首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
湖泊氮素氧化及脱氮过程研究进展   总被引:7,自引:0,他引:7  
范俊楠  赵建伟  朱端卫 《生态学报》2012,32(15):4924-4931
自然界中氮的生物地球化学循环主要由微生物驱动,由固氮作用、硝化作用、反硝化作用和氨化作用来完成。过去数十年间,随着异养硝化、厌氧氨氧化和古菌氨氧化作用的发现,人们对环境中氮素循环认识逐步深入,提出了多种脱氮途径新假说。对湖泊生态系统中氮素的输入、输出及其在水体、沉积物和水土界面的迁移转化过程进行了概括,对湖泊生态系统中反硝化和厌氧氨氧化脱氮机理及脱氮效率的最新研究进展进行了探讨,并对以后的氮素循环研究进行了展望。  相似文献   

2.
生物脱氮新工艺研究进展   总被引:35,自引:0,他引:35  
废水生物脱氮已经成为水污染控制的一个重要研究方向,传统的生物脱氮采用的是硝化-反硝化工艺,但存在很多问题,最近的一些研究表明,生物脱氮过程中出现了一些超出人们转传统认识的新现象,为水处理工作设计处理工艺提供了新的理论思路,现就这一领域的研究进展作一综述。  相似文献   

3.
生物脱氮新工艺研究进展*   总被引:1,自引:0,他引:1  
废水生物脱氮已经成为水污染控制的一个重要研究方向。传统的生物脱氮采用的是硝化 反硝化工艺 ,但存在很多问题。最近的一些研究表明 :生物脱氮过程中出现了一些超出人们传统认识的新现象 ,为水处理工作者设计处理工艺提供了新的理论和思路。现就这一领域的研究进展作一综述。  相似文献   

4.
牛晓倩  周胜虎  邓禹 《生物工程学报》2021,37(10):3505-3519
脱氮是大部分污水处理系统中不可缺少的一环。由于具有经济高效、工艺简单和无二次污染等显著优势,生物脱氮工艺在最近数十年中备受关注。根据脱氮微生物的生理特性和脱氮机制不同,文中分类综述了近年来生物脱氮工艺的研究进展,重点对比分析了硝化菌、反硝化菌和厌氧氨氧化菌以及以这些菌为基础的不同生物脱氮工艺的优缺点,为复杂污水环境的脱氮工艺选择提供参考。基于微生物脱氮机制,通过合成生物学技术开发高效脱氮菌株,结合不同工艺优点并应用自动化模拟最佳条件,从而建立经济高效的脱氮工艺将是未来发展的重要方向。  相似文献   

5.
海洋氮循环过程及基于基因组代谢网络模型的预测   总被引:1,自引:0,他引:1  
海洋氮循环在地球元素循环中充当着必不可少的角色。海洋氮循环是由一系列氧化还原反应构成的生物化学过程。固氮作用和氮同化作用为生态系统提供了生物可用氮(铵盐)。硝化作用可进一步将铵盐氧化为硝酸盐,硝酸盐又可以通过反硝化作用转化为氮气。整个氮循环实现了海洋中不同含氮无机盐间的转换。微生物是海洋氮循环的重要驱动者,海洋氮循环的研究可以帮助理解海洋生物与地球环境相互作用及协同演化的机制,从而更好地保护地球生态环境。随着氮循环关键微生物基因组尺度代谢网络模型的发表,研究者可以利用代谢网络模型来研究不同氮循环过程的效率、环境因子对氮循环过程的影响以及解析氮循环及生物网络的内在机理等,从而帮助人们更深入地研究海洋氮转化机制。本文主要综述了海洋氮循环过程中各个转化过程的主要微生物,以及基因组尺度代谢网络模型在分析氮循环中的应用。  相似文献   

