首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli overexpressing a NAD(+)-dependent formate dehydrogenase (FDH) from Candida boidinii was grown in chemostat culture on various carbon sources at 0.05 h(-1) dilution rate, under anaerobic conditions using defined medium and compared to a control without the heterologous FDH pathway. Metabolic fluxes, NADH/NAD(+) ratios and NAD(H/(+)) levels were determined under a range of intracellular NADH availability. The effect of NADH manipulation on the distribution of metabolic fluxes in E. coli was assessed under steady-state conditions. The heterologous FDH pathway converts 1 mol of formate into 1 mol of NADH and carbon dioxide, in contrast with the native FDH where no cofactor involvement is present. Previously, we found that this NADH regeneration system doubled the maximum yield of NADH from 2 to 4 mol NADH/mol glucose consumed and reached 4.6 mol NADH/mol of substrate when sorbitol was used as a carbon source in a complex medium. In the current study, it was found that higher NADH yields and NADH/NAD(+) ratios were achieved with our in vivo NADH regeneration system compared to a control lacking the new FDH pathway in the three carbon sources (glucose, gluconate and sorbitol) examined suggesting a more reduced intracellular environment. The total NAD(H/(+)) amounts were very similar for all the combinations studied. It was also found that the ethanol to acetate ratio increased with increased NADH availability. This ratio increased from 1.05 for the control strain in glucose to 9.45 for the strain expressing the heterologous NAD(+)-dependent FDH in sorbitol.  相似文献   

2.

Background  

Enzymatic NADH or NADPH-dependent reduction is a widely applied approach for the synthesis of optically active organic compounds. The overall biocatalytic conversion usually involves in situ regeneration of the expensive NAD(P)H. Oxidation of formate to carbon dioxide, catalyzed by formate dehydrogenase (EC 1.2.1.2; FDH), presents an almost ideal process solution for coenzyme regeneration that has been well established for NADH. Because isolated FDH is relatively unstable under a range of process conditions, whole cells often constitute the preferred form of the biocatalyst, combining the advantage of enzyme protection in the cellular environment with ease of enzyme production. However, the most prominent FDH used in biotransformations, the enzyme from the yeast Candida boidinii, is usually expressed in limiting amounts of activity in the prime host for whole cell biocatalysis, Escherichia coli. We therefore performed expression engineering with the aim of enhancing FDH activity in an E. coli ketoreductase catalyst. The benefit resulting from improved NADH regeneration capacity is demonstrated in two transformations of technological relevance: xylose conversion into xylitol, and synthesis of (S)-1-(2-chlorophenyl)ethanol from o-chloroacetophenone.  相似文献   

3.
It is generally known that cofactors play a major role in the production of different fermentation products. This paper is part of a systematic study that investigates the potential of cofactor manipulations as a new tool for metabolic engineering. The NADH/NAD+ cofactor pair plays a major role in microbial catabolism, in which a carbon source, such as glucose, is oxidized using NAD+ and producing reducing equivalents in the form of NADH. It is crucially important for continued cell growth that NADH be oxidized to NAD+ and a redox balance be achieved. Under aerobic growth, oxygen is used as the final electron acceptor. While under anaerobic growth, and in the absence of an alternate oxidizing agent, the regeneration of NAD+ is achieved through fermentation by using NADH to reduce metabolic intermediates. Therefore, an increase in the availability of NADH is expected to have an effect on the metabolic distribution. We have previously investigated a genetic means of increasing the availability of intracellular NADH in vivo by regenerating NADH through the heterologous expression of an NAD(+)-dependent formate dehydrogenase and have demonstrated that this manipulation provoked a significant change in the final metabolite concentration pattern both anaerobically and aerobically (Berríos-Rivera et al., 2002, Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase, Metabolic Eng. 4, 217-229). The current work explores further the effect of substituting the native cofactor-independent formate dehydrogenase (FDH) by an NAD(+)-dependent FDH from Candida boidinii on the NAD(H/+) levels, NADH/NAD+ ratio, metabolic fluxes and carbon-mole yields in Escherichia coli under anaerobic chemostat conditions. Overexpression of the NAD(+)-dependent FDH provoked a significant redistribution of both metabolic fluxes and carbon-mole yields. Under anaerobic chemostat conditions, NADH availability increased from 2 to 3 mol NADH/mol glucose consumed and the production of more reduced metabolites was favored, as evidenced by a dramatic increase in the ethanol to acetate ratio and a decrease in the flux to lactate. It was also found that the NADH/NAD+ ratio should not be used as a sole indicator of the oxidation state of the cell. Instead, the metabolic distribution, like the Et/Ac ratio, should also be considered because the turnover of NADH can be fast in an effort to achieve a redox balance.  相似文献   

