首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Calcium influx was studied in monolayers of HeLa cells to determine the number of exchangeable and nonexchangeable pools and the rate constant of the different fluxes. Of the two exchangeable pools, one has a very fast rate of exchange with a half-time of 1.54 min, a compartment size of 1.06 mµmoles/mg cell protein, and an exchange rate of 474 µµmoles/(mg protein\·min). This compartment is likely to be extracellular and could represent calcium exchange between the extracellular fluids and surface binding sites of the cell membrane. The second exchangeable pool has a half-time of exchange of 31 min, a compartment size of 2.69 mµmoles/mg cell protein (0.224 millimole calcium/kg cell water), and a flux rate of 0.0546 µµmole cm-2 sec-1. This compartment can be considered to be the intracellular pool of exchangeable calcium. An unexchangeable intracellular pool of calcium of 3.05 mµmoles/mg cell protein was detected implying that only 45% of the intracellular calcium is exchangeable. In addition, a large extracellular pool of calcium has been found to be unexchangeable, probably a part of the cell glycocalix. Finally, dinitrophenol 10-3 M does not affect the slow component of the calcium uptake curve which brings new evidence that calcium entry into the cell is not a metabolically dependent process.  相似文献   

2.
Summary The distribution of intracellular calcium was determined in isolated kidney cells by kinetic analyses of45Ca fluxes. Isotopic desaturation curves reveal an intracellular calcium compartment with a very slow time constant. The size of this calcium compartment is markedly increased by raising the extracellular calcium, by increasing the extracellular phosphate and may contain up to 99% of the intracellular exchangeable calcium. Accumulation of calcium in this pool is completely abolished by two specific inhibitors of mitochondrial calcium uptake, Antimycin A and Warfarin®. These results suggest that this compartment represents a pool of calcium in the cell mitochondria. The sudden removal of phosphate from the medium immediately stimulates calcium efflux from the cell. Conversely, an increase in medium phosphate immediately inhibits calcium efflux. Both effects are rapidly reversible. Finally, calcium efflux from the cells is stimulated after the cells are exposed to low temperature suggesting that calcium transport out of the cell may be regulated by the cytoplasmic calcium activity. These experiments are consistent with the view that mitochondria play an important role in the control and regulation of cytoplasmic calcium activity and of calcium transport.  相似文献   

3.
Calcium efflux was studied in monolayers of HeLa cells. The fast phase of exchange was studied in an open system by continuous washout. Its half-time was 1.58 min which is practically identical to the fast phase of calcium influx previously found to be 1.54 min. This suggests that the fast component of efflux represents calcium exchange from an extracellular compartment probably from calcium bound to the cell membrane surface. Dinitrophenol (DNP) and iodoacetate (IAA) do not inhibit calcium efflux from this compartment. The slow phase of calcium exchange was studied in a closed three compartment system. The half-time of calcium efflux measured under these conditions is almost identical to that obtained previously in studies of calcium influx: 33.0 and 37.0 min, respectively. This slow compartment is likely to be the intracellular exchangeable calcium pool. DNP and IAA inhibit calcium efflux from this compartment, lengthening the half-time from 33 min to 55.0 and 216 min, respectively. This suggests that calcium extrusion from the cell is an active process. Since calcium influx is not affected by metabolic inhibitors, the cellular calcium concentration increases as would be predicted under these conditions. Calcium efflux is also markedly depressed by lowering the temperature.  相似文献   

