首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H L Klein 《Genetics》2001,159(4):1501-1509
Genomic instability is one of the hallmarks of cancer cells and is often the causative factor in revealing recessive gene mutations that progress cells along the pathway to unregulated growth. Genomic instability can take many forms, including aneuploidy and changes in chromosome structure. Chromosome loss, loss and reduplication, and deletions are the majority events that result in loss of heterozygosity (LOH). Defective DNA replication, repair, and recombination can significantly increase the frequency of spontaneous genomic instability. Recently, DNA damage checkpoint functions that operate during the S-phase checkpoint have been shown to suppress spontaneous chromosome rearrangements in haploid yeast strains. To further study the role of DNA damage checkpoint functions in genomic stability, we have determined chromosome loss in DNA damage checkpoint-deficient yeast strains. We have found that the DNA damage checkpoints are essential for preserving the normal chromosome number and act synergistically with homologous recombination functions to ensure that chromosomes are segregated correctly to daughter cells. Failure of either of these processes increases LOH events. However, loss of the G2/M checkpoint does not result in an increase in chromosome loss, suggesting that it is the various S-phase DNA damage checkpoints that suppress chromosome loss. The mec1 checkpoint function mutant, defective in the yeast ATR homolog, results in increased recombination through a process that is distinct from that operative in wild-type cells.  相似文献   

2.
Genomic instability in the form of mutations and chromosome rearrangements is usually associated with pathological disorders, and yet it is also crucial for evolution. Two types of elements have a key role in instability leading to rearrangements: those that act in trans to prevent instability--among them are replication, repair and S-phase checkpoint factors--and those that act in cis--chromosomal hotspots of instability such as fragile sites and highly transcribed DNA sequences. Taking these elements as a guide, we review the causes and consequences of instability with the aim of providing a mechanistic perspective on the origin of genomic instability.  相似文献   

3.
Tanaka S  Araki H 《PLoS genetics》2011,7(6):e1002136
Genomic instability is a hallmark of human cancer cells. To prevent genomic instability, chromosomal DNA is faithfully duplicated in every cell division cycle, and eukaryotic cells have complex regulatory mechanisms to achieve this goal. Here, we show that untimely activation of replication origins during the G1 phase is genotoxic and induces genomic instability in the budding yeast Saccharomyces cerevisiae. Our data indicate that cells preserve a low level of the initiation factor Sld2 to prevent untimely initiation during the normal cell cycle in addition to controlling the phosphorylation of Sld2 and Sld3 by cyclin-dependent kinase. Although untimely activation of origin is inhibited on multiple levels, we show that deregulation of a single pathway can cause genomic instability, such as gross chromosome rearrangements (GCRs). Furthermore, simultaneous deregulation of multiple pathways causes an even more severe phenotype. These findings highlight the importance of having multiple inhibitory mechanisms to prevent the untimely initiation of chromosome replication to preserve stable genome maintenance over generations in eukaryotes.  相似文献   

4.
The first cell cycles following in vitro fertilization (IVF) of human gametes are prone to chromosome instability. Many, but often not all, blastomeres of an embryo acquire a genetic makeup during cleavage that is not representative of the original zygotic genome. Whole chromosomes are missegregated, but also structural rearrangements of chromosomes do occur in human cleavage stage embryogenesis following IVF. Analysis of pre- and postnatal DNA samples indicates that the in vivo human conceptions also endure instability of chromosome number and structure during cleavage of the fertilized oocyte. This embryonic chromosome instability not necessarily undermines normal human development, but may lead to a spectrum of conditions, including loss of conception, genetic disease and genetic variation development. In this review, the structural instability of chromosomes during human cleavage stage embryogenesis is catalogued, channeled into etiologic models and linked to genomic profiles of healthy and diseased newborns.  相似文献   

