首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 184 毫秒
1.
湿地植物根表铁膜研究进展   总被引:12,自引:3,他引:12  
为了适应渍水环境,许多湿地植物都具有根系泌氧、形成铁膜的能力。因铁膜具有特殊的物理或化学结构,可以通过吸附和共沉淀作用影响元素在土壤中的化学行为和生物有效性,在植物吸收营养元素和重金属中起重要作用。综述了湿地植物根表铁膜的形成、影响因素以及根表铁膜对营养元素和重金属的生态环境效应,从表征技术方面阐述了根表铁膜的作用机制。对今后的研究方向给出如下建议:(1)扩大研究领域;(2)铁膜形成的动态变化过程;(3)铁膜对植物生理形态的影响;(4)利用先进的表征技术以确定铁膜的作用机制。  相似文献   

2.
土壤中水溶性有机质及其对重金属化学与生物行为的影响   总被引:35,自引:3,他引:35  
土壤水溶性有机质是陆地生态系统和水生生态系统中一种重要的、很活跃的化学组分,已成为环境科学、土壤学和生态学等学科的研究热点.土壤DOM对重金属化学与生物行为有重要影响。但其机理尚不清楚.文中从土壤性质、环境条件、人为因素等方面阐述了土壤DOM产生及影响因素,总结评述了DOM对重金属化学行为和生物有效性的影响,将DOM对重金属的影响机制归纳为络合机制、竞争吸附机制、酸碱缓冲机制.在此基础上,提出了DOM研究存在的问题及其展望.  相似文献   

3.
土壤铁矿物形态转化影响有机碳固定研究进展   总被引:1,自引:0,他引:1  
宋旭昕  刘同旭 《生态学报》2021,41(20):7928-7938
铁是地壳中丰度第四高的元素,其可通过多种方式影响土壤有机碳累积,尤其铁氧化物与土壤有机碳相互作用形成的稳定有机-矿物复合物,被认为是土壤可溶性有机碳长期固定的关键地球化学机制。促进土壤固定有机碳不仅可以提高土壤质量和肥力,还是应对全球气候变化的主要策略之一。然而,铁活跃的氧化还原反应和多样化的赋存形态,使其转化过程对土壤有机碳累积和稳定性的影响结果受到诸多生物和非生物因素调控。从不同角度,结合多学科的研究成果,综述了近年来国内外关于铁矿物形态转化影响土壤有机碳固定的相关研究,包括铁矿物形态转化过程、土壤有机碳固定机制、铁矿物形态转化影响土壤有机碳固定的机制及其主要影响因素(各种环境条件、自身的铁矿物性质、碳源质量等方面),强调铁在土壤有机碳固定过程中的重要作用。对铁固定土壤有机碳的相关研究提出了建议,为今后研究提供相关参考。  相似文献   

4.
水体中的溶解有机质(DOM)可与铁氧化物发生广泛的相互作用,进而对重金属再迁移产生重要影响,因而开展DOM与铁氧化物相互作用过程及其对重金属再迁移影响的实验研究,将有助于深化认识有毒重金属的迁移转化规律及其二次污染风险。本文对还原条件下不同浓度的DOM与铁氧化物的相互作用过程及其对重金属(Pb和As)再迁移的影响进行了研究。Pb、As浓度变化和铁氧化物絮体IR光谱分析结果表明:(1)DOM与铁氧化物的相互作用能明显增强还原环境下铁氧化物中Pb的再释放,并对As的再迁移产生一定的影响;(2)铁氧化物絮体主要通过Fe(III)与DOM中的羟基和羧基形成配位键而发生相互作用,Fe(III)易形成粒径更小的无定形铁氧化物,有利于铁氧化物的还原溶解,进而增强铁氧化物絮体中Pb、As的再释放;DOM使还原溶解后的Fe(II)难以形成二次沉淀矿物,不仅减弱了Pb、As再次进入固相的机会,而且溶解态Fe(II)浓度的增高能够进一步催化γ-FeOOH到α-FeOOH的相转化过程,进而促进铁氧化物絮体中Pb、As元素的再释放;此外,DOM还可以通过竞争吸附作用过程减弱铁氧化物对Pb、As的吸附,这可能也是溶液中Pb、As浓度增高的原因。本研究为进一步深化认识还原环境下重金属的二次污染风险,进而制定科学合理的水环境管理和保护措施提供了科学依据。  相似文献   