4.
Metabolic engineering studies have generally focused on manipulating enzyme levels through either the amplification, addition, or deletion of a particular pathway. However, with cofactor-dependent production systems, once the enzyme levels are no longer limiting, cofactor availability and the ratio of the reduced to oxidized form of the cofactor can become limiting. Under these situations, cofactor manipulation may become crucial in order to further increase system productivity. Although it is generally known that cofactors play a major role in the production of different fermentation products, their role has not been thoroughly and systematically studied. However, cofactor manipulations can potentially become a powerful tool for metabolic engineering. Nicotinamide adenine dinucleotide (NAD) functions as a cofactor in over 300 oxidation-reduction reactions and regulates various enzymes and genetic processes. The NADH/NAD+ cofactor pair plays a major role in microbial catabolism, in which a carbon source, such as glucose, is oxidized using NAD+ producing reducing equivalents in the form of NADH. It is crucially important for continued cell growth that NADH be oxidized to NAD+ and a redox balance be achieved. Under aerobic growth, oxygen is used as the final electron acceptor. While under anaerobic growth, and in the absence of an alternate oxidizing agent, the regeneration of NAD+ is achieved through fermentation by using NADH to reduce metabolic intermediates. Therefore, an increase in the availability of NADH is expected to have an effect on the metabolic distribution. This paper investigates a genetic means of manipulating the availability of intracellular NADH in vivo by regenerating NADH through the heterologous expression of an NAD(+)-dependent formate dehydrogenase. More specifically, it explores the effect on the metabolic patterns in Escherichia coli under anaerobic and aerobic conditions of substituting the native cofactor-independent formate dehydrogenase (FDH) by and NAD(+)-dependent FDH from Candida boidinii. The over-expression of the NAD(+)-dependent FDH doubled the maximum yield of NADH from 2 to 4 mol NADH/mol glucose consumed, increased the final cell density, and provoked a significant change in the final metabolite concentration pattern both anaerobically and aerobically. Under anaerobic conditions, the production of more reduced metabolites was favored, as evidenced by a dramatic increase in the ethanol-to-acetate ratio. Even more interesting is the observation that during aerobic growth, the increased availability of NADH induced a shift to fermentation even in the presence of oxygen by stimulating pathways that are normally inactive under these conditions.  相似文献   

