共查询到15条相似文献,搜索用时 93 毫秒
1.
目的:探讨加权TOPSIS法在医疗质量综合评价中的应用价值.方法:根据该院2002-2006年统计资料筛选评价指标并给予权重,建立数据矩阵和规范化矩阵;确定最优向量和最劣向量,计算各年度医疗质量评价指标与最优、最劣向量的加权欧氏距离和相对接近度.结果:根据该院原始数据成功建立了数据矩阵和规范化矩阵,确定的最优向量z+=(0.4479,0.4485,0.4486,0.4515,0.4474,0.4528,0.4737,0.4714,0.4970),最劣向量Z-=(0.4466,0.4452,0.4458,0.4420,0.4467,0.4397,0.3778,0.4254,0.3568),各年度与最优及最劣向量的加权欧氏距离、相对接近度及排序结果表明该院医疗质量逐年提高,2006年最好,2005年次之,2002年最差.结论:加权TOPSIS法考虑了各指标的权重,从而使评价结果更趋于合理,适用于医院医疗质量综合评价. 相似文献
2.
3.
黄磊张亚明尹存林缪阳祁旺王阿明 《中国真菌学杂志》2022,(3):200-204
目的构建卡泊芬净合理用药评价细则,促进临床合理使用。方法采用回顾性研究方法,筛选盐城市第一人民医院2021年1月—2021年12月归档使用卡泊芬净病例,并采用加权逼近理想解排序法进行点评。结果共筛选出合格病例93例,其中合理用药病例(Ci≥0.8)23例,占比24.73%;基本合理用药病例(0.8>Ci≥0.6)51例,占比54.84%;不合理用药病例(Ci<0.6)19例,占比(20.43%)。结论采用加权逼近理想解排序法对卡泊芬净使用评价是切实可行的,评价结果显示该院卡泊芬净使用存在问题,应加强整改。 相似文献
4.
目的 探究采用凯式定氮法替代苦味酸法测定注射用A型肉毒毒素(botulinum toxin type A for injection)明胶含量的可行性,以期对注射用A型肉毒毒素明胶含量测定方法的变更起到借鉴作用。方法 通过专属性、准确度、重复性、中间精密度和耐用性验证,确认采用凯式定氮法测定注射用A型肉毒毒素明胶含量的数据可靠性;对凯式定氮法与现有苦味酸法测定注射用A型肉毒毒素明胶含量的结果采用配对t检验和Bland-Altman分析进行统计学分析,确定2种测定方法的一致性。结果 注射用A型肉毒毒素中右旋糖酐20、蔗糖、A型肉毒毒素复合物对明胶含量测定无干扰,该方法专属性良好;准确度回收率位于95%~99%之间;重复性RSD为0.73%;中间精密度RSD为2.10%;且耐用性良好,可采用凯式定氮法进行注射用A型肉毒毒素明胶含量的测定。同时与现有苦味酸法相比,配对t检验无统计学差异;Bland-Altman分析,2种方法测量的差值均位于测量差均值的95%置信区间内,说明2种方法一致性良好。结论 可采用凯式定氮法替代苦味酸法进行注射用A型肉毒毒素明胶含量的测定。 相似文献
5.
6.
7.
目的 分析综合医院对于大数据应用的内在需求,为医院的大数据研发与应用提供导向和依据。方法 采用德尔菲法自制医院大数据应用需求调查问卷,随机抽取中国研究型医院学会医疗分会64家会员单位进行调查,获得有效问卷104份,有效回收率为94.55%。结果 精准医疗(4.31±0.42)分,精益管理(4.23±0.56)分,科学研究(4.19±0.52)分,健康管理(4.16±0.52)分,数字医疗(4.06±0.60)分,教育培训(3.69±0.69)分。不同性别、年龄、职称、岗位组间的需求差异有统计学意义(P<0.05)。多元线性回归分析结果显示,医学人工智能(b=0.324,P=0.000)和互联网+医疗(b=0.161,P=0.047)的需求程度会对医院大数据应用前景态度产生显著的正向影响关系。结论 综合性医院对大数据具有较强的、多样化的应用需求,应以实际需求为导向,重点推进精准医疗、医学人工智能和互联网+医疗等相关应用的研发。 相似文献
8.
Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina) and Ion Torrent (Life Technology) sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare). Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels) between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis. 相似文献
9.
利用T7DNA聚合酶在低温下仍具较高活性的特点,在热变性后低温下进行测序反应,使用该方法对多种PCR产物进行序列分析均取得较好的结果. 相似文献
10.
11.