4.
Mechanisms are assumed to exist in the resting platelet which maintain the concentration of cytoplasmic free calcium below that level required to activate cellular responses. To assess such processes the porcine platelet plasma membrane was selectively lysed with digitonin and the uptake (or flux) of free calcium monitored by an extracellular calcium electrode. Lysis resulted in an immediate lowering of the extracellular free calcium, due to the action of intracellular organelle(s) acting on the extracellular space through the permeabilized plasma membrane. In resting platelets, the rate of calcium uptake was first order with respect to the extracellular prelytic calcium concentration, and hence the cytoplasmic free concentration was found to be 1·10?7 M by extrapolation to a point of zero flux (i.e., the null point). This approach could not be used with thrombin-stimulated platelets, as external calcium was required for both secretion of ATP + ADP and aggregation. Nevertheless, evidence for an increase in cytoplasmic free calcium after thromin stimulation was obtained. Metabolic inhibitors and agents known to inhibit calcium uptake by mitochondria had no effect on the calcium flux following lysis, indicating different mechanisms for calcium homeostasis in the platelet when compared with other cell types (e.g., liver). Levels of ionophore A23187, which caused platelet aggregation, gave a massive release of the nonmitochondrial pool of calcium into the cytoplasmic space. Thus, in porcine platelets an intracellular energy-requiring calcium pump, which sequesters calcium in a nonmitochondrial membranous compartment, is crucial for intracellular calcium homeostasis.  相似文献   

5.
Mechanisms are assumed to exist in the resting platelet which maintain the concentration of cytoplasmic free calcium below that level required to activate cellular responses. To assess such processes the porcine platelet plasma membrane was selectively lysed with digitonin and the uptake (or flux) of free calcium monitored by an extracellular calcium electrode. Lysis resulted in an immediate lowering of the extracellular free calcium, due to the action of intracellular organelle(s) acting on the extracellular space through the permeabilized plasma membrane. In resting platelets, the rate of calcium uptake was first order with respect to the extracellular prelytic calcium concentration, and hence the cytoplasmic free concentration was found to be 1 X 10(-7) M by extrapolation to a point of zero flux (i.e., the null point). This approach could not be used with thrombin-stimulated platelets, as external calcium was required for both secretion of ATP + ADP and aggregation. Nevertheless, evidence for an increase in cytoplasmic free calcium after thrombin stimulation was obtained. Metabolic inhibitors and agents known to inhibit calcium uptake by mitochondria had no effect on the calcium flux following lysis, indicating different mechanisms for calcium homeostasis in the platelet when compared with other cell types (e.g., liver). Levels of ionophore A23187, which caused platelet aggregation, gave a massive release of the nonmitochondrial pool of calcium into the cytoplasmic space. Thus, in porcine platelets an intracellular energy-requiring calcium pump, which sequesters calcium in a nonmitochondrial membranous compartment, is crucial for intracellular calcium homeostasis.  相似文献   

6.
The insulin-responsive glucose transporter GLUT4 plays an essential role in glucose homeostasis. A novel assay was used to study GLUT4 trafficking in 3T3-L1 fibroblasts/preadipocytes and adipocytes. Whereas insulin stimulated GLUT4 translocation to the plasma membrane in both cell types, in nonstimulated fibroblasts GLUT4 readily cycled between endosomes and the plasma membrane, while this was not the case in adipocytes. This efficient retention in basal adipocytes was mediated in part by a C-terminal targeting motif in GLUT4. Insulin caused a sevenfold increase in the amount of GLUT4 molecules present in a trafficking cycle that included the plasma membrane. Strikingly, the magnitude of this increase correlated with the insulin dose, indicating that the insulin-induced appearance of GLUT4 at the plasma membrane cannot be explained solely by a kinetic change in the recycling of a fixed intracellular GLUT4 pool. These data are consistent with a model in which GLUT4 is present in a storage compartment, from where it is released in a graded or quantal manner upon insulin stimulation and in which released GLUT4 continuously cycles between intracellular compartments and the cell surface independently of the nonreleased pool.  相似文献   