5.
Escherichia coli (E. coli) maintains its total NADH/NAD+ intracellular pool by synthesizing NAD through the de novo pathway and the pyridine nucleotide salvage pathway. The salvage pathway recycles intracellular NAD breakdown products and preformed pyridine compounds from the environment, such as nicotinic acid (NA). The enzyme nicotinic acid phosphoribosyltransferase (NAPRTase; EC 2.4.2.11), encoded by the pncB gene, catalyzes the formation of nicotinate mononucleotide (NAMN), a direct precursor of NAD, from NA. This reaction is believed to be the rate-limiting step in the NAD salvage pathway. The current study investigates the effect of overexpressing the pncB gene from Salmonella typhimurium on the total levels of NAD, the NADH/NAD+ ratio, and the production of different metabolites in E. coli under anaerobic chemostat conditions and anaerobic tube experiments. In addition, this paper studies the effect of combining the overexpression of the pncB gene with an NADH regeneration strategy that increases intracellular NADH availability, as we have previously shown. (The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures, Metabolic Eng. 4, 230-237; Metabolic engineering of Escherichia coli: Increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase, Metabolic Eng. 4, 217-229.) Overexpression of the pncB gene in chemostat experiments increased the total NAD levels, decreased the NADH/NAD+ ratio, and did not significantly redistribute the metabolic fluxes. However, under anaerobic tube conditions, overexpression of the pncB gene led to a significant shift in the metabolic patterns as evidenced by a decrease in lactate production and an increase as high as two-fold in the ethanol-to-acetate (Et/Ac) ratio. These results suggest that under chemostat conditions the total level of NAD is not limiting and the metabolic rates are fixed by the system at steady state. On the other hand, under transient conditions (such as those in batch cultivation) the increase in the total level of NAD can increase the rate of NADH-dependent pathways (ethanol) and therefore change the final distribution of metabolites. The effect of combining overexpression of the pncB gene with the substitution of the native cofactor-independent formate dehydrogenase (FDH) with an NAD(+)-dependent FDH was also investigated under anaerobic tube conditions. This manipulation produced a metabolic pattern that combines a high Et/Ac ratio similar to that obtained with the new FDH with an intermediate lactate level similar to that obtained with the overexpression of the pncB gene. It was found that addition of the pncB gene to the FDH system does not increase further the production of reduced metabolites because the system for NADH regeneration already reached the maximum theoretical yield of approximately 4 mol NADH/mol of glucose.  相似文献   

6.
The FDH1 gene of Candida boidinii encodes an NAD+-dependent formate dehydrogenase, which catalyzes the last reaction in the methanol dissimilation pathway. FDH1 expression is strongly induced by methanol, as are the promoters of the genes AOD1 (alcohol oxidase) and DAS1 (dihydroxyacetone synthase). FDH1 expression can be induced by formate when cells are grown on a medium containing glucose as a carbon source, whereas expression of AOD1 and DAS1 is completely repressed in the presence of glucose. Using deletion analyses, we identified two cis-acting regulatory elements, termed UAS-FM and UAS-M, respectively, in the 5 non-coding region of the FDH1 gene. Both elements were necessary for full induction of the FDH1 promoter by methanol, while only the UAS-FM element was required for full induction by formate. Irrespective of whether induction was achieved with methanol or formate, the UAS-FM element enhanced the level of induction of the FDH1 promoter in a manner dependent on the number of copies, but independent of their orientation, and also converted the ACT1 promoter from a constitutive into an inducible element. Our results not only provide a powerful promoter for heterologous gene expression, but also yield insights into the mechanism of regulation of FDH1 expression at the molecular level.Communicated by C. P. Hollenberg  相似文献   

7.
In this work, a fundamental regulatory role of formate on thuringiensin production by resting cell of Bacillus thuringiensis YBT-032 was investigated. Nicotinamide adenine dinucleotide (NADH) production and formate dehydrogenase activity increased with formate addition from 0.5 to 2.0 g/L, respectively. However, with the formate addition of 1.5 g/L, the activities of pyruvate kinase and glucose 6-phosphate dehydrogenase reached a peak and increased by 316 and 150% relative to those of the control, respectively. In addition, intracellular production of pyruvate, aspartate, citrate and adenine were significantly enhanced by 75, 66, 32 and 78% as well. An improvement (90%) of thuringiensin production was also successfully obtained. Interestingly to point out, thuringiensin yield was closely correlative with adenine production, and the linear relationship was also observed. The results suggest that appropriate formate addition did act as a modulator and facilitate carbon flux in glycolysis and pentose phosphate pathway to synthesize adenine and thuringiensin via intracellular NADH availability.  相似文献   

