首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Low concentrations of ammonia and methylamine greatly increaseCl influx into Chara corallina. Both amines have theirmaximum effect at pH 6.5–7.5. The amine stimulation ofCl influx is small below about pH 5.5. Above pH 8.5 theremay be inhibition of influx by amines. Concentrations of 10–25µM ammonia are sufficient to cause the maximum stimulationof Cl influx; the corresponding methylamine concentrationsare 0.1–0.2 mM. It is concluded that entry of amine cations(NH4$ and CH3NH3$), rather than unionized bases (NH3 and CH3NH2),causes Cl transport to be increased. Increases in rates of Cl transport are not necessarilyaccompanied by effects on HCO3$ assimilation and OH efflux.Measurements of localized pH differences at the cell surfaceand of circulating electric currents in the bathing solutionshow that these phenomena are only significantly affected byammonia at or above 50 µM and by methylamine at or above1.0 mM. The significance of the effects of amines is assessedin relation to current ideas about transport of Cl, HCO3,and OH.  相似文献   

2.
Using permeabilized characean cells in which the ionic conditionsat the cytoplasmic side of the tonoplast are easily controlled,effects of Ca2+ ion on tonoplast potential were examined. Whenthe cell was treated with 1 µM Ca2+, the tonoplast potential(EM became positive in a complicated manner in Chara corallinawhile it simply became negative in Nitella axilliformis. Whenthe cell was treated with 9-antracenecarboxylic acid, a Cl-channelinhibitor, Em became more negative and the response of Em toCa2+ was significantly suppressed. It is suggested that Ca2+activates Cl-channel at a low concentration and inactivatesat a higher one in C. corallina while it simply inactivate Cl-channelin N. axilliformis. 1Present address: Biological Laboratory, The University of theAir, Wakaba 2-11, Wakaba, 260 Japan. (Received August 22, 1988; Accepted December 26, 1988)  相似文献   

3.
The role of Cl in the reactivation of O2 evolution inphotosystem II (PS II) particles derived from spinach chloroplastswas studied in the presence of various salts. Multivalent ion(especially anion) salts were found to strongly suppress thereactivation of O2 evolution by Cl in the Cl-depletedPS II particles in a competitive manner. The effectiveness ofanions in the suppression of Cl-supported O2 evolutionwas in the order of trivalent>divalent>monovalent ones.Multivalent anions similarly suppressed O2 evolution in theuntreated PS II particles under low and moderate Cl concentrations.pH dependence of the Cl-affinity (Km) value for Cl)was also studied. Within the pH range 5.5 to 8 the Km valuebecame higher as the pH of the medium increased. These resultssuggest that the membrane surface in the vicinity of the Claction site is net positively charged and attracts Clelectrostatically, and that the site is almost freely accessibleto various anions. The origin and role of the local net positivedomain and the role of peripheral proteins are discussed. (Received May 27, 1985; Accepted October 8, 1985)  相似文献   

4.
Activity of glucose 6-phosphate dehydrogenase (D-glucose 6-phosphate:NADP oxidoreductase, EC 1.1.1.49 [EC] ) preparation from sweet potatoroot tissue was markedly altered in the presence of variousions. Cations or anions were effective in the following order:Na$, K$>Tris$>NH4$>Mg2$>Ca2$, or Cl>NO3,HPO42–>SO42–>HCO3. Activity was inhibitedat high concentrations of Ca2$, and HCO3,. In an investigationon the dependence of the activity on pH, two activity peakswere clearly observed at low ionic strength. Ionic strength altered both the Km and Vmax for glucose 6-phosphate(G6P). A Lineweaver-Burk plot for the enzyme, with respect toG6P, showed a bimodal nature at low ionic strength; suggestingnegative cooperativity. Deviation from linearity of the plotwas less with an increase in the ionic strength. 1 Present address: Institute of Applied Microbiology, Universityof Tokyo, Bunkyo-ku, Tokyo 113. (Received September 18, 1971; )  相似文献   