7.
Free cholesterol is very efficiently removed from cells by 2-hydroxypropyl-beta-cyclodextrins. The efflux of cholesterol occurs from two distinct kinetic pools: the half-times (t(1/2)) for the two pools in CHO-K1 cells are 15 +/- 5 s and 21 +/- 6 min and they represent 25% +/- 5% and 75% +/- 5% of the readily exchangeable cell cholesterol, respectively. In this study we have determined that the fast pool and the majority of the slow kinetic pool for cholesterol efflux are apparently present in the plasma membrane. Numerous agents that inhibit intracellular cholesterol trafficking are unable to affect either the size or the t(1/2) for efflux of either kinetic pool. In contrast, treatment of the cells with N-ethylmaleimide (NEM), exogenous lipases such as sphingomyelinase and phospholipase C, calcium ionophore A23187, or heat resulted in the dramatic increase in the size of the fast kinetic pool of cholesterol. These changes in the kinetics of cholesterol efflux are not specific to the nature of the extracellular acceptor indicating that they are a consequence of changes in the cell plasma membrane. The above treatments disrupt the normal organization of the lipids in the plasma membrane via either hydrolysis or randomization. The phosphatidylcholine and sphingomyelin present in the plasma membrane are critical for maintaining the two kinetic pools of cholesterol; any alteration in the amount or the location of these phospholipids results in an enhancement of efflux by redistributing cholesterol into the fast kinetic pool.  相似文献   

8.
The addition of phenylephrine or vasopressin to isolated hepatocytes resulted in an efflux of calcium. The intracellular source of this calcium was determined by measuring the calcium released upon the sequential additions of an uncoupling agent and the Ca2+ ionophore A23187 to control and hormone-treated cells. The release promoted by these agents was used as an estimate of the calcium content of the mitochondria and endoplasmic reticulum, respectively. The validity and limitations of this method are critically evaluated. The source of the calcium mobilized by the hormones was found to depend on the intracellular calcium distribution. When the amount of total cell-releasable Ca2+ was low (less than 0.9 nmol/mg cell dry weight), the endoplasmic reticulum represented the major cellular calcium pool and was also the predominant pool mobilized by the hormone. As the cell calcium content was increased, the endoplasmic reticulum attained its maximum capacity and the mitochondria sequestered increasing amounts of calcium. Under these conditions, the hormones mobilized calcium from the mitochondria with minimal effects on the endoplasmic reticulum calcium pool. These results suggest that more than one hormone-induced Ca2+-releasing agent may be formed. Both the total amount and the rate of calcium released from the cell under the influence of hormones was independent of the cell calcium content. The appearance of hormone-releasable Ca2+ in the extracellular medium showed a lag period of 5 to 10 s, during which a rapid increase of phosphorylase activity was observed. In contrast, the mobilization of a comparable amount of calcium by carbonyl cyanide p-trifluoromethoxyphenylhydrazone showed no significant lag, but the activation of phosphorylase was slower. A kinetic analysis of the hormone-releasable Ca2+ indicated a rapid onset with a peak increase of cytosolic free Ca2+ between 5 and 10 s prior to release of Ca2+ from the cell. The results suggest that an early action of the hormone is the inhibition of the plasma membrane Ca2+ efflux pump.  相似文献   

9.
Summary Stimulations or inhibitions by various agents of45Ca efflux from prelabeled cells or tissues display distinct and reproducible profile patterns when the results are plotted against time as fractional efflux ratios (FER). FER is the fractional efflux of45Ca from stimulated cells divided by the fractional efflux from a control unstimulated group. These profile patterns fall into three categories: peak patterns, exponential patterns, and mixed patterns. Each category can be positive (stimulation) or negative (inhibition). The interpretation of these profiles is difficult because45Ca efflux depends on three variables: the rate of calcium transport out of the cell, the specific activity of the cell compartment from which the calcium originates, and the concentration of free calcium in this compartment. A computer model based on data obtained by kinetic analyses of45Ca desaturation curves and consisting of two distinct intracellular pools was designed to follow the concentration of the traced substance (40Ca), the tracer (45Ca), and the specific activity of each compartment before, during, and after the stimulation or the inhibition of calcium fluxes at various pool boundaries. The computer model can reproduce all the FER profiles obtained experimentally and bring information which may be helpful to the interpretation of this type of data. Some predictions of the model were tested experimentally, and the results support the views that a peak pattern may reflect a sustained change in calcium transport across the plasma membrane, that an exponential pattern arises from calcium mobilization from an internal subcellular pool, and that a mixed pattern may be caused by a simultaneous change in calcium fluxes at both compartment boundaries.  相似文献   