Understanding the molecular basis of species formation is an important goal in evolutionary genetics, and Dobzhansky-Muller incompatibilities are thought to be a common source of postzygotic reproductive isolation between closely related lineages. However, the evolutionary forces that lead to the accumulation of such incompatibilities between diverging taxa are poorly understood. Segregation distorters are believed to be an important source of Dobzhansky-Muller incompatibilities between hybridizing species of Drosophila as well as hybridizing crop plants, but it remains unclear if these selfish genetic elements contribute to reproductive isolation in other taxa. Here, we collected viable sperm from first-generation hybrid male progeny of Mus musculus castaneus and M. m. domesticus, two subspecies of rodent in the earliest stages of speciation. We then genotyped millions of single nucleotide polymorphisms in these gamete pools and tested for a skew in the frequency of parental alleles across the genome. We show that segregation distorters are not measurable contributors to observed infertility in these hybrid males, despite sufficient statistical power to detect even weak segregation distortion with our novel method. Thus, reduced hybrid male fertility in crosses between these nascent species is attributable to other evolutionary forces. 相似文献
12.
Mutant screens have proven powerful for genetic dissection of a myriad of biological processes, but subsequent identification and isolation of the causative mutations are usually complex and time consuming. We have made the process easier by establishing a novel strategy that employs whole-genome sequencing to simultaneously map and identify mutations without the need for any prior genetic mapping.THE challenges posed by the identification of a causal mutation in a mutant of interest have in effect restricted the use of forward genetics to those organisms benefiting from a solid genetic toolbox. Whole-genome sequencing (WGS) is promising to revolutionize the way phenotypic traits are assigned to genes. However, current strategies to identify causal mutations using WGS require first the identification of an approximate genomic location containing the mutation of interest (Sarin et al. 2008; Smith et al. 2008; Srivatsan et al. 2008; Blumenstiel et al. 2009; Irvine et al. 2009). This is because genomes contain many natural sequence variations (Denver et al. 2004; Hillier et al. 2008; Sarin et al. 2010), which, along with mutagen-induced ones, complicate the identification of the causal mutation when an approximate genomic location has not been previously identified. Mapping has previously been achieved with time-consuming and laborious techniques that, in addition, rely on an organism''s single-nucleotide polymorphism (SNP) map and established variant strains. For example, traditional SNP-based mapping (Wicks et al. 2001; Davis et al. 2005) has previously been used in Caenorhabditis elegans to narrow down the genomic region containing the mutation of interest, prior to conducting WGS (Sarin et al. 2008). In Arabidopsis, simultaneous SNP mapping and mutation identification has been achieved with WGS, but this requires the generation of a mapping population of up to 500 F2 progeny to identify only one allele (Schneeberger et al. 2009). This is a challenging prospect for many model systems. Indeed, if the mutant phenotype is subtle, the isolation of such numbers of recombinants is very tedious. Furthermore, it is not applicable in those organisms where a mapping population cannot be generated, simply because of a lack of intercrossable variants or because of life cycles (parasitic organisms, for example) that would make it extremely difficult to follow and isolate many recombinant individuals.Here, we describe a strategy to simultaneously and rapidly locate and identify multiple mutations from a mutagenesis screen with WGS that circumvents these limitations. This powerful and straightforward method directly uses mutagen-induced nucleotide changes that are linked to the causal mutation to identify its specific genomic location, thus negating the construction of genetic mapping populations and subsequent mapping.Treatment of organisms with a chemical mutagen induces nucleotide changes throughout the genome. Following mutagenesis, backcrossing or outcrossing of the mutagenized organism to unmutagenized counterparts is performed to eliminate mutagen-induced mutations (Figure 1A; supporting information, File S2). The phenotype-causing mutation remains as only backcrossed individuals showing the phenotype of interest are retained. In addition, mutagen-induced nucleotide changes that are genetically linked to the causal mutation and physically surround it on the chromosome will remain, in contrast to unlinked nucleotide changes (Figure 1A). As a result of this genetic linkage, a high-density cluster of typical mutagen-induced variants is visualized from sequence data obtained by WGS, which is positioned around the causal mutation. By locating such high-density regions, one maps the approximate genomic location of the causal mutation and subsequently identifies the affected gene within this region.Open in a separate windowFigure 1.—Mapping mutations on the basis of density of mutagen-induced DNA damage across the genome. (A) Visual representation of our WGS cloning strategy. Mutagen treatment induces point mutations throughout the genome (red asterisks). Backcrossing to the original unmutated parent strain removes much of the mutagen-induced nucleotide changes except for the causal mutation (green asterisk) and those genetically linked to it. WGS sequencing can be used to detect canonical mutagen-induced point mutations, thus revealing a physical position for the causal mutation. Shared background variants (yellow crosses) are filtered out from WGS data by comparing the sequences of mutants sequenced side-by-side, revealing a high-density variant cluster in only one genomic region. Importantly, genomic sequences of mutants derived from the same starting strain must be compared, to allow subtraction of nucleotide variants that are common to this particular strain, through sequence comparison. (B) Physical map of total nucleotide variations per megabase across the genome