5.
The NADP$-specific isocitrate dehydrogenase was partially purifiedfrom photosynthetically-grown Rhodospirillum rubrum. The pHoptimum is between 7.5 and 9.0 in phosphate buffer. The apparentKm is 3.1x10–5 M for isocitrate, 5.1x10–5 M forNADP$, 1.7x10–5 M for manganese, 1.5x10–4 M formagnesium, and 3.5x10–3 M for inorganic orthophosphate.Arsenate exerts a slight inhibition. The Q10 between 17.5°Cand 40°C is 1.62, and the energy of activation at 25°Cis 9.74 Kcal/mole. Glyoxylate and oxalacetate cause concertedinhibition of the enzyme activity. Various nucleotides inhibitthe activity. The kinetics of inhibition by ATP was found tobe mixed type with respect to NADP$ and isocitrate, the Ki valuesbeing 1.17x10–3 M and 1.10x10–3 M respectively.The inhibition between ATP and orthophosphate is competitivewith a Ki of 10–4M. Thiol binding reagents are inhibitory;this inhibition is reversed by cysteine or reduced glutathione. (Received October 1, 1971; )  相似文献   

6.
Populations of Sphaerium corneum (L.) and Pisidium spp. weresampled monthly for 13 months, at 11 sites with a wide rangeof water chemistry in N.W. England. Both genera showed almostyear-round reproduction, but the periods of maximum productionshowed between-population variation. S. corneum adults containedspat at different stages of development and spat size was relatedto number in the brood. Multiple regression analysis with 16water physicochemical variables showed the following to be highlysignificant factors (P<0.01) in the distribution of the molluses(factors in order of importance):- S. corneum: HCO3, K$, Cl, Mg2$, temperature, Ca2$, month; Pisidium spp: PO43–, Mg2$, mud, oxygen, temperature, month. (Received 25 January 1978;  相似文献   

7.
The cardiac Ca2+-independent transient outward K+ current (Ito), a major repolarizing ionic current, is markedly affected by Cl substitution and anion channel blockers. We reexplored the mechanism of the action of anions on Ito by using whole cell patch-clamp in single isolated rat cardiac ventricular myocytes. The transient outward current was sensitive to blockade by 4-aminopyridine (4-AP) and was abolished by Cs+ substitution for intracellular K+. Replacement of most of the extracellular Cl with less permeant anions, aspartate (Asp) and glutamate (Glu), markedly suppressed the current. Removal of external Na+ or stabilization of F-actin with phalloidin did not significantly affect the inhibitory action of less permeant anions on Ito. In contrast, the permeant Cl substitute Br did not markedly affect the current, whereas F substitution for Cl induced a slight inhibition. The Ito elicited during Br substitution for Cl was also sensitive to blockade by 4-AP. The ability of Cl substitutes to induce rightward shifts of the steady-state inactivation curve of Ito was in the following sequence: NO3 > Cl Br > gluconate > Glu > Asp. Depolymerization of actin filaments with cytochalasin D (CytD) induced an effect on the steady-state inactivation of Ito similar to that of less permeant anions. Fluorescent phalloidin staining experiments revealed that CytD-pretreatment significantly decreased the intensity of FITC-phalloidin staining of F-actin, whereas Asp substitution for Cl was without significant effect on the intensity. These results suggest that the Ito channel is modulated by anion channel(s), in which the actin cytoskeleton may be implicated. transient outward potassium current; anion channel; actin cytoskeleton; myocyte; potassium ion  相似文献   