10.
Granzyme B (GrB) is a key effector of cytotoxic lymphocyte-mediated cell death. It is delivered to target cells bound to the proteoglycan serglycin, but how it crosses the plasma membrane and accesses substrates in the cytoplasm is poorly understood. Here we identify two cationic sequences on GrB that facilitate its binding and uptake. Mutation of cationic sequence 1 (cs1) prevents accumulation of GrB in a distinctive intracellular compartment and reduces cytotoxicity 20-fold. Mutation of cs2 reduces accumulation in this intracellular compartment and cytotoxicity two- to threefold. We also show that GrB-mediated cytotoxicity is abrogated by heparin and that target cells deficient in cell surface sulfate or glycosaminoglycans resist GrB. However, heparin does not completely prevent GrB internalization and chondroitin 4-sulfate does not inhibit cytotoxicity, suggesting that glycosaminoglycans are not essential GrB receptors. We propose that GrB enters cells by nonselective adsorptive pinocytosis, exchanging from chondroitin sulfate on serglycin to anionic components of the cell surface. In this electrostatic "exchange-adsorption" model, cs1 and cs2 participate in binding of GrB to the cell surface, thereby promoting its uptake and eventual release into the cytoplasm.  相似文献   

11.
The mechanism whereby 25-hydroxycholesterol, an inhibitor of the synthesis of cholesterol, depresses DNA synthesis in cycling P815 mastocytoma cells was investigated. The uptake of 45Ca into P815 cells treated with 1 microgram/ml 25-hydroxycholesterol began to rise above control levels by 6 hours after initiation of treatment and was increased tenfold by 15 hours. Kinetic data of calcium uptake indicated the presence of at least two components of calcium uptake, fast and slow. The fast phase of calcium exchange at the cell surface was changed little by treatment with 25-hydroxycholesterol. The slow phase of calcium exchange with the intracellular compartment was markedly affected by treatment with the inhibitor, there being a large increase in the flux and half-time of uptake, and a fall in the rate constant. This resulted in a large elevation of the intracellular compartment size. Incorporation of [3H]thymidine into DNA began to decline between 9 and 12 hours posttreatment in these cultures. Uptake of calcium and depression of DNA synthesis were shown to be directly related to the dose of 25-hydroxycholesterol used. The changes in 45Ca uptake and DNA synthesis due to 25-hydroxycholesterol treatment were abolished by addition of exogenous cholesterol to the incubation medium. The results are consistent with the hypothesis that 25-hydroxycholesterol, by inhibiting cholesterol production, depresses DNA synthesis via an elevation in the uptake of calcium into the cell to a level incompatible with continued DNA replication.  相似文献   

12.
Summary The calcium distribution among three cellular calcium pools was studied by kinetic analyses in intestinal cells isolated from normal, vitamin D-deficient and vitamin D-repleted chicks. Vitamin D deficiency significantly reduces the cellular45Ca uptake by reducing the intracellular exchangeable calcium pool. Calcium efflux from the cells varies depending on the onset of the vitamin D deficiency: at four weeks calcium efflux is greater than control but after the fifth week it decreases and remains significantly lower than control. The cytoplasmic calcium pool follows the same biphasic pattern: it is higher at 4 weeks and lower after 5 weeks of D-deficiency. The mitochondrial calcium pool and calcium efflux from this compartment do not show a biphasic pattern. They are markedly depressed from the 4th week of D-deficiency. Eighteen hours after vitamin D administration the cytoplasmic and mitochondrial calcium pools return toward normal; after 42 hours the cytoplasmic pool and calcium efflux from the cell are normal. These data suggest that in D-deficiency, mitochondrial calcium uptake is depressed producing first a rise and then a drop in cytoplasmic calcium. The cytoplasmic calcium is responsible for the changes in cellular calcium efflux. The decreased calcium uptake may be partially due to a decreased cellular exchangeable calcium pool.Presented as a preliminary report at the Fifty-Third Meeting of The Endocrine Society, San Francisco, June, 1971.  相似文献   