5.
Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle.  相似文献   

6.
Cancers have a clonal origin, yet their chromosomes and genes are non-clonal or heterogeneous due to an inherent genomic instability. However, the cause of this genomic instability is still debated. One theory postulates that mutations in genes that are involved in DNA repair and in chromosome segregation are the primary causes of this instability. But there are neither consistent correlations nor is there functional proof for the mutation theory. Here we propose aneuploidy, an abnormal number of chromosomes, as the primary cause of the genomic instability of neoplastic and preneoplastic cells. Aneuploidy destabilizes the karyotype and thus the species, independent of mutation, because it corrupts highly conserved teams of proteins that segregate, synthesize and repair chromosomes. Likewise it destabilizes genes. The theory explains 12 of 12 specific features of genomic instability: (1) Mutagenic and non-mutagenic carcinogens induce genomic instability via aneuploidy. (2) Aneuploidy coincides and segregates with preneoplastic and neoplastic genomic instability. (3) Phenotypes of genomically unstable cells change and even revert at high rates, compared to those of diploid cells, via aneuploidy-catalyzed chromosome rearrangements. (4) Idiosyncratic features of cancers, like immortality and drug-resistance, derive from subspecies within the 'polyphyletic' diversity of individual cancers. (5) Instability is proportional to the degree of aneuploidy. (6) Multilateral chromosomal and genetic instabilities typically coincide, because aneuploidy corrupts multiple targets simultaneously. (7) Gene mutation is common, but neither consistent nor clonal in cancer cells as predicted by the aneuploidy theory. (8) Cancers fall into a near-diploid (2 N) class of low instability, a near 1.5 N class of high instability, or a near 3 N class of very high instability, because aneuploid fitness is maximized either by minimally unstable karyotypes or by maximally unstable, but adaptable karyotypes. (9) Dominant phenotypes, because of aneuploid genotypes. (10) Uncertain developmental phenotypes of Down and other aneuploidy syndromes, because supply-sensitive, diploid programs are destabilized by products from aneuploid genes supplied at abnormal concentrations; the maternal age-bias for Down's would reflect age-dependent defects of the spindle apparatus of oocytes. (11) Non-selective phenotypes, e.g., metastasis, because of linkage with selective phenotypes on the same chromosomes. (12) The target, induction of genomic instability, is several 1000-fold bigger than gene mutation, because it is entire chromosomes. The mutation theory explains only a few of these features. We conclude that the transition of stable diploid to unstable aneuploid cell species is the primary cause of preneoplastic and neoplastic genomic instability and of cancer, and that mutations are secondary.  相似文献   

7.
Genomic instability is a defining characteristic of cancer and the analysis of DNA damage at the chromosome level is a crucial part of the study of carcinogenesis and genotoxicity. Chromosomal instability (CIN), the most common level of genomic instability in cancers, is defined as the rate of loss or gain of chromosomes through successive divisions. As such, DNA in cancer cells is highly unstable. However, the underlying mechanisms remain elusive. There is a debate as to whether instability succeeds transformation, or if it is a by-product of cancer, and therefore, studying potential molecular and cellular contributors of genomic instability is of high importance. Recent work has suggested an important role for ectopic expression of meiosis genes in driving genomic instability via a process called meiomitosis. Improving understanding of these mechanisms can contribute to the development of targeted therapies that exploit DNA damage and repair mechanisms. Here, we discuss a workflow of novel and established techniques used to assess chromosomal instability as well as the nature of genomic instability such as double strand breaks, micronuclei, and chromatin bridges. For each technique, we discuss their advantages and limitations in a lab setting. Lastly, we provide detailed protocols for the discussed techniques.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00661-z.  相似文献   

8.
Telomeres play a vital role in protecting the ends of chromosomes and preventing chromosome fusion. The failure of cancer cells to properly maintain telomeres can be an important source of the chromosome instability involved in cancer cell progression. Telomere loss results in sister chromatid fusion and prolonged breakage/fusion/bridge (B/F/B) cycles, leading to extensive DNA amplification and large deletions. These B/F/B cycles end primarily when the unstable chromosome acquires a new telomere by translocation of the ends of other chromosomes. Many of these translocations are nonreciprocal, resulting in the loss of the telomere from the donor chromosome, providing a mechanism for transfer of instability from one chromosome to another until a chromosome acquires a telomere by a mechanism other than nonreciprocal translocation. B/F/B cycles can also result in other forms of chromosome rearrangements, including double-minute chromosomes and large duplications. Thus, the loss of a single telomere can result in instability in multiple chromosomes, and generate many of the types of rearrangements commonly associated with human cancer.  相似文献   