8.
A possible role of extracellular Cl concentration ([Cl]o) in fatigue was investigated in isolated skeletal muscles of the mouse. When [Cl]o was lowered from 128 to 10 mM, peak tetanic force was unchanged, fade was exacerbated (wire stimulation electrodes), and a hump appeared during tetanic relaxation in both nonfatigued slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles. Low [Cl]o increased the rate of fatigue 1) with prolonged, continuous tetanic stimulation in soleus, 2) with repeated intermittent tetanic stimulation in soleus or EDL, and 3) to a greater extent with repeated tetanic stimulation when wire stimulation electrodes were used rather than plate stimulation electrodes in soleus. In nonfatigued soleus muscles, application of 9 mM K+ with low [Cl]o caused more rapid and greater tetanic force depression, along with greater depolarization, than was evident at normal [Cl]o. These effects of raised [K+]o and low [Cl]o were synergistic. From these data, we suggest that normal [Cl]o provides protection against fatigue involving high-intensity contractions in both fast- and slow-twitch mammalian muscle. This phenomenon possibly involves attenuation of the depolarization caused by stimulation- or exercise-induced run-down of the transsarcolemmal K+ gradient. potassium; skeletal muscle contraction; membrane potential; myotonia  相似文献   

9.
Experiments were conducted to determine whether the Cl secretagogue, 1-ethyl-2-benzimidazolinone (EBIO), stimulates Cl transport in the rabbit conjunctival epithelium. For this study, epithelia were isolated in an Ussing-type chamber under short-circuit conditions. The effects of EBIO on the short-circuit current (Isc) and transepithelial resistance (Rt) were measured under physiological conditions, as well as in experiments with altered electrolyte concentrations. Addition of 0.5 mM EBIO to the apical bath stimulated the control Isc by 64% and reduced Rt by 21% (P < 0.05; paired data). Under Cl-free conditions, Isc stimulation using EBIO was markedly attenuated. In the presence of an apical-to-basolateral K+ gradient and permeabilization of the apical membrane, the majority of the Isc reflected the transcellular movement of K+ via basolateral K+ channels. Under these conditions, EBIO in combination with A23187 elicited nearly instantaneous 60–90% increases in Isc that were sensitive to the calmodulin antagonist calmidazolium and the K+ channel blocker tetraethyl ammonium. In the presence of an apical-to-basolateral Cl gradient and nystatin permeabilization of the basolateral aspect, EBIO increased the Cl-dependent Isc, an effect prevented by the channel blocker glibenclamide (0.3 mM). The latter compound also was used to determine the proportion of EBIO-evoked unidirectional 36Cl fluxes in the presence of the Cl gradient that traversed the epithelium transcellularly. Overall, EBIO activated apical Cl channels and basolateral K+ channels (presumably those that are Ca2+ dependent), thereby suggesting that this compound, or related derivatives, may be suitable as topical agents to stimulate fluid transport across the tissue in individuals with lacrimal gland deficiencies. Ussing chamber; short-circuit current; electrolyte transport; chloride secretagogue; potassium conductance; 1-ethyl-2-benzimidazolinone; 1,10-phenanthroline  相似文献   

10.
Chara cells show an inward positive electric current acrossthe plasmalemma when exposed to Cl under voltage-clampconditions. The rapid rise of this current suggests that itis directly associated with the inward transport of Cl.The dependence of the current on Cl concentration showssaturation, the data fitting the Michaelis-Menten equation withVm up to 100 nmol m–2 s–1 (for Clstarvedcells) with KM 10–20 µM, and with some allowancefor an unstirred layer of water adjacent to the membrane. Theeffects on the current of clamp potential, illumination, withdrawalof alkali metal cations, and addition of amine were also investigated.These results suggest that the mechanism is the symport of 2H+ with each Cl, and that the actions of light, externalK+, and amine in stimulating Cl, influx are indirect.  相似文献   