5.
Liu J  Yang JJ  Liang XQ  Hu YF  Shi JY  Chen YX 《应用生态学报》2011,22(10):2757-2764
固相形态磷是控制环境中磷素生物可利用性、迁移流失能力的重要形态.基于同步辐射光源的X射线吸收近边结构(XANES)光谱技术可在分子水平上识别目标元素周围的局部化学信息,在非破坏性、原位直接表征等方面体现出其独特的优越性,成为表征化学物质存在形态和阐明化学反应微观机制的前沿技术之一,在环境化学领域中得到了广泛关注.本文简述了磷的XANES的基本理论,综述了XANES技术在矿物、土壤及有机肥中磷素固相形态研究中的应用进展,并分析了该技术应用在环境介质中磷形态表征中所面临的挑战及发展趋势,指出XANES技术应与其他微观光谱技术及宏观试验方法有机结合,多种表征技术取长补短,以期为环境介质中磷素形态表征及转化机制研究提供全面有效的技术支撑.  相似文献   

6.
重金属污染土壤原位化学固定修复研究进展   总被引:41,自引:0,他引:41  
重金属污染土壤原位化学固定修复是通过添加不同外源物质固定土壤中重金属元素,达到降低重金属迁移性和生物有效性的一种重要方法.由于操作方便和效果快速,使其在污染土壤治理过程中有着不可代替的作用,尤其对于耕作土壤中的面源污染.许多具有俘获土壤中重金属离子能力的自然物质和工业副产品如磷矿石、泥炭土、石灰和有机肥等都可用在实地的固定修复中.采用实验室评价和实地应用评价,一方面可以评估这些固定物质在土壤中对重金属离子的固定效率;另一方面可以评估重金属的溶出、释放和生物毒性等生态风险.本文对原位修复过程中采用的不同固定物质的来源和分类进行了概述,对化学固定过程的机理进行了探讨,同时阐述了重金属污染土壤化学固定修复应用过程中的实验室评价和实地应用评价方法,分析了化学固定修复的局限性并提出了今后的发展方向.  相似文献   

7.
硫对土壤重金属形态转化及植物有效性的影响研究进展   总被引:2,自引:1,他引:1  
生源要素硫在土壤中的化学循环不仅会直接影响土壤重金属元素的环境行为,也可通过调控植物根际微环境间接影响植物对重金属元素的吸收累积.土壤中的硫被植物根吸收后在植株中合成的有机硫化合物如植物螯合素(PCs)和金属硫蛋白(MTs)可与重金属形成毒性较低的络合物,构成植物重金属解毒的重要机制之一.我国部分土壤缺硫现象严重,为保证作物高质高产,硫肥的使用逐渐被重视,而硫与重金属的交互作用机制也逐渐成为研究热点.本文综合相关研究,介绍了硫在土壤中的生物化学转化,探讨了土壤硫的化学转化对土壤重金属形态转化及植物有效性的影响,并对今后硫在土壤重金属控制的应用提出展望.
  相似文献   

8.
生物炭对污染物的土壤环境行为影响研究进展   总被引:10,自引:0,他引:10  
近年来,生物炭已成为农业、生态修复和环境保护领域的研究热点。一般认为,生物炭具有改善土壤质量、增加土壤碳汇、减少大气CO2浓度以及修复污染环境等功能。大量的生物炭施用到土壤后会改变土壤性质,影响重金属和有机污染物在土壤中的环境行为以及它们在环境中的归趋。本文就生物炭对土壤中重金属的吸附-解吸、在土壤中的形态转化、在土壤-植物系统中迁移行为、对有机污染物的吸附挥发及生物有效性进行了概述;在此基础上,扼要分析了当前生物炭应用存在的环境风险等问题,并从生物炭在土壤中的迁移转化及其归趋、生物炭的长期环境效应以及生物炭应用方向等方面进行了展望。  相似文献   

9.
重金属污染土壤原位钝化修复研究进展   总被引:63,自引:0,他引:63  
重金属原位钝化技术是一种污染土壤的修复方法,指向污染土壤添加一些活性物质(钝化修复剂),以降低重金属在土壤中的有效浓度或改变其氧化还原状态,从而有效降低其迁移性、毒性及生物有效性.本文基于原位钝化修复剂种类、研究方法、评价指标、作用机制以及风险评价等方面的研究,深入分析了该领域的研究现状和存在问题,并提出了今后研究的重点.目前广泛使用的钝化修复剂主要有粘土矿物、磷酸盐、有机堆肥及微生物材料等.由于土壤结构和组分的复杂性,钝化修复剂的作用机制尚不完全清楚,其可能的机制主要包括沉淀反应、化学吸附与离子交换、表面沉淀、有机络合和氧化还原等.今后应加强从分子水平研究重金属的钝化机制,重点关注钝化修复重金属污染土壤时存在的潜在风险以及钝化修复的长期田间效应.  相似文献   