13.
Quantification of endocytosis-derived membrane traffic   总被引:11,自引:0,他引:11  
The main data covered by this article have been summarized in Table I. A fairly uniform picture is obtained for endocytosis-derived membrane transfer and compartmentation. This may be due to the limited amount of information and the resulting low resolution. Data on mainly three cell types are presented: macrophages, fibroblasts and amoebae. The data vary as much for one cell type as between different cells. Therefore, no possible differences related to cell function emerge. More detailed data, for more cell types, may change the picture. The values for cell surface area, although significantly different in absolute terms (column S in Table I), are rather similar when related to cell diameter, all being about 3-fold in excess of the surface area of the smooth sphere of comparable volume (column xi in Table I). The rate of plasma membrane internalization for macrophages and amoebae both professional phagocytes, is about 2 cell surface area equivalents per h or more. This may be somewhat higher than for fibroblasts (column PM/h in Table I). The average residence time for membrane on the cell surface, therefore, is about 30 min. A most interesting finding seems to be the rather uniform values obtained for the average size (volume weighted) of primary pinosomes, being about 0.3 micron in diameter (column phi-Internalization in Table I). Due to their rapid increase in size as a result of fusion (cf. Fig. 2), it has not been feasible to directly measure the size of primary pinosomes by morphometric means. The values in Table I, give no information on the size distributions of primary pinosomes and on whether these consist of one or more size classes. The steady-state average diameter of pinosomes is noticeably larger than that of primary pinosomes (column phi-pinosomes in Table I; cf. Table II for Acanthamoebae). The corresponding decrease in surface-to-volume ratio can make about 50% of pinosomal membrane available for recycling directly from this membrane compartment. Membrane recycling from the pinosomal compartment occurs after an average residence time of about 3 min for macrophages and 4-6 min for fibroblasts (column tau-pinosomes in Table I). The relative pool size of intracellular membranes participating in shuttling to and from the cell surface is significantly different for animal cells and amoebae (column rho in Table I). For macrophages, fibroblasts, CHO cells, and mast cells, this intracellular membrane pool amounts to about 10-20% the plasma membrane area, compared to 150-200% in the case of amoebae.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The synthesis and turnover of cell surface H-2 alloantigens were studied in murine splenocytes by the anti-H-2-bind method to separate precursor-labeled surface from intracellular molecules. Results indicate that newly synthesized H-2 antigen, labeled in either its peptide or carbohydrate portion enters a relatively small pool of intracellular H-2 antigen and then is rapidly transported to the plasma membrane which represents a larger compartment. The simplest interpretation of these findings is that H-2 antigen is synthesized and transported along a conventional secretory pathway. Pulse-chase experiments indicate that H-2 antigens are not readily chased from the plasma membrane and are not shed or internalized during short-term culture. The aforementioned observations are discussed in terms of a cellular heterogeneity.  相似文献   