6.
海洋氮循环中细菌的厌氧氨氧化   总被引:5,自引:0,他引:5  
细菌厌氧氨氧化过程是在一类特殊细菌的厌氧氨氧化体内完成的以氨作为电子供体硝酸盐作为电子受体的一种新型脱氮反应.厌氧氨氧化菌的发现,改变人们对传统氮的生物地球化学循环的认识:反硝化细菌并不是大气中氮气产生的唯一生物类群.而且越来越多的证据表明,细菌厌氧氨氧化与全球的氮物质循环密切相关,估计海洋细菌的厌氧氨氧化过程占到全球海洋氮气产生的一半左右.由于氮与碳的循环密切相关,因此可以推测,细菌的厌氧氨氧化会影响大气中的二氧化碳浓度,从而对全球气候变化产生重要影响.另外,由于细菌厌氧氨氧化菌实现了氨氮的短程转化,缩短了氮素的转化过程,因此为开发更节约能源、更符合可持续发展要求的废水脱氮新技术提供了生物学基础.  相似文献   

7.
高效反硝化菌aHD7的筛分、脱氮特性及厌氧氨氧化性   总被引:1,自引:0,他引:1  
从活性污泥中筛选出一株高效反硝化菌aHD7,30℃静置培养3d,脱氮率可达91.7%,且反应过程中亚硝酸盐积累量较低,3d后亚硝酸盐氮浓度基本稳定在1.8mg.L-1.显微镜观察显示,菌株为革兰氏阴性杆菌,大小为0.5 μm×(1.5~2.5) μm.通过生理生化特性及16S rDNA同源性分析,初步推断该菌株为门多萨假单胞菌(Pseudomonas mendocina).考察了碳源、C/N、氮初始浓度、pH等因素对菌株反硝化性能的影响.结果表明:对中低浓度硝酸盐(硝酸盐氮浓度≤276.95 mg.L-1),脱氮率接近100%,硝酸盐氮浓度高达553.59 mg·L-1时,脱氮率可达66.8%,且亚硝酸盐积累量甚微;最适碳源为乙醇;C/N为6~8和偏中性条件有利于反硝化反应.aHD7具有较强的厌氧氨氧化性,平均氨利用率达4.56 mg·L-1·d-1.  相似文献   

8.
土壤氮素转化的关键微生物过程及机制   总被引:47,自引:0,他引:47  
微生物是驱动土壤元素生物地球化学循环的引擎.氮循环是土壤生态系统元素循环的核心之一,其四个主要过程,即生物固氮作用、氨化作用、硝化作用、反硝化作用,均由微生物所驱动.近10年来,随着免培养的分子生态学技术和高通量测序技术等的发展,在硝化微生物多样性及其作用机理、厌氧氨氧化过程和机理等研究方面取得了突破性进展.本文重点阐述了我国有关土壤硝化微生物方面的研究进展,在此基础上,简要介绍了反硝化微生物和厌氧氨氧化及硝酸盐异化还原成铵作用的研究进展,并对今后的研究工作提出了展望.今后土壤氮素转化微生物生态学的研究,应瞄准国际微生生态学发展的前沿,加强新技术新方法的应用,结合我国农业可持续发展、资源环境保护和全球变化研究的重大需求,重点开展以下几方面的工作:(1)开展大尺度上土壤硝化作用及氨氧化微生物分布的时空演变特征及驱动因子的研究;(2)加强氮素转化关键微生物过程与机理的研究,并与相关过程的通量(如氨挥发、N2O释放)和反应速率(如矿化速率、硝化速率)关联起来;(3)在特定生态系统中系统研究各个氮转化过程的耦合关系,构建相关氮素转化和氮素平衡模型,为定向调控土壤氮素转化过程,提高氮素利用效率并减少其负面效应提供科学依据.  相似文献   

9.
甲烷氧化菌利用甲烷作为唯一碳源和能源,在氧化甲烷的过程中能有效地实现脱氮,该过程分为好氧甲烷氧化耦合反硝化(aerobic methane oxidation coupled to denitrification,AME-D)和厌氧甲烷氧化耦合反硝化(anaerobic methane oxidation coupled to denitrification,ANME-D),在碳循环和氮循环的研究中具有重要意义。本文通过总结近年来有关甲烷氧化菌的分类与分布,阐述AME-D和ANME-D的基本原理、影响因素和应用情况,提出相应的研究方向,以期为甲烷氧化菌在污水脱氮中的应用提供参考。  相似文献   