8.
L -Threonine, a kind of essential amino acid, has numerous applications in food, pharmaceutical, and aquaculture industries. Fermentative l -threonine production from glucose has been achieved in Escherichia coli. However, there are still several limiting factors hindering further improvement of l -threonine productivity, such as the conflict between cell growth and production, byproduct accumulation, and insufficient availability of cofactors (adenosine triphosphate, NADH, and NADPH). Here, a metabolic modification strategy of two-stage carbon distribution and cofactor generation was proposed to address the above challenges in E. coli THRD, an l -threonine producing strain. The glycolytic fluxes towards tricarboxylic acid cycle were increased in growth stage through heterologous expression of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and citrate synthase, leading to improved glucose utilization and growth performance. In the production stage, the carbon flux was redirected into l -threonine synthetic pathway via a synthetic genetic circuit. Meanwhile, to sustain the transaminase reaction for l -threonine production, we developed an l -glutamate and NADPH generation system through overexpression of glutamate dehydrogenase, formate dehydrogenase, and pyridine nucleotide transhydrogenase. This strategy not only exhibited 2.02- and 1.21-fold increase in l -threonine production in shake flask and bioreactor fermentation, respectively, but had potential to be applied in the production of many other desired oxaloacetate derivatives, especially those involving cofactor reactions.  相似文献   

9.
The NAD+-dependent formate dehydrogenase FDH1 gene (fdh1), cloned from Candida boidinii, was expressed in the ldh-deleted mutant of Enterobacter aerogenes IAM1183 strain. The plasmid of pCom10 driven by the PalkB promoter was used to construct the fdh1 expression system and thus introduce a new dihydronicotinamide adenine dinucleotide (NADH) regeneration pathway from formate in the ldh-deleted mutant. The knockout of NADH-consuming lactate pathway affected the whole cellular metabolism, and the hydrogen yield increased by 11.4% compared with the wild strain. Expression of fdh1 in the ldh-deleted mutant caused lower final cell concentration and final pH after 16 h cultivation, and finally resulted in 86.8% of increase in hydrogen yield per mole consumed glucose. The analysis of cellular metabolites and estimated redox state balance in the fdhl-expressed strain showed that more excess of reducing power was formed by the rewired NADH regeneration pathway, changing the metabolic distribution and promoting the hydrogen production.  相似文献   

10.
An adhE, ldhA double mutant Escherichia coli strain, SBS110MG, has been constructed to produce succinic acid in the presence of heterologous pyruvate carboxylase (PYC). The strategic design aims at diverting maximum quantities of NADH for succinate synthesis by inactivation of NADH competing pathways to increase succinate yield and productivity. Additionally an operational PFL enzyme allows formation of acetyl-CoA for biosynthesis and formate as a potential source of reducing equivalents. Furthermore, PYC diverts pyruvate toward OAA to favor succinate generation. SBS110MG harboring plasmid pHL413, which encodes the heterologous pyruvate carboxylase from Lactococcus lactis, produced 15.6 g/L (132 mM) of succinate from 18.7 g/L (104 mM) of glucose after 24 h of culture in an atmosphere of CO(2) yielding 1.3 mol of succinate per mole of glucose. This molar yield exceeded the maximum theoretical yield of succinate that can be achieved from glucose (1 mol/mol) under anaerobic conditions in terms of NADH balance. The current work further explores the importance of the presence of formate as a source of reducing equivalents in SBS110MG(pHL413). Inactivation of the native formate dehydrogenase pathway (FDH) in this strain significantly reduced succinate yield, suggesting that reducing power was lost in the form of formate. Additionally we investigated the effect of ptsG inactivation in SBS110MG(pHL413) to evaluate the possibility of a further increase in succinate yield. Elimination of the ptsG system increased the succinate yield to 1.4 mol/mol at the expense of a reduction in glucose consumption of 33%. In the presence of PYC and an efficient conversion of glucose to products, the ptsG mutation is not indispensable since PEP converted to pyruvate as a result of glucose phosphorylation by the glucose specific PTS permease EIICB(glu) can be rediverted toward OAA favoring succinate production.  相似文献   