11.
Three distinct mechanisms of HCO3- secretion in rat distal colon   总被引:1,自引:0,他引:1  
HCO3 secretion has long been recognized in the mammalian colon, but it has not been well characterized. Although most studies of colonic HCO3 secretion have revealed evidence of lumen Cl dependence, suggesting a role for apical membrane Cl/HCO3 exchange, direct examination of HCO3 secretion in isolated crypt from rat distal colon did not identify Cl-dependent HCO3 secretion but did reveal cAMP-induced, Cl-independent HCO3 secretion. Studies were therefore initiated to determine the characteristics of HCO3 secretion in isolated colonic mucosa to identify HCO3 secretion in both surface and crypt cells. HCO3 secretion was measured in rat distal colonic mucosa stripped of muscular and serosal layers by using a pH stat technique. Basal HCO3 secretion (5.6 ± 0.03 µeq·h–1·cm–2) was abolished by removal of either lumen Cl or bath HCO3; this Cl-dependent HCO3 secretion was also inhibited by 100 µM DIDS (0.5 ± 0.03 µeq·h–1·cm–2) but not by 5-nitro-3-(3-phenylpropyl-amino)benzoic acid (NPPB), a Cl channel blocker. 8-Bromo-cAMP induced Cl-independent HCO3 secretion (and also inhibited Cl-dependent HCO3 secretion), which was inhibited by NPPB and by glibenclamide, a CFTR blocker, but not by DIDS. Isobutyrate, a poorly metabolized short-chain fatty acid (SCFA), also induced a Cl-independent, DIDS-insensitive, saturable HCO3 secretion that was not inhibited by NPPB. Three distinct HCO3 secretory mechanisms were identified: 1) Cl-dependent secretion associated with apical membrane Cl/HCO3 exchange, 2) cAMP-induced secretion that was a result of an apical membrane anion channel, and 3) SCFA-dependent secretion associated with an apical membrane SCFA/HCO3 exchange. chloride/bicarbonate exchange; short-chain fatty acid/bicarbonate exchange; anion channel; pH stat  相似文献   

12.
We investigated the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one(DCEBIO) on the Cl secretory response of the mouse jejunum using the Ussing short-circuit current (Isc) technique. DCEBIO stimulated a concentration-dependent, sustained increase in Isc (EC50 41 ± 1 µM). Pretreating tissues with 0.25 µM forskolin reduced the concentration-dependent increase in Isc by DCEBIO and increased the EC50 (53 ± 5 µM). Bumetanide blocked (82 ± 5%) the DCEBIO-stimulated Isc consistent with Cl secretion. DCEBIO was a more potent stimulator of Cl secretion than its parent molecule, 1-ethyl-2-benzimidazolinone. Glibenclamide or NPPB reduced the DCEBIO-stimulated Isc by >80% indicating the participation of CFTR in the DCEBIO-stimulated Isc response. Clotrimazole reduced DCEBIO-stimulated Isc by 67 ± 15%, suggesting the participation of the intermediate conductance Ca2+-activated K+ channel (IKCa) in the DCEBIO-activated Isc response. In the presence of maximum forskolin (10 µM), the DCEBIO response was reduced and biphasic, reaching a peak response of the change in Isc of 43 ± 5 µA/cm2 and then falling to a steady-state response of 17 ± 10 µA/cm2 compared with DCEBIO control tissues (61 ± 6 µA/cm2). The forskolin-stimulated Isc in the presence of DCEBIO was reduced compared with forskolin control tissues. Similar results were observed with DCEBIO and 8-BrcAMP where adenylate cyclase was bypassed. H89, a PKA inhibitor, reduced the DCEBIO-activated Isc, providing evidence that DCEBIO increased Cl secretion via a cAMP/PKA-dependent manner. These data suggest that DCEBIO stimulates Cl secretion of the mouse jejunum and that DCEBIO targets components of the Cl secretory mechanism. 1-ethyl-2-benzimidazolinone; forskolin; glibenclamide; clotrimazole; H89  相似文献   