compared to the wild-type reference genome for each mutant (fp6, fp9, and fp12) after WGS. (C) After sequence quality filtering, subtraction of common variants between the 3 mutants, and filtering out noncanonical EMS nucleotide changes, high-density variant peaks are obtained in one genomic location for each mutant (red boxes). Steps 1 and 3 are essential for clear visualization of the high-density peaks whereas step 2 improves visualization. (D) Close-up of variants on chromosome III for fp6. Within this peak we identified only 6 candidate mutations that could potentially affect a protein sequence. We confirmed that the missense mutation in egl-5 was the causal mutation (Figure S2). For fp9 and fp12 we identified only 10 (9 missense and 1 3′-UTR) and 4 (2 premature stop and 2 missense) candidate mutations, respectively, within each mutant''s EMS-based mapped region. Thus, our method consistently allowed precise mapping in 3 different mutants to a region small enough to contain only a handful of candidate mutations.As a proof-of-principle, we simultaneously mapped and sequenced the causal mutations of multiple C. elegans mutants isolated from an EMS mutagenesis screen using this strategy. The mutagenesis screen itself was undertaken to identify genes that controlled the reprogramming of a single cell called Y into another cell called PDA during C. elegans development (Jarriault et al. 2008). After EMS treatment, three distinct mutant alleles (fp6, fp9, and fp12) were backcrossed to the original unmutagenized strain 4-6X. It is important to note that a backcrossing or outcrossing step is necessary for the analysis of mutants obtained from all mutagenesis screens, irrespective of the type of mutant identification strategy used or the type of mutagen or organism used (and, as such, does not represent an extra step introduced by our method). The mutants then underwent WGS side-by-side (Table S1, Table S2, Figure S1, and File S2). After alignment to the wild-type N2 reference genome using MAQgene software (Bigelow et al. 2009), the sequencing data obtained for each mutant were compared, and we subtracted common nucleotide variants that were shared between at least two of our three mutants (File S1). These shared variants, which are very unlikely to be either the causal mutation or EMS-induced mutations from the screen itself, represent strain differences between the N2 used to generate the reference genome and the PS3662 strain used here for mutagenesis. Note that this step eliminated ∼2000 point mutations as potential candidates for our causal mutation. This result strongly emphasizes the advantage of conducting WGS on two or more mutants side-by-side, as reference genomes may contain many nucleotide variations when compared to organisms sequenced from the laboratory (Denver et al. 2004; Hillier et al. 2008; Sarin et al. 2010; this study) and as such would confound mutation identification.To identify EMS-induced changes linked to the causal mutation and expose its location, we looked only at variants that matched the canonical EMS-induced G/C > A/T transitions (Drake and Baltz 1976), revealing localized peaks of high-density variation on a single chromosome for each mutant (Figure 1, B and C). These peaks correspond to regions of high mutagen-induced damage that were not removed during backcrossing and therefore are most likely genetically linked to the causal mutation. We therefore focused our attention on these physical regions to identify candidate mutations within them. We localized fp6 to a 4.29-Mb region on chromosome III, fp9 to a 7.11-Mb region on chromosome X, and fp12 to a 1.28-Mb region on a different part of chromosome X (Figure 1C).As a proof of principle, we further examined the nucleotide changes present in the interval to which fp6 was linked. Taking into consideration all variant types (point mutations and indels), we identified only six candidate mutations that potentially affected a gene''s function (Figure 1D and Table S3). One of these, affecting the egl-5/hox gene, lies almost perfectly in the middle of the predicted EMS-based mapped region. We confirmed the existence of the mutation in egl-5 by manual resequencing. Both egl-5 targeted RNAi and noncomplementation with the egl-5(n945) null allele confirmed that fp6 affected egl-5 and caused the Y-to-PDA reprogramming defect (Figure S2). fp9 and fp12 each map to distinct regions on chromosome X that also contain only a handful of candidate mutations (10 and 4, respectively) (Figure 1C). Thus, our method consistently allowed precise mapping in 3 different mutants to a region small enough to contain only a handful of candidate mutations and subsequent identification of the causal mutation.We calculated that comparison of WGS data for only two mutants of the same mutagenesis screen is sufficient to localize and sequence the causal mutation (Table S4). Thirteen times sequence coverage has been found to be sufficient to identify a mutation in a pre-SNP mapped C. elegans mutant (Shen et al. 2008). Here, we tested the sequence coverage necessary to perform simultaneous mapping and mutant identification using our strategy and found that 13× was more than enough (Table S4). In addition, by performing longer reads and/or paired-end sequencing, our method can be scaled up to bigger genomes or allow multiple mutant sequencing on each flow cell lane [for, e.g., using multiplex WGS (Cronn et al. 2008)]. Furthermore, because direct sequence comparison is ultimately made between two mutants sequenced side-by-side, the quality of an organism''s reference genome (which is used only for alignment purposes) does not have a bearing on the mapping or mutant identification outcome. Moreover, recent advances in de novo alignment of short reads generated from next generation sequencing platforms (Li et al. 2010; Nowrousian et al. 2010; Webb and Rosenthal 2010; Young et al. 2010) suggest that a reference genome may not even be required to perform mutagen-based mapping and mutant identification with WGS. We predict that technical advances in these areas will make it possible to perform mutagenesis screens on any nonsequenced and genetically uncharacterized organism and use our strategy to quickly identify the causal mutation of an interesting mutant.