11.
1,5-Pentanediol (1,5-PDO) is a high value-added chemical which is widely used as a monomer in the polymer industry. There are no natural organisms that could directly produce 1,5-PDO from renewable carbon sources. In this study, we report metabolic engineering of Escherichia coli for high-level production of 1,5-PDO from glucose via a cadaverine-derived pathway. In the newly proposed pathway, cadaverine can be converted to 1,5-PDO via 5-hydroxyvalerate (5-HV) by introducing only one heterologous enzyme in E. coli. Different endogenous genes of E. coli were screened and heterologous carboxylic acid reductase genes were tested to build a functional pathway. Compared to the previously reported pathways, the engineered cadaverine-based pathway has a higher theoretical yield (0.70 mol/mol glucose) and higher catalytic efficiency. By further combining strategies of pathway engineering and process engineering, we constructed an engineered E. coli strain that could produce 2.62 g/L 1,5-PDO in shake-flask and 9.25 g/L 1,5-PDO with a yield of 0.28 mol/mol glucose in fed-batch fermentation. The proposed new pathway and engineering strategies reported here should be useful for developing biological routes to produce 1,5-PDO for real application.  相似文献   

12.
In previous studies, we showed that cofactor manipulations can potentially be used as a tool in metabolic engineering. In this study, sugars similar to glucose, that can feed into glycolysis and pyruvate production, but with different oxidation states, were used as substrates. This provided a simple way of testing the effect of manipulating the NADH/NAD+ ratio or the availability of NADH on the metabolic patterns of Escherichia coli under anaerobic conditions and on the production of 1,2-propanediol (1,2-PD), which requires NADH for its synthesis. Production of 1,2-PD was achieved by overexpressing the two enzymes methylglyoxal synthase from Clostridium acetobutylicum and glycerol dehydrogenase from E. coli. In addition, the effect of eliminating a pathway competing for NADH by using a ldh strain (without lactate dehydrogenase activity) on the production of 1,2-PD was investigated. The oxidation state of the carbon source significantly affected the yield of metabolites, such as ethanol, acetate and lactate. However, feeding a more reduced carbon source did not increase the yield of 1,2-PD. The production of 1,2-PD with glucose as the carbon source was improved by the incorporation of a ldh mutation. The results of these experiments indicate that our current 1,2-PD production system is not limited by NADH, but rather by the pathways following the formation of methylglyoxal. Electronic Publication  相似文献   

13.
1,3-Propanediol (1,3-PDO) is an important platform chemical which has a wide application in food, cosmetics, pharmaceutical and textile industries. Its biological production using recombinant Escherichia coli with glucose as carbon source has been commercialized by DuPont, but E. coli cannot synthesize coenzyme B12 which is an essential and expensive cofactor of glycerol dehydratase, a core enzyme in 1,3-PDO biosynthesis. This study aims to develop a more economical microbial cell factory using Klebsiella pneumoniae J2B which can naturally synthesize coenzyme B12. To this end, the heterologous pathway for the production of glycerol from dihydroxyacetone-3-phosphate (DHAP), a glycolytic intermediate, was introduced to J2B and, afterwards, the strain was extensively modified for carbon and energy metabolisms including: (i) removal of carbon catabolite repression, (ii) blockage of glycerol export across the cell membrane, (iii) improvement of NADH regeneration/availability, (iv) modification of TCA cycle and electron transport chain, (v) overexpression of 1,3-PDO module enzyme, and (vi) overexpression of glucose transporter. A total of 33 genes were modified and/or overexpressed, and one resulting strain could produce 814 mM (62 g/L) of 1,3-PDO with the yield of 1.27 mol/mol glucose in fed-batch bioreactor culture with a limited supplementation of coenzyme B12 at 4 μM, which is ~10 fold less than that employed by DuPont. This study highlights the importance of balanced use of glucose in the production of carbon backbone of the target chemical (1,3-PDO) and regeneration of reducing power (NADH). This study also suggests that K. pneumoniae J2B is a promising host for the production of 1,3-PDO from glucose.  相似文献   

