the last decade, little is known about how it is interconnected functionally with the signaling status of cells. During endocytosis, vesicles are formed from the plasma membrane through complex molecular machinery. The location where the vesicles are formed is rich in cortical actin cytoskeleton that supports the plasma membrane. To enter cells, vesicles have to diffuse through the cortical actin cytoskeleton. The actin cytoskeleton has a very dynamic structure and actively participates a wide variety of cellular functions. In addition to its central role in cytokinesis, cell shape, cell motility, and cell polarity, a connection between the endocytosis process and the actin cytoskeleton has been implicated in both yeast and mammalian system. In recent years the knowledge on how the actin cytoskeleton participates in the generation of coordinated cellular responses to external stimuli is grown rapidly. In this review, we focus on the potential roles of the actin cytoskeleton in regulating the endocytosis process in response to signaling events.  相似文献   

11.
Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.  相似文献   

12.
A methanol extract of Alsomitra macrocarpa leaves and branches induced a marked alteration of cell morphology in a human stellate cell line (LX-2). Similar morphologic alterations were observed in several other cell lines. Active compound was purified from the extract and determined to be cucurbitacin E (Cuc E). It has been known that Cuc E causes marked disruption of the actin cytoskeleton, supporting our observation, but how Cuc E altered the actin cytoskeleton has not been elucidated. By using the standard fluorescence assay using copolymerization and depolymerization of native and pyrene labelled actin, this study revealed that Cuc E interacted directly with actin consequently stabilizing the polymerized actin. When NIH-3T3 cells exogenously expressing YFP-labeled actin were treated with Cuc E, firstly the aggregation of globular actin and secondly the aggregation of actin including disrupted fibrous actin in the cells was observed.  相似文献   

13.
The actin cytoskeleton is involved in a multitude of cellular responses besides providing structural support. While the role of the actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, reorganization of the actin cytoskeleton upon signaling by G-protein coupled receptors (GPCRs) represents a relatively unexplored area. The G-protein coupled receptor superfamily is an important protein family in mammals, involved in signal transduction across membranes. G-protein coupled receptors act as major signaling hubs and drug targets. The serotonin(1A) receptor is a representative member of the G-protein coupled receptor superfamily and plays a crucial role in the generation and modulation of various cognitive, developmental and behavioral functions. In order to monitor the changes in the actin cytoskeleton upon serotonin(1A) receptor signaling in a quantitative manner, we developed an approach based on high magnification imaging of F-actin in cells, followed by image reconstruction. Our results suggest that the actin cytoskeleton is reorganized in response to serotonin(1A) receptor signaling. In addition, we show that reorganization of the actin cytoskeleton is strongly dependent on adenosine 3',5'-cyclic monophosphate level, and is mediated by the activation of protein kinase A. Our results are consistent with the possibility of a feedback mechanism involving the actin cytoskeleton, adenosine 3',5'-cyclic monophosphate level and the serotonin(1A) receptor.  相似文献   

14.
The mechanical behavior of the actin cytoskeleton has previously been investigated using both experimental and computational techniques. However, these investigations have not elucidated the role the cytoskeleton plays in the compression resistance of cells. The present study combines experimental compression techniques with active modeling of the cell’s actin cytoskeleton. A modified atomic force microscope is used to perform whole cell compression of osteoblasts. Compression tests are also performed on cells following the inhibition of the cell actin cytoskeleton using cytochalasin-D. An active bio-chemo-mechanical model is employed to predict the active remodeling of the actin cytoskeleton. The model incorporates the myosin driven contractility of stress fibers via a muscle-like constitutive law. The passive mechanical properties, in parallel with active stress fiber contractility parameters, are determined for osteoblasts. Simulations reveal that the computational framework is capable of predicting changes in cell morphology and increased resistance to cell compression due to the contractility of the actin cytoskeleton. It is demonstrated that osteoblasts are highly contractile and that significant changes to the cell and nucleus geometries occur when stress fiber contractility is removed.  相似文献   

15.
16.
The presence of an actin-binding protein, tropomyosin, in particles or protein complexes not bound with actin structures were found during an assay of structural rearrangements of actin cytoskeleton. To study the composition and properties of these protein complexes, a novel method of their isolation without destroying cytoskeleton structures has been elaborated. The protein composition of isolated tropomyosin particles was assessed by gel filtration, electrophoresis, and Western blotting. It was demonstrated that they are about 700-kDa multimolecular complexes. In addition to tropomyosin and actin, these complexes contained Hsp70, Hsp90, and myosin-9 identified by mass spectrometry. It was found that the deacetylase inhibitor, trichostatin A, which induced actin cytoskeleton rearrangements, changed the number of tropomyosin particles and caused redistribution of tropomyosin between cytosol and cytoskeleton. These results demonstrate that these multimolecular complexes may participate in the process of reorganization of actin microfilaments.  相似文献   