10.
人工湿地氮去除关键功能微生物生态学研究进展   总被引:11,自引:1,他引:11  
陈亮  刘锋  肖润林  吴金水 《生态学报》2017,37(18):6265-6274
人工湿地是一种能有效处理水体氮素污染的生态技术,其中微生物是驱动人工湿地系统中氮素去除的重要引擎。近20年来,随着分子生物学技术的广泛应用,有关人工湿地氮去除功能微生物生态学方面研究取得了一些重要进展。以硝化-反硝化作用和厌氧氨氧化作用这两种重要的人工湿地微生物脱氮途径为主,针对氨氧化细菌/古菌、厌氧氨氧化菌和反硝化菌等关键脱氮功能微生物的研究,重点归纳总结了目前有关这几类关键功能菌群在人工湿地中的丰度、活性、多样性、分布特征与影响因素,及其对废水中氮去除的作用,并在此基础上对今后的重点研究工作提出了展望。面向未来人工湿地氮去除关键功能微生物的研究应侧重其在污水净化和温室气体减排等方面的生态功能研究,同时加强其代谢过程与机制以及不同功能菌群间的关联研究。  相似文献   

11.
12.
Ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria have emerged as significant factors in the marine nitrogen cycle and are responsible for the oxidation of ammonium to nitrite and dinitrogen gas, respectively. Potential for an interaction between these groups exists; however, their distributions are rarely determined in tandem. Here we have examined the vertical distribution of AOA and anammox bacteria through the Arabian Sea oxygen minimum zone (OMZ), one of the most intense and vertically exaggerated OMZs in the global ocean, using a unique combination of intact polar lipid (IPL) and gene-based analyses, at both DNA and RNA levels. To screen for AOA-specific IPLs, we developed a high-performance liquid chromatography/mass spectrometry/mass spectrometry method targeting hexose-phosphohexose (HPH) crenarchaeol, a common IPL of cultivated AOA. HPH-crenarchaeol showed highest abundances in the upper OMZ transition zone at oxygen concentrations of ca. 5 μ, coincident with peaks in both thaumarchaeotal 16S rDNA and amoA gene abundances and gene expression. In contrast, concentrations of anammox-specific IPLs peaked within the core of the OMZ at 600 m, where oxygen reached the lowest concentrations, and coincided with peak anammox 16S rDNA and the hydrazine oxidoreductase (hzo) gene abundances and their expression. Taken together, the data reveal a unique depth distribution of abundant AOA and anammox bacteria and the segregation of their respective niches by >400 m, suggesting no direct coupling of their metabolisms at the time and site of sampling in the Arabian Sea OMZ.  相似文献   

13.
Allen  Catherine E  Tyler  Paul A  Varney  Mark S 《Hydrobiologia》2000,440(1-3):273-279
Specimens of the deep-sea benthic shrimp Nematocarcinus gracilis were collected from 900 m to 1000 m in the Arabian Sea, close to where the permanent oxygen minimum zone meets the sea floor. Lipid profiles, encompassing total lipid, lipid class and fatty acid composition, were compared with previously reported crustacean lipid assays and provided an insight into the life history of the species. The major storage lipid in N. gracilis was triglyceride, supporting the supposition that this species exists in benthic regions. Neutral lipid levels were commensurate with N. gracilis being an opportunistic feeder. Fatty acid composition was typical of an organism with a diet based on an ultimately photosynthetic source of organic carbon, but also reflected the reduction in the availability of labile organic carbon (in the case of lipid, highly unsaturated fatty acids) in the deep sea.  相似文献   

14.
A combination of stable isotopes (15N) and molecular ecological approaches was used to investigate the vertical distribution and mechanisms of biological N2 production along a transect from the Omani coast to the central–northeastern (NE) Arabian Sea. The Arabian Sea harbors the thickest oxygen minimum zone (OMZ) in the world''s oceans, and is considered to be a major site of oceanic nitrogen (N) loss. Short (<48 h) anoxic incubations with 15N-labeled substrates and functional gene expression analyses showed that the anammox process was highly active, whereas denitrification was hardly detectable in the OMZ over the Omani shelf at least at the time of our sampling. Anammox was coupled with dissimilatory nitrite reduction to ammonium (DNRA), resulting in the production of double-15N-labeled N2 from 15NO2, a signal often taken as the lone evidence for denitrification in the past. Although the central–NE Arabian Sea has conventionally been regarded as the primary N-loss region, low potential N-loss rates at sporadic depths were detected at best. N-loss activities in this region likely experience high spatiotemporal variabilities as linked to the availability of organic matter. Our finding of greater N-loss associated with the more productive Omani upwelling region is consistent with results from other major OMZs. The close reliance of anammox on DNRA also highlights the need to take into account the effects of coupling N-transformations on oceanic N-loss and subsequent N-balance estimates.  相似文献   