14.
An expression system for NAD+-dependent formate dehydrogenase gene (fdh1), from Candida boidinii, was constructed and cloned into Enterobacter aerogenes IAM1183. With the fdh1 expression, the total H2 yield was attributed to a decrease in activity of the lactate pathway and an increase of the formate pathway flux due to the NADH regeneration. Analysis of the redox state balance and ethanol-to-acetate ratio in the fdhl-expressed strain showed that increased reducing power arose from the reconstruction of NADH regeneration pathway from formate thereby contributing to the improved H2 production.  相似文献   

15.
NAD+-dependent formate dehydrogenase(s) (EC 1.2.1.2, FDH) catalyzes the interconversion of formate anion to carbon dioxide coupled with the conversion of NAD+ or NADH. FDHs attract significant attention in biotechnology due to their potential applications in NAD(H)-dependent industrial biocatalysis as well as in the production of renewable fuels and chemicals from carbon dioxide. In the present work, a new FDH from thermophilic fungus Myceliophthora thermophile (MtFDH) was characterized. The gene of the enzyme was synthesised, cloned, expressed in E. coli, as 6His-tagged protein, and purified to homogeneity by metal chelate affinity chromatography. Kinetic analysis suggested that MtFDH exhibits higher catalytic efficiency on NaHCO3 compared to formate. Notable, recombinant MtFDH displays a pH optimum for the conversion of formate anion to carbon dioxide at extreme alkaline pH (pH 10.5). Thermal stability analysis showed that the enzyme displays good thermostability with Tm 48 °C. Homology modelling and phylogenetic analysis suggested that the enzyme belongs to the D-specific 2-hydroxy acid dehydrogenases family. The active-site residues are well conserved compared to other homologous FDHs. The results of the present work provide new knowledge on the structure, function and diversity of FDHs and indicate that MtFDH possess a huge potential for CO2 reduction or NADH generation and under extreme alkaline conditions.  相似文献   

16.
We describe a simple method for enzymatic synthesis of L and D amino acids from alpha-keto acids with Escherichia coli cells which express heterologous genes. L-amino acids were produced with thermostable L-amino acid dehydrogenase and formate dehydrogenase (FDH) from alpha-keto acids and ammonium formate with only an intracellular pool of NAD+ for the regeneration of NADH. We constructed plasmids containing, in addition to the FDH gene, the genes for amino acid dehydrogenases, including i.e., leucine dehydrogenase, alanine dehydrogenase, and phenylalanine dehydrogenase. L-Leucine, L-valine, L-norvaline, L-methionine, L-phenylalanine, and L-tyrosine were synthesized with the recombinant E. coli cells with high chemical yields (> 80%) and high optical yields (up to 100% enantiomeric excess). Stereospecific conversion of various alpha-keto acids to D amino acids was also examined with recombinant E. coli cells containing a plasmid coding for the four heterologous genes of the thermostable enzymes D-amino acid aminotransferase, alanine racemase, L-alanine dehydrogenase, and FDH. Optically pure D enantiomers of glutamate and leucine were obtained.  相似文献   

17.
This review discusses recent achievements in the field of cofactor regeneration for the nicotinamide cofactors NADH and NADPH. The examples discussed include alcohol dehydrogenases, formate dehydrogenase, glucose dehydrogenase and a hydrogenase. For the reaction either one-phase systems or two-phase systems in combination with an organic solvent are discussed. For the enantioselective reduction of 2-octanone to (R)-2-octanol it could be shown that enzyme coupled NADPH regeneration with glucose dehydrogenase and glucose results in shorter reaction times and higher yields when compared to the substrate coupled regeneration with 2-propanol.