10.
微生物介导铁还原耦合氨氧化过程的研究进展   总被引:1,自引:0,他引:1  
铁的氧化还原过程可以显著影响环境中次生矿物的形成、养分转化和污染物的归趋。作为厌氧环境中新发现的铁循环过程,铁氨氧化过程对自然和农田生态系统中氨氧化的贡献可达10%以上,对环境保护和农业生产具有深远的意义。文章主要从发展历程、相关微生物、反应机制、影响因素和环境意义等方面综述了铁氨氧化过程。在此过程中,Acidimicrobiaceaesp.A6和异化铁还原菌(DIRB)是驱动铁氨氧化过程的关键微生物,环境pH、Fe(Ⅲ)的浓度和种类、碳源和Mn(Ⅳ)氧化物是重要环境影响因子。铁氨氧化过程可能由微生物独立驱动完成,也可能由微生物-化学耦合作用驱动完成。从环境意义看,铁氨氧化过程对减少温室气体排放、固定重金属等方面具有积极影响,但也会导致氮素流失等负面环境效应。后续的研究可以从纯化微生物、拓展研究方法等方面着手,进一步提升铁氨氧化过程的研究广度和深度。  相似文献   

11.
Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal–contaminated soils.  相似文献   

12.
Iron oxides recovered from abandoned coal mine drainage (AMD) sites (Lowber, Scrubgrass, and Horner) as a soil amendment were investigated in this laboratory study for their effectiveness in the stabilization of cadmium, copper, and zinc in two metal-contaminated soils. The adsorption experimental results demonstrated that all three AMD iron oxides possess significant capacity for adsorption of Cd(II), Cu(II), and Zn(II). Horner iron oxide exhibited the highest adsorption capacity. Both the adsorption and the extraction experimental results showed metal sequestration enhancement through addition of Horner iron oxide to soil (5% to 50% by weight). With soil pH of 4.5 to neutral range, AMD iron oxide addition worked best for strongly adsorbed metals such as Cu, not so well for more weakly adsorbed metals such as Cd and Zn. The more AMD iron oxide amendment added, the less the mobility of the cationic target metals. Addition of AMD iron oxide for metal sequestration was more effective for the contaminated soils with low organic content.  相似文献   

13.
Heavy metal contamination of soil, aqueous waste stream and ground water causes major environmental and human health problems. Heavy metals are major environmental pollutants when they are present in high concentration in soil and show potential toxic effects on growth and development in plants. Due to unabated, indiscriminate and uncontrolled discharge of hazardous chemicals including heavy metals into the environment, plant continuously have to face various environmental constraints. In plants, seed germination is the first exchange interface with the surrounding medium and has been considered as highly sensitive to environmental changes. One of the crucial events during seed germination entails mobilization of seed reserves which is indispensable for the growth of embryonic axis. But, metabolic alterations by heavy metal exposure are known to depress the mobilization and utilization of reserve food by affecting the activity of hydrolytic enzymes. Some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals by which they manage to survive under metal stress. High tolerance to heavy metal toxicity could rely either on reduced uptake or increase planned internal sequestration which is manifested by an interaction between a genotype and its environment. Such mechanism involves the binding of heavy metals to cell wall, immobilization, exclusion of the plasma membrane, efflux of these toxic metal ions, reduction of heavy metal transport, compartmentalization and metal chelation by tonoplast located transporters and expression of more general stress response mechanisms such as stress proteins. It is important to understand the toxicity response of plant to heavy metals so that we can utilize appropriate plant species in the rehabilitation of contaminated areas. Therefore, in the present review attempts have been made to evaluate the effects of increasing level of heavy metal in soils on the key behavior of hydrolytic and nitrogen assimilation enzymes. Additionally, it also provides a broad overview of the strategies adopted by plants against heavy metal stress.  相似文献   

14.
解磷微生物修复土壤重金属污染研究进展   总被引:6,自引:0,他引:6  
李敏  滕泽栋  朱静  宋明阳 《生态学报》2018,38(10):3393-3402
土壤重金属污染问题日益严重,具有普遍性、隐蔽性、表聚性、不可逆性等特点,已经成为环境污染治理中的热点、难点问题。解磷微生物能够依靠自身的代谢产物或通过与其他生物的协同作用,将土壤中的难溶性磷转化为可供植物吸收利用的磷,具有多重植物促生长功能和重金属解毒能力,可在重金属毒害水平下,促进植物生长、提高植物抗病能力、克服重金属对植物生长的不利影响,从而增强重金属修复植物的生存竞争力。从解磷微生物的研究现状入手,介绍了解磷微生物对土壤重金属污染的修复能力,综述了解磷微生物对土壤重金属污染修复的作用机制,分析了目前解磷微生物在重金属修复过程中存在的问题,并提出了今后研究的方向,为重金属污染土壤的修复提供了新思路。  相似文献   