13.
We used the short-circuit current (Isc) technique to investigate the effects of the isoflavone genistein on the electrogenic Cl secretion of the mouse jejunum. Genistein stimulated a sustained increase in Isc that was dose dependent. Bumetanide inhibited 76 ± 5% of the genistein-stimulated Isc consistent with activation of Cl secretion. Genistein failed to stimulate Isc following maximal activation of the cAMP pathway by forskolin. In addition, forskolin had a reduced effect on Isc of the mouse jejunum in the presence of genistein. Glibenclamide, a blocker of CFTR, eliminated the genistein-stimulated increase of Isc and reduced the forskolin-activated Isc. Clotrimazole, a Ca2+-activated K+ channel blocker, failed to reduce the genistein-stimulated Isc. Vanadate, a blocker of tyrosine-dependent phosphatases, reduced the genistein-activated Isc. Tyrphostin A23, a tyrosine kinase inhibitor, reduced basal Isc, after which genistein failed to stimulate Isc. These data suggest that genistein activated a sustained Cl secretory response of the mouse jejunum and that the effect of genistein was via a tyrosine-dependent phosphorylation pathway. 1-ethyl-2-benzimidazolone; vanadate; tyrphostin A23; cantharidic acid; phosphatase  相似文献   

14.
Net accumulation of Cl by intact barley plants was virtuallyeliminated in roots and reduced by 40% in shoots when externalmedia (0.5 mol m–3 CaSO4 plus 0–5 mol m–3KCI) were supplemented with 0.25 mol m Ca(NO3)2. Plasmalemma36Cl influx (oc) was shown to be insensitive to externalNO3- in plants which had previously been grown in solutionslacking –3, but oc became sensitive to NO3-after a lagperiod of 3–6 h. Kinetic analyses revealed that the inhibitionof 36C1 influx by external NO3- was complex. At 0.25mol m–3 NO3- the Vmax for Cl influx was reducedby greater than 50%, with insignificant effects upon Km. At0.5 mol m–3 NO3- there was no further effect upon Vmaxbut Km for influx increased from 38±5 mmol m–3to 116±26 mmol m–3. By contrast, Cl effluxwas found to be insensitive to external NO3-. A model for theregulation of Cl influx is proposed which involves bothnegative feedback effects from vacuolar NO3- +Cl) concentrationand (external) NO3- inhibition of Cl influx at the plasmalemma.These combined effects serve to discriminate against Claccumulation, favouring NO3- accumulation, when the latter ionis available. Such observations are inconsistent with recentproposals for the existence of bona fide homeostats for chlorideaccumulation in higher plants. Key words: Nitrate inhibition, Chloride influx, Barley  相似文献   

15.
The role of carbonic anhydrase (CA) in ion transport processesof aquatic and terrestrial arthropod species is reviewed. Inboth insects and crustaceans CA is found in a variety of iontransporting tissues. The bulk of CA activity in crustaceansis concentrated in the posterior gills, which are morphologicallyand biochemically adapted for ion transport. The enzyme canbe specifically localized to gill lamellae which contain largepopulations of salt transporting chloride cells. Enzyme activityin the posterior gills of species having the ability to regulateblood ion concentrations increases when these organisms areacclimated to environmental salinities in which they ion regulate.In stenohaline, ion conforming species branchial CA activityis uniformly low, being only 5–10% that in regulatingspecies. Studies on the blue crab, Callinectes sapidus, usingthe specific CA inhibitor acetazolamide have shown that theenzyme is indeed important in blood ion regulation. Blood Na$and Cl concentrations are both severely lowered in drug-treatedanimals acclimated to low salinity, while they remain virtuallyunaffected in animals acclimated to high salinity, in whichthe animal is an ion conformer. High salinity acclimated crabstreated with acetazolamide do not survive transfer to low salinity,and mortality is related to a breakdown in the ion regulatorymechanism. Branchial CA most likely functions in the hydrationof respiratory CO2 to H$ and HCO3, which serve as counterionsfor the active uptake of Na$ and Cl, respectively. Interrestrial species the role of CA is unclear and merits furtherinvestigation.  相似文献   