15.
Although sterol carrier protein-2 (SCP-2) participates in the uptake and intracellular trafficking of cholesterol, its effect on "reverse cholesterol transport" has not been explored. As shown herein, SCP-2 expression inhibited high density lipoprotein (HDL)-mediated efflux of [(3)H]cholesterol and fluorescent 22-(N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3b-ol (NBD-cholesterol) up to 61 and 157%, respectively. Confocal microscopy of living cells allowed kinetic analysis of two intracellular pools of HDL-mediated NBD-cholesterol efflux: the highly fluorescent lipid droplet pool and the less fluorescent pool outside the lipid droplets, designated the cytoplasmic compartment. Both the whole cell and the cytoplasmic compartment exhibited two similar kinetic pools, the half-times of which were consistent with protein (t(b)(12) near 1 min) and vesicular (t(d)(12) = 10-20 min) mediated sterol transfer. Although SCP-2 expression did not alter cytoplasmic sterol pool sizes, the rapid t(b)(12) decreased 36%, while the slower t(d)(12) increased 113%. Lipid droplets also exhibited two kinetic pools of NBD-cholesterol efflux but with half-times over 200% shorter than those of the cytoplasmic compartment. The lipid droplet slower effluxing pool size and t(d)(12) were increased 48% and 115%, respectively, in SCP-2-expressing cells. Concomitantly, the level of the lipid droplet-specific adipose differentiation-related protein decreased 70%. Overall, HDL-mediated sterol efflux from L-cell fibroblasts reflected that of the cytoplasmic rather than lipid droplet compartment. SCP-2 differentially modulated sterol efflux from the two cytoplasmic pools. However, net efflux was determined primarily by inhibition of the slowly effluxing pool rather than by acceleration of the rapid protein-mediated pool. Finally, SCP-2 expression also inhibited sterol efflux from lipid droplets, an effect related to decreased adipose differentiation-related protein, a lipid droplet surface protein that binds cholesterol with high affinity.  相似文献   

16.
The effect of down-regulation on the intracellular pool of insulin receptors and the role of glycosylation in recovery from down-regulation have been studied in fibroblastic cultures from the skin of non-diabetic mice. In control cultures, 55% of the total specific [125I]insulin-binding activity was in the intracellular compartment. Insulin caused a time- and concentration-dependent decrease in the number of cell surface insulin receptors, with no significant change in total insulin receptors. This decrease in surface receptors was accompanied by an increase in the specific binding of [125I]insulin in the intracellular compartment. Removal of insulin from down-regulated cells resulted in a time-dependent increase in the binding of [125I]insulin to surface receptors, reaching 90% of that in controls by 12 h. The recovery of surface insulin receptors after removal of insulin was blocked by incubation of cultures with tunicamycin, but not by cycloheximide. These results indicate that down-regulation of surface insulin receptors by insulin is associated with translocation of receptors into the intracellular pool and suggest that protein glycosylation is important in insulin receptor recycling and externalization.  相似文献   

17.
Utilizing a digitonin-permeabilized cell system, we have studied the release of calcium from a non-mitochondrial intracellular compartment in cultured human fibroblasts (HSWP cells). Addition of 1 mM MgATP to a monolayer of permeabilized cells in a cytosolic media buffered to 150 nM Ca with EGTA rapidly stimulates 45Ca uptake, and the subsequent addition of the putative intracellular messenger inositol trisphosphate (InsP3) induces rapid release of 85% (+/- 6% n = 6) of the 45Ca taken up in response to ATP. Mitogenic peptides (bradykinin, vasopressin, epidermal growth factor [EGF], and insulin) and orthovanadate, which are effective in mobilizing intracellular Ca in intact cells, have little or no effect when added alone to permeabilized cells. However, in the presence of GTP these agents stimulate accumulation of inositol phosphates and release Ca from the InsP3-sensitive pool. These data suggest that a GTP binding protein is involved in receptor mediated activation of phospholipase C, which leads to release of inositol phosphates. The GTP-dependent release of InsP3 and the mobilization of 45Ca from the intracellular compartment are inhibited by pretreatment of cells, prior to permeabilization, with the protein kinase C activator 12-O-tetradecanoyl-phorbol-13-acetate (TPA). TPA pretreatment does not affect the InsP3 stimulated Ca release. These results suggest that protein kinase C is involved in down-regulation or inhibition of phospholipase C, or the GTP binding protein responsible for relaying the mitogenic signal from the cell surface receptor to the phospholipase C activity.  相似文献   