ADH: alcohol dehydrogenase; LDH: Lactose dehydrogenase; GDH: Glucose dehydrogenase; FDH: Formate dehydrogenase; LB-ADH: alcohol dehydrogenase from Lactobacillus brevis; HL-ADH: alcohol dehydrogenase from horse liver; TB-ADH: alcohol dehydrogenase from Thermoanaerobicum brockii; PS-GDH: Glucose dehydrogenase from Pseudomonas species; [BMIM][PF6]: Butyl-methyl-imidazoliumhexafluorophosphate  相似文献   

18.
Parallel operated milliliter-scale stirred tank bioreactors were applied for recombinant protein expression studies in simple batch experiments without pH titration. An enzymatic glucose release system (EnBase), a complex medium, and the frequently used LB and TB media were compared with regard to growth of Escherichia coli and recombinant protein expression (alcohol dehydrogenase (ADH) from Lactobacillus brevis and formate dehydrogenase (FDH) from Candida boidinii). Dissolved oxygen and pH were recorded online, optical densities were measured at-line, and the activities of ADH and FDH were analyzed offline. Best growth was observed in a complex medium with maximum dry cell weight concentrations of 14 g L−1. EnBase cultivations enabled final dry cell weight concentrations between 6 and 8 g L−1. The pH remained nearly constant in EnBase cultivations due to the continuous glucose release, showing the usefulness of this glucose release system especially for pH-sensitive bioprocesses. Cell-specific enzyme activities varied considerably depending on the different media used. Maximum specific ADH activities were measured with the complex medium, 6 h after induction with IPTG, whereas the highest specific FDH activities were achieved with the EnBase medium at low glucose release profiles 24 h after induction. Hence, depending on the recombinant protein, different medium compositions, times for induction, and times for cell harvest have to be evaluated to achieve efficient expression of recombinant proteins in E. coli. A rapid experimental evaluation can easily be performed with parallel batch operated small-scale stirred tank bioreactors.  相似文献   

19.
Industrial biocatalytic reduction processes require the efficient regeneration of reduced cofactors for the asymmetric reduction of prochiral compounds to chiral intermediates which are needed for the production of fine chemicals and drugs. Here, we present a new engineering strategy for improved NADH regeneration based on the Pichia pastoris methanol oxidation pathway. Studying the kinetic properties of alcohol oxidase (AOX), formaldehyde dehydrogenase (FLD) and formate dehydrogenase (FDH) and using the derived kinetic data for subsequent kinetic simulations of NADH formation rates led to the identification of FLD activity to constitute the main bottleneck for efficient NADH recycling via the methanol dissimilation pathway. The simulation results were confirmed constructing a recombinant P. pastoris strain overexpressing P. pastoris FLD and the highly active NADH-dependent butanediol dehydrogenase from S. cerevisiae. Employing the engineered strain, significantly improved butanediol production rates were achieved in whole-cell biotransformations.  相似文献   

20.
Ursodeoxycholic acid (UDCA) is a bile acid of industrial interest as it is used as an agent for the treatment of primary sclerosing cholangitis and the medicamentous, non‐surgical dissolution of gallstones. Currently, it is prepared industrially from cholic acid following a seven‐step chemical procedure with an overall yield of <30%. In this study, we investigated the key enzymatic steps in the chemo‐enzymatic preparation of UDCA—the two‐step reduction of dehydrocholic acid (DHCA) to 12‐keto‐ursodeoxycholic acid using a mutant of 7β‐hydroxysteroid dehydrogenase (7β‐HSDH) from Collinsella aerofaciens and 3α‐hydroxysteroid dehydrogenase (3α‐HSDH) from Comamonas testosteroni. Three different one‐pot reaction approaches were investigated using whole‐cell biocatalysts in simple batch processes. We applied one‐biocatalyst systems, where 3α‐HSDH, 7β‐HSDH, and either a mutant of formate dehydrogenase (FDH) from Mycobacterium vaccae N10 or a glucose dehydrogenase (GDH) from Bacillus subtilis were expressed in a Escherichia coli BL21(DE3) based host strain. We also investigated two‐biocatalyst systems, where 3α‐HSDH and 7β‐HSDH were expressed separately together with FDH enzymes for cofactor regeneration in two distinct E. coli hosts that were simultaneously applied in the one‐pot reaction. The best result was achieved by the one‐biocatalyst system with GDH for cofactor regeneration, which was able to completely convert 100 mM DHCA to >99.5 mM 12‐keto‐UDCA within 4.5 h in a simple batch process on a liter scale. Biotechnol. Bioeng. 2013; 110: 68–77. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号