15.
超富集植物吸收富集重金属的生理和分子生物学机制   总被引:31,自引:2,他引:31  
与普通植物相比,超富集植物在地上部富集大量重金属离子的情况下可以正常生长,其富集重金属的机理已经成为当前植物逆境生理研究的热点领域.尤其是近两年,随着分子生物学等现代技术手段的引人,关于重金属离子富集机理的研究取得了一定进展.通过与酵母突变株功能互补克隆到了多条编码微量元素转运蛋白的全长cDNA;也从分子水平上研究了谷胱甘肽、植物螯合素、金属硫蛋白、有机酸或氨基酸等含巯基物质与重金属富集之间的可能关系.本文从植物生理和分子生物学角度简要评述超富集植物对重金属元素的吸收、富集、整合及区室化的机制.  相似文献   

16.
EDTA-Enhanced Phytoremediation of Heavy Metals: A Review   总被引:5,自引:0,他引:5  
The increase in heavy metal terrestrial ecosystems’ contamination through anthropogenic activities is a widespread and serious global problem due to their various environmental and human implications. For these reasons, several techniques, including phytoremediation of heavy metals, have been extensively studied. In spite of significant recent advancement, ethylene diamine tetraacetic acid (EDTA)-enhanced heavy metal phytoextraction as well as related ecological risks are still topical and remain an important area of research. In fact, EDTA favors the solubilization of metals and metalloids in soils, and was therefore extensively studied during the last two decades in order to improve phytoextraction efficiency and reduce treatment duration. This review highlights the recent findings (2010–2012) and mechanisms behind EDTA-enhanced (1) solubilization of heavy metals in soil, (2) mobilization/transport of soluble metals towards plant root zone, and (3) metal absorption by plant roots and translocation towards aerial parts. The review also presents potential risks associated with EDTA-enhanced phytoextraction: (1) environmental persistence of EDTA and/or metal-EDTA complex; (2) potential toxicity of EDTA and/or metal-EDTA complex to plants; and (3) leaching and contamination of groundwater. Moreover, field-scale cost of EDTA-enhanced remediation and the role of EDTA in time required for heavy metal remediation is discussed.  相似文献   

17.
Phytoremediation of Heavy Metals: Physiological and Molecular Mechanisms   总被引:2,自引:0,他引:2  
Heavy metals (HM) are a unique class of toxicants since they cannot be broken down to non-toxic forms. Concentration of these heavy metals has increased drastically, posing problems to health and environment, since the onset of the industrial revolution. Once the heavy metals contaminate the ecosystem, they remain a potential threat for many years. Some technologies have long been in use to remove, destroy and sequester these hazardous elements. Even though effective techniques for cleaning the contaminated soils and waters are usually expensive, labour intensive, and often disturbing. Phytoremediation, a fast-emerging new technology for removal of toxic heavy metals, is cost-effective, non-intrusive and aesthetically pleasing. It exploits the ability of selected plants to remediate pollutants from contaminated sites. Plants have inter-linked physiological and molecular mechanisms of tolerance to heavy metals. High tolerance to HM toxicity is based on a reduced metal uptake or increased internal sequestration, which is manifested by interaction between a genotype and its environment. The growing interest in molecular genetics has increased our understanding of mechanisms of HM tolerance in plants and many transgenic plants have displayed increased HM tolerance. Improvement of plants by genetic engineering, i.e., by modifying characteristics like metal uptake, transport and accumulation and plant’s tolerance to metals, opens up new possibilities of phytoremediation. This paper presents an overview of the molecular and physiological mechanisms involved in the phytoremediation process, and discusses strategies for engineering plants genetically for this purpose.  相似文献   

18.
湿地植物根表的铁锰氧化物膜   总被引:44,自引:0,他引:44  
刘文菊  朱永官 《生态学报》2005,25(2):358-363
湿地植物根系具有泌氧能力 ,使其根表及根际微环境呈氧化状态。因而 ,土壤溶液中一些还原性物质被氧化 ,如 Fe2 ,Mn2 ,形成的氧化物呈红色或红棕色胶膜状包裹在根表 ,称为铁锰氧化物膜。铁锰氧化物膜及其根际微环境是湿地植物根系吸收养分和污染物的门户 ,势必会影响这些物质的吸收。主要综述了铁锰氧化物膜的形成和组成 ,以及根表形成的氧化物膜的生态效应 ,也就是氧化物胶膜对植物根系吸收外部介质中的养分及污染物质——重金属离子的影响  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号