18.
A mouse IgG mAb termed P1C3 was raised against A23187-treated human peripheral blood neutrophils and has been shown to recognize an Ag with an apparent molecular mass of 19 kDa, herein named p19. This p19 Ag was weakly expressed at the cell surface of resting human peripheral blood neutrophils and monocytes, but its cell surface expression was dramatically increased upon activation of these cell types with different secretagogues, including FMLP, PMA, and the calcium ionophores A23187 and ionomycin. A large latent pool of p19 molecules became accessible by immunofluorescence flow cytometry after cell permeabilization of resting neutrophils. A practically total translocation of the intracellular pool of this p19 molecule to the plasma membrane was achieved under appropriate cell stimulation, which induced an almost total degranulation of neutrophil secretory granules. The p19 Ag was absent from platelets, PBL, as well as from the human promyelocytic cell line HL-60, the human promonocytic cell line U937, and the human lymphoid cell lines Daudi and Jurkat. The p19 Ag was also expressed by circulating and/or interstitial neutrophils and monocytes in distinct tissues examined. The mAb P1C3 was found to enhance several neutrophil responses, such as chemotaxis, cell adhesion, phagocytosis, and respiratory burst. These data indicate that the mAb P1C3 recognizes an intracellular Ag in human resting mature neutrophils and monocytes, which upon cell activation is translocated to the cell surface and is able to affect cell functionality.  相似文献   

19.
Mo3e is a protease-sensitive Ag (p75,50) selectively expressed by human monocytic cells stimulated in vitro by exposure to various activating factors including PMA. Here, we report the existence of a large intracellular pool of Mo3e Ag in addition to that expressed on the surface of activated U-937 cells. As detected by quantitative immunofluorescence analysis, permeabilization of unstimulated and PMA-stimulated U-937 cells revealed a latent pool of Mo3e Ag that was 75-fold and 9-fold greater, respectively, than the magnitude of Mo3e Ag expressed on the surface. PMA stimulation not only induced an increase in the relative proportion of Mo3e antigen expressed on the surface membrane, but also stimulated a 1.8-fold increase in "total" Mo3e detectable in permeabilized cells. Trypsin treatment of intact PMA-stimulated U-937 cells eliminated surface Mo3e expression but had little measureable effect on the total Mo3e pool. Permeabilization also uncovered a sequestered compartment of Mo3e Ag in I-937 cells, a variant of U-937 that is surface Mo3e negative. Although the PMA-induced surface Mo3e expression of U-937 was abrogated by cycloheximide, the total pool of Mo3e detectable in permeabilized PMA-stimulated cells was only partially reduced; cycloheximide treatment caused no reduction in the intracellular Mo3e compartment of unstimulated U-937 cells. Detergent lysates of PMA-stimulated U-937 cells exhibited undiminished quantities (relative to untrypsinized cells) of p75 and p50 proteins immunoreactive with anti-Mo3e mAb as detected by Western blotting. This trypsin-sequestered intracellular Mo3e Ag may serve as a reservoir for the up-regulated surface expression of Mo3e that occurs as a result of mononuclear phagocyte activation.  相似文献   

20.
Maintenance of calcium homeostasis is a critical activity of eukaryotic cells. Homeostatic pathways stabilize intracellular free calcium concentrations ([Ca2+]i) at the resting level and provide the source of mobilized calcium for cellular activation. We have measured calcium release from intracellular pools within bloodstream forms of Trypanosoma brucei to better understand homeostatic pathways which operate in these organisms. Fura-2 and 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein were used to quantitate [Ca2+]i and intracellular pH (pHi), respectively. We report that the tumor promoter, thapsigargin, elevated [Ca2+]i by 50-75 nM. Mn2+ quench experiments demonstrated that the source of calcium was intracellular. No change in pHi was associated with the release of calcium from this compartment. In contrast, nigericin released approximately three-fold more calcium than thapsigargin from a pH-sensitive, intracellular pool. The nigericin-sensitive pool was nonmitochondrial. The effects of thapsigargin and nigericin on [Ca2+]i were additive, regardless of the order in which the treatment was given. We conclude that at least two pools of exchangeable calcium occur in bloodstream forms of T. brucei. One pool is sensitive to thapsigargin and apparently resides within the endoplasmic reticulum, while the nigericin-sensitive pool is nonmitochondrial and is of unknown origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号