17.
Kotula L 《FEBS letters》2012,586(17):2790-2794
Coordination of actin cytoskeletal reorganization with growth and proliferation signals is a key cellular process that is not fully understood. PI-3 kinase is one of the central nodes for distributing growth and proliferation signals downstream from growth factor receptors to the nucleus. Although PI-3 kinase function has been associated with actin cytoskeleton remodeling, satisfactory explanations of the mechanisms mediating this regulation have been elusive. Here we propose that interaction of the Abi1 protein with the p85 regulatory subunit of PI-3 kinase represents the link between growth receptor signaling and actin cytoskeleton remodeling. This function of Abi1, which involves WAVE complex, was initially observed in macropinocytosis, and may explain the coincident dysregulation of PI-3 kinase and actin cytoskeleton in cancer.  相似文献   

18.
Comparative analysis of actin cytoskeleton structure in rat embryonic fibroblasts, E1A-immortalized and E1A + cHa-ras-transformed cells has been carried out. A decrease in adhesiveness and the rate of changes in actin cytoskeleton structures was shown to correlate with the level of morphological transformation of cells. E1A + cHa-ras-transformants show the lowest adhesiveness and complete disorganization of actin structures. Cultivation on serum-free media promoted disassembling of actin cytoskeleton structures in a small part of normal fibroblast population, only in a few immortalized cells, but exerted no influence on transformed cells. The influence of immobilized extracellular matrix proteins fibronectin, laminin and collagens type I and III on actin cytoskeleton structure in normal, immortalized and transformed fibroblasts was studied. Transformed cells spread on fibronectin completely restored highly organized actin structures, displayed a lot of stress fibers and focal contacts. The use of laminin revealed differences in locomotion between normal and transformed cells. Normal, immortalized and transformed fibroblasts spread on fibronectin and laminin demonstrate some peculiarities in actin cytoskeleton structures as a result of specificity of ligand-receptor interaction. Cells spread on fibronectin have polygonal shapes, many stress fibers and focal contacts, whereas cells spread on laminin are highly polarized and develop broad lamellae filled with actin microfilament meshwork. Collagens type I and III can affect adhesive properties and actin cytoskeleton structure in all cell lines studied only slightly, in comparison with fibronectin and laminin.  相似文献   

19.
Expression of green fluorescent protein (GFP) linked to an actin binding domain is a commonly used method for live cell imaging of the actin cytoskeleton. One of these chimeric proteins is GFP-mTalin (GFP fused to the actin binding domain of mouse talin). Although it has been demonstrated that GFP-mTalin colocalizes with the actin cytoskeleton, its effect on actin dynamics and cell expansion has not been studied in detail. We created Arabidopsis (Arabidopsis thaliana) plants harboring alcohol inducible GFP-mTalin constructs to assess the effect of GFP-mTalin expression in vivo. We focused on the growing root hair as this is a model cell for studying cell expansion and root hair tip growth that requires a highly dynamic and polar actin cytoskeleton. We show that alcohol inducible expression of GFP-mTalin in root hairs causes severe defects in actin organization, resulting in either the termination of growth, cell death, and/or changes in cell shape. Fluorescence recovery after photobleaching experiments demonstrate that the interaction of GFP-mTalin and actin filaments is highly dynamic. To assess how GFP-mTalin affects actin dynamics we performed cosedimentation assays of GFP-mTalin with actin on its own or in the presence of the actin modulating protein, actin depolymerizing factor. We show that that GFP-mTalin does not affect actin polymerization but that it does inhibit the actin depolymerizing activity of actin depolymerizing factor. These observations demonstrate that GFP-mTalin can affect cell expansion, actin organization, and the interaction of actin binding proteins with actin.  相似文献   

20.
Summary By employing a new procedure we have been able to visualize a highly intense actin cytoskeleton in the unicellular green algaAcetabularia acetabulum Silva. The protocol described in this study involves microwave-accelerated simultaneous permeabilization with 10% dimethyl sulphoxide, fixation with 1% glutaraldehyde and incubation with 0.5 μM fluorescein-isothiocyanateconjugated Phalloidin. Comparison of the images of the actin cytoskeleton of the stalk, as visualized by methods used previously, with those obtained in our own experiments shows that the actin filaments were preserved completely in an excellent condition. The required time for each procedure could be reduced from 12 h for the most commonly used immunofluorescence technique to 35 min. Moreover, it has been possible to observe the actin filament system of hair whorls, rhizoid and tip. Previously, the actin cytoskeleton of these parts of the cell could not be visualized by conventional techniques. It is shown that each region of the cell-stalk, tip, rhizoid and sidebranches-displays characteristic degrees of actin bundling and regularity of actin alignment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号