16.
The cellular mechanism for Cl and K+ secretion in the colonic epithelium requires K+ channels in the basolateral and apical membranes. Colonic mucosa from guinea pig and rat were fixed, sectioned, and then probed with antibodies to the K+ channel proteins KVLQT1 (Kcnq1) and minK-related peptide 2 (MiRP2, Kcne3). Immunofluorescence labeling for Kcnq1 was most prominent in the lateral membrane of crypt cells in rat colon. The guinea pig distal colon had distinct lateral membrane immunoreactivity for Kcnq1 in crypt and surface cells. In addition, Kcne3, an auxiliary subunit for Kcnq1, was detected in the lateral membrane of crypt and surface cells in guinea pig distal colon. Transepithelial short-circuit current (Isc) and transepithelial conductance (Gt) were measured for colonic mucosa during secretory activation by epinephrine (EPI), prostaglandin E2 (PGE2), and carbachol (CCh). HMR1556 (10 µM), an inhibitor of Kcnq1 channels (Gerlach U, Brendel J, Lang HJ, Paulus EF, Weidmann K, Brüggemann A, Busch A, Suessbrich H, Bleich M, and Greger R. J Med Chem 44: 3831–3837, 2001), partially (50%) inhibited Cl secretory Isc and Gt activated by PGE2 and CCh in rat colon with an IC50 of 55 nM, but in guinea pig distal colon Cl secretory Isc and Gt were unaltered. EPI-activated K+-secretory Isc and Gt also were essentially unaltered by HMR1556 in both rat and guinea pig colon. Although immunofluorescence labeling with a Kcnq1 antibody supported the basolateral membrane presence in colonic epithelium of the guinea pig as well as the rat, the Kcnq1 K+ channel is not an essential component for producing Cl secretion. Other K+ channels present in the basolateral membrane presumably must also contribute directly to the K+ conductance necessary for K+ exit during activation of Cl secretion in the colonic mucosa. HMR1556; K+ secretion; epinephrine; prostaglandin E2; cholinergic  相似文献   

17.
Effects of Cl and other anions on the rate of HILL reactionin Euglena chloroplasts were investigated. Cl acceleratedthe reaction rate with ferricyanide as HILL oxidant; Br,F and I were also effective; NO3, PO42–and SO42– were less effective. Divalent cations, Ca2+and Mg2+, were also highly effective. The promoting effectsof these ions were highly dependent on pH and the nature andconcentration of the HILL oxidant used. Accelerating effectsof the ion increased with decreasing concentrations of ferricyanide.Generally, the stimulating effect of Cl was much moremarked at pH 7–7.5, with little effect at pH 5. Thus,the pH-activity relationship in the HILL reaction is more orless markedly modified by addition of ions. Cl, and other anions, accelerated the reaction by affectingonly the dark rate-limiting portion of the HILL reaction; thelight reaction constant remained uninfluenced. We inferred thatsome reaction step, at which ferricyanide receives electronfrom photosystem 2, is accelerated by Cl and other ions.Cl effects were rather small, or undetectable, with DPIPor p-benzoquinone as oxidants. (Received January 8, 1970; )  相似文献   

18.
Borate absorption in excised sugarcane leaves   总被引:1,自引:0,他引:1  
Borate absorption in sugarcane consists of a rapid and reversibleinflux into the mesophyll cells of the leaf which is completedwithin 20 rains. (Phase I), followed by a slower and irreversibleaccumulatory phase (II). Phase II uptake represents the summationof 3 absorption mechanisms, each dependent upon the externalconcentration. Highly specific mechanisms 1 and 2 transportborate across the initial barrier into the cells, reaction 3carries the borate across the vacuolar membrane. Calcium isshown to be essential for maximum rates of borate absorption.All 3 reactions are inhibited by OH through a combinationof competitive inhibition and irreversible disruption of cellularfunction or structure. Temperature changes over the range of10–40 profoundly affect Vmaz and Km1, but have no effecton Km2 and Km3. Reactions 1 and 2 are unaffected by 50 mtl Cl,SO–– or H2PO4, whereas each of these anionscompetes with H2BO3 for site 3. Specific metabolic inhibitorswere used to delineate a linkage of mechanisms 1 and 2 to respiratoryelectron transport. Mechanism 3 is coupled to oxidative phosphorylation. 1Published with the approval of the Director of the Hawaii AgriculturalExperiment Station as Technical Paper No. 954.  相似文献   