Open in a separate windowWe found that all of the minimal requirements tested here were more than adequate to use our mapping strategy. Therefore, it is possible that fewer backcrosses and less sequencing coverage may suffice than is shown here. For example, for genomes with a similar size to C. elegans (∼100 Mb), this method can easily be scaled up by sequencing eight mutants per flow cell. As for any WGS experiments, total cost depends on genome size.By eliminating any prior work except for back/outcrossing, a necessary step for any mutant characterization, our simple and quick strategy provides a significant saving of time and labor as the time needed to map and identify a candidate causal mutation is trimmed down to the sequencing time (currently 7 days) and sequence analysis time (<1 day, see 相似文献
TABLE 1
Summary of WGS cloning strategyConditions used | Minimal requirements tested | |
---|---|---|
Backcrossing | 4–6× | 4× enough |
No. of mutants sequenced | 3 | 2 enough |
Sequencing of mutant | 2× flow cell lanes, paired-end reads (57mer) | 1× flow cell lane enough, single-end reads (57mer) enough |
Average sequence coverage | 52.2–55.3× | 13.6× enough |
Advantages | ||
Any SNP or genetic map information is not necessary | ||
No prior wet lab work necessary: generation of a recombinant mapping population is not necessary | ||
Multiple alleles identified at once | ||
Amenable to scaling up: can be equally used for bigger genomes | ||
Fast: 7 days sequencing, 12 hr MAQGene alignment, and 1 hr mapping | ||
Modest sequence coverage requirements limit cost | ||
Reference genome sequence quality is not important and may not even be necessary | ||
Very straightforward without any specialized software | ||
Requirement | ||
Species must be amenable to mutagenesis and backcrossing |
13.
PCR直接测序方法及其在肿瘤研究中的应用 总被引:4,自引:0,他引:4
PCR直接测序技术是PCR扩增与核酸测序技术相结合的一种方法.根据此技术的原理,建立了一种以PCR扩增引物为测序引物,α-35S dATP直接掺入,Taq DNA聚合酶直接测序PCR扩增产物的方法.实验表明:该方法简便、快速、稳定.用此方法对人食管癌组织中的抗癌基因p53进行了突变测序分析,发现食管癌组织中p53存在点突变,插入、丢失移码突变.并用此方法对人和恒河猴的p53内含子序列进行了测定,发现猴第5内含子为81个核苷酸,第8内含子为92个核苷酸. 相似文献
14.
本文提出了在随机区组设计下利用六个世代的小区平均数估计加性-显性-二基因互作模型的各参数、检验该模型的加权最小二乘法的基本步骤。 相似文献
15.
Goo Jun Matthew Flickinger Kurt?N. Hetrick Jane?M. Romm Kimberly?F. Doheny Gon?alo?R. Abecasis Michael Boehnke Hyun?Min Kang 《American journal of human genetics》2012,91(5):839-848
DNA sample contamination is a serious problem in DNA sequencing studies and may result in systematic genotype misclassification and false positive associations. Although methods exist to detect and filter out cross-species contamination, few methods to detect within-species sample contamination are available. In this paper, we describe methods to identify within-species DNA sample contamination based on (1) a combination of sequencing reads and array-based genotype data, (2) sequence reads alone, and (3) array-based genotype data alone. Analysis of sequencing reads allows contamination detection after sequence data is generated but prior to variant calling; analysis of array-based genotype data allows contamination detection prior to generation of costly sequence data. Through a combination of analysis of in silico and experimentally contaminated samples, we show that our methods can reliably detect and estimate levels of contamination as low as 1%. We evaluate the impact of DNA contamination on genotype accuracy and propose effective strategies to screen for and prevent DNA contamination in sequencing studies. 相似文献