15.
We performed a suite of 15N incubations (15NO2, 15NO3 and 15NH4+) with and without the organic-nitrogen (N) compound allylthiourea (ATU), in the suboxic waters of the Arabian Sea. Production of 29N2 in control (-ATU) incubations with either 15NH4++14NO2, or their analogues, 15NO2+14NH4+, though small, confirmed the presence of anammox. In contrast, when we added ATU, along with 15NO2 and 14NH4+, there was a much greater production of 29N2, with 92% of the 15N-label being recovered as 29N2 on average. Such stimulated production of 29N2 could not be due to anammox, as the addition of ATU, along with 15NH4++14NO2, only produced 29N2 equivalent to that in the controls. The ratios of 29N2 to 30N2 produced also precluded stimulation of denitrification. We present this as evidence for a hitherto uncharacterised metabolism potentially capable of oxidising organic-N (e.g. NH2 groups) directly to N2 gas at the expense of NO2.  相似文献   

16.
Vampire squid (Vampyroteuthis infernalis) are considered phylogenetic relics with cephalopod features of both octopods and squids. They lack feeding tentacles, but in addition to their eight arms, they have two retractile filaments, the exact functions of which have puzzled scientists for years. We present the results of investigations on the feeding ecology and behaviour of Vampyroteuthis, which include extensive in situ, deep-sea video recordings from MBARI''s remotely operated vehicles (ROVs), laboratory feeding experiments, diet studies and morphological examinations of the retractile filaments, the arm suckers and cirri. Vampire squid were found to feed on detrital matter of various sizes, from small particles to larger marine aggregates. Ingested items included the remains of gelatinous zooplankton, discarded larvacean houses, crustacean remains, diatoms and faecal pellets. Both ROV observations and laboratory experiments led to the conclusion that vampire squid use their retractile filaments for the capture of food, supporting the hypothesis that the filaments are homologous to cephalopod arms. Vampyroteuthis'' feeding behaviour is unlike any other cephalopod, and reveals a unique adaptation that allows these animals to spend most of their life at depths where oxygen concentrations are very low, but where predators are few and typical cephalopod food is scarce.  相似文献   

17.
Gooday AJ  Bowser SS 《Protist》2005,156(1):113-126
We describe a gromiid protist Gromia pyriformis sp. nov., from bathyal depths on the Pakistan margin (NE Arabian Sea), an area characterised by a well-developed Oxygen Minimum Zone (OMZ). The new species is smaller (length usually <1 mm) than the only other described deep-sea gromiid species (Gromia sphaerica) or the well-known coastal species Gromia oviformis. Its identification as a gromiid is based on the test-wall ultrastructure. This includes (i) an outer wall (165-300 nm thick) limited by an electron-opaque layer and perforated by pore structures which typically extend through its entire thickness, and (ii) inner "honeycomb membrane" structures which form a discontinuous sheet (18-20 nm thick) lying parallel to the outer wall. An outermost glycocalyx (approximately 75 nm thick), not observed in other gromiid species, is also present and imparts a finely granular appearance to the outer test surface, as seen by Scanning Electron Microscopy (SEM). Numerous rod-shaped prokaryotes are attached to the exterior of the glycocalyx. Gromia pyriformis sp. nov. typically occurs above the sediment-water interface, attached to the large arborescent foraminiferan Pelosina sp. It is confined to a very narrow bathymetric zone (approximately 1000 m water depth) in the lower portion of the OMZ, where bottom-water oxygen concentrations are approximately 0.2 ml l(-1).  相似文献   