19.
The Cl fluxes across the plasma membrane and the Clcontent of the acid–resistant alga Dunaliella acidophila(optimal growthat pH 1.0, positive membrane potential) werestudied in the presence of 0.01–300 mM Cl. Up to40 mM Cl in the medium, theinternal Cl concentrationis higher than that predicted by the electrochemical equilibrium,whereas at higher external Cl concentrations internalCl levels are lower than expected for the electrochemicalequilibrium. Growth in the absence of Cl is significantlylower than in the standard growth medium (2.2 mM Cl)and this reduction cannot be overcome by the addition ofothermonovalent anions such as Br or NO3 The latterimplies a specific Cl requirement in addition to therole of Cl as apermeant anion during ion translocations.Growth and photosynthesis tolerate an excess of Cl upto 300 mM (without stepwiseadaptation to increasing salinity).The uptake of Cl (measured by tracer techniques) exhibitsMichaelis–Menten kinetics (KM = 0.75 mM Cl) andis stimulated by light and high H+ concentrations. Internalacidification by acetic acid causes an inhibition of Cluptake. The uptake of Cl is inhibited by the monovalentanions Br, I, and NO3 with K1, values notvery much different from the KM. value for Cl. The aniontransport inhibitors SITS and DIDS do not affect photosynthesis,but strongly suppressthe uptake of Cl. The Clchannel blockers A–9–C and NPPB cause inhibitionsof Cl uptake as well as of photosynthesis andthe ATPpool. FCCP strongly depresses the internal ATP–pool withouta marked effect on Cl uptake. Cl efflux was inhibitedbyDIDS and SITS, but stimulated or inhibited by FCCP, dependingon the external Cl concentration. Results are in agreementwiththe hypothesis that Cl uptake into D. acidophila is dueto catalysed diffusion and is primarily independent of the hydrolysisofATP. Cl efflux is assumed to be coupled to an activepump. Data suggest tight co–operativity between the systemsresponsiblefor Cl uptake and Cl efflux, with thecytoplasmic pH and the membrane potential being important mediators. Key words: Acid resistance, chloride carrier, chloride channels, Dunaliella acidophila, membrane potential, plasma membrane  相似文献   

20.
We examined changes in electrical and morphological properties of rat osteoclasts in response to prostaglandin (PG)E2. PGE2 (>10 nM) stimulated an outwardly rectifying Cl current in a concentration-dependent manner and caused a long-lasting depolarization of cell membrane. This PGE2-induced Cl current was reversibly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), and tamoxifen. The anion permeability sequence of this current was I > Br Cl > gluconate. When outwardly rectifying Cl current was induced by hyposmotic extracellular solution, no further stimulatory effect of PGE2 was seen. Forskolin and dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) mimicked the effect of PGE2. The PGE2-induced Cl current was inhibited by pretreatment with guanosine 5'-O-2-(thiodiphosphate) (GDPS), Rp-adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS), N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide dihydrochloride (H-89), and protein kinase A inhibitors. Even in the absence of nonosteoclastic cells, PGE2 (1 µM) reduced cell surface area and suppressed motility of osteoclasts, and these effects were abolished by Rp-cAMPS or H-89. PGE2 is known to exert its effects through four subtypes of PGE receptors (EP1–EP4). EP2 and EP4 agonists (ONO-AE1-259 and ONO-AE1-329, respectively), but not EP1 and EP3 agonists (ONO-DI-004 and ONO-AE-248, respectively), mimicked the electrical and morphological actions of PGE2 on osteoclasts. Our results show that PGE2 stimulates rat osteoclast Cl current by activation of a cAMP-dependent pathway through EP2 and, to a lesser degree, EP4 receptors and reduces osteoclast motility. This effect is likely to reduce bone resorption. prostanoid receptor agonists; electrophysiology; motile activity; bone resorption  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号