18.
Live (Rose Bengal stained) and dead benthic foraminiferal communities (hard-shelled species only) from the Pakistan continental margin oxygen minimum zone (OMZ) have been studied in order to determine the relation between faunal composition and the oxygenation of bottom waters. Samples were taken from 136 m to 1870 m water depth during the intermonsoon season of 2003 (March–April). Live foraminiferal densities show a clear maximum in the first half centimetre of the sediment only few specimens are found down to 4 cm depth. The faunas exhibit a clear zonation across the Pakistan margin OMZ. Down to 500 m water depth, Uvigerina ex gr. U. semiornata and Bolivina aff. B. dilatata dominate the assemblages. These taxa are largely restricted to the upper cm of the sediment. They are adapted to the very low bottom-water oxygen values (≈ 0.1 ml/l in the OMZ core) and the extremely high input of organic carbon on the upper continental slope. The lower part of the OMZ is characterised by cosmopolitan faunas, containing also some taxa that in other areas have been described in deep infaunal microhabitats. The contrast between faunas typical for the upper part of the OMZ, and cosmopolitan faunas in the lower part of the OMZ, may be explained by a difference in the stability of dysoxic conditions over geological time periods. The core of the OMZ has been characterised by prolonged periods of stable, strongly dysoxic conditions. The lower part of the OMZ, on the contrary, has been much more variable over time-scales of 1000s and 10,000 years because of changes in surface productivity and a fluctuating intensity of NADW circulation. We suggest that, as a consequence, well-adapted, shallow infaunal taxa occupy the upper part of the OMZ, whereas in the lower part of the OMZ, cosmopolitan deep infaunal taxa have repeatedly colonised these more intermittent low oxygen environments.  相似文献   

19.
Changes in ocean temperature and circulation patterns compounded by human activities are leading to oxygen minimum zone (OMZ) expansion with concomitant alteration in nutrient and climate active trace gas cycling. Here, we report the response of microbial eukaryote populations to seasonal changes in water column oxygen-deficiency using Saanich Inlet, a seasonally anoxic fjord on the coast of Vancouver Island British Columbia, as a model ecosystem. We combine small subunit ribosomal RNA gene sequencing approaches with multivariate statistical methods to reveal shifts in operational taxonomic units during successive stages of seasonal stratification and renewal. A meta-analysis is used to identify common and unique patterns of community composition between Saanich Inlet and the anoxic/sulfidic Cariaco Basin (Venezuela) and Framvaren Fjord (Norway) to show shared and unique responses of microbial eukaryotes to oxygen and sulfide in these three environments. Our analyses also reveal temporal fluctuations in rare populations of microbial eukaryotes, particularly anaerobic ciliates, that may be of significant importance to the biogeochemical cycling of methane in OMZs.  相似文献   

20.
Nitrite oxidation is the second step of nitrification. It is the primary source of oceanic nitrate, the predominant form of bioavailable nitrogen in the ocean. Despite its obvious importance, nitrite oxidation has rarely been investigated in marine settings. We determined nitrite oxidation rates directly in 15N-incubation experiments and compared the rates with those of nitrate reduction to nitrite, ammonia oxidation, anammox, denitrification, as well as dissimilatory nitrate/nitrite reduction to ammonium in the Namibian oxygen minimum zone (OMZ). Nitrite oxidation (⩽372 nM NO2 d−1) was detected throughout the OMZ even when in situ oxygen concentrations were low to non-detectable. Nitrite oxidation rates often exceeded ammonia oxidation rates, whereas nitrate reduction served as an alternative and significant source of nitrite. Nitrite oxidation and anammox co-occurred in these oxygen-deficient waters, suggesting that nitrite-oxidizing bacteria (NOB) likely compete with anammox bacteria for nitrite when substrate availability became low. Among all of the known NOB genera targeted via catalyzed reporter deposition fluorescence in situ hybridization, only Nitrospina and Nitrococcus were detectable in the Namibian OMZ samples investigated. These NOB were abundant throughout the OMZ and contributed up to ∼9% of total microbial community. Our combined results reveal that a considerable fraction of the recently recycled nitrogen or reduced NO3 was re-oxidized back to NO3 via nitrite oxidation, instead of being lost from the system through the anammox or denitrification pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号