9.
Heavy‐ion beams are widely used for mutation breeding and molecular biology. Although the mutagenic effects of heavy‐ion beam irradiation have been characterized by sequence analysis of some restricted chromosomal regions or loci, there have been no evaluations at the whole‐genome level or of the detailed genomic rearrangements in the mutant genomes. In this study, using array comparative genomic hybridization (array‐CGH) and resequencing, we comprehensively characterized the mutations in Arabidopsis thaliana genomes irradiated with Ar or Fe ions. We subsequently used this information to investigate the mutagenic effects of the heavy‐ion beams. Array‐CGH demonstrated that the average number of deleted areas per genome were 1.9 and 3.7 following Ar‐ion and Fe‐ion irradiation, respectively, with deletion sizes ranging from 149 to 602 180 bp; 81% of the deletions were accompanied by genomic rearrangements. To provide a further detailed analysis, the genomes of the mutants induced by Ar‐ion beam irradiation were resequenced, and total mutations, including base substitutions, duplications, in/dels, inversions, and translocations, were detected using three algorithms. All three resequenced mutants had genomic rearrangements. Of the 22 DNA fragments that contributed to the rearrangements, 19 fragments were responsible for the intrachromosomal rearrangements, and multiple rearrangements were formed in the localized regions of the chromosomes. The interchromosomal rearrangements were detected in the multiply rearranged regions. These results indicate that the heavy‐ion beams led to clustered DNA damage in the chromosome, and that they have great potential to induce complicated intrachromosomal rearrangements. Heavy‐ion beams will prove useful as unique mutagens for plant breeding and the establishment of mutant lines.  相似文献   

10.
Clustered mutations may be broadly defined as the presence of two or more mutations within a spatially localized genomic region on a single chromosome. Known instances vary in terms of both the number and type of the component mutations, ranging from two closely spaced point mutations to tens or even hundreds of genomic rearrangements. Although clustered mutations can represent the observable net result of independent lesions sequentially acquired over multiple cell cycles, they can also be generated in a simultaneous or quasi-simultaneous manner within a single cell cycle. This review focuses on those mechanisms known to underlie the latter type. Both gene conversion and transient hypermutability are capable of generating closely spaced multiple mutations. However, a recently described phenomenon in human cancer cells, known as ‘chromothripsis’, has provided convincing evidence that tens to hundreds of genomic rearrangements can sometimes be generated simultaneously via a single catastrophic event. The distinctive genomic features observed in the derivative chromosomes, together with the highly characteristic junction sequences, point to non-homologous end joining (NHEJ) as being the likely underlying mutational mechanism. By contrast, replication-based mechanisms such as microhomology-mediated break-induced replication (MMBIR) which involves serial replication slippage or serial template switching probably account for those complex genomic rearrangements that comprise multiple duplications and/or triplications.  相似文献   

11.
Clustered mutations may be broadly defined as the presence of two or more mutations within a spatially localized genomic region on a single chromosome. Known instances vary in terms of both the number and type of the component mutations, ranging from two closely spaced point mutations to tens or even hundreds of genomic rearrangements. Although clustered mutations can represent the observable net result of independent lesions sequentially acquired over multiple cell cycles, they can also be generated in a simultaneous or quasi-simultaneous manner within a single cell cycle. This review focuses on those mechanisms known to underlie the latter type. Both gene conversion and transient hypermutability are capable of generating closely spaced multiple mutations. However, a recently described phenomenon in human cancer cells, known as 'chromothripsis', has provided convincing evidence that tens to hundreds of genomic rearrangements can sometimes be generated simultaneously via a single catastrophic event. The distinctive genomic features observed in the derivative chromosomes, together with the highly characteristic junction sequences, point to non-homologous end joining (NHEJ) as being the likely underlying mutational mechanism. By contrast, replication-based mechanisms such as microhomology-mediated break-induced replication (MMBIR) which involves serial replication slippage or serial template switching probably account for those complex genomic rearrangements that comprise multiple duplications and/or triplications.  相似文献   

12.
Genomic instability is observed in tumors and in a large fraction of the progeny surviving irradiation. One of the best-characterized phenotypic manifestations of genomic instability is delayed chromosome aberrations. Our working hypothesis for the current study was that if genomic instability is in part attributable to cis mechanisms, we should observe a non-random distribution of chromosomes or sites involved in instability-associated rearrangements, regardless of radiation quality, dose, or trans factor expression. We report here the karyotypic examination of 296 instability-associated chromosomal rearrangement breaksites (IACRB) from 118 unstable TK6 human B lymphoblast, and isogenic derivative, clones. When we tested whether IACRB were distributed across the chromosomes based on target size, a significant non-random distribution was evident (p < 0.00001), and three IACRB hotspots (chromosomes 11, 12, and 22) and one IACRB coldspot (chromosome 2) were identified. Statistical analysis at the chromosomal band-level identified four IACRB hotspots accounting for 20% of all instability-associated breaks, two of which account for over 14% of all IACRB. Further, analysis of independent clones provided evidence within 14 individual clones of IACRB clustering at the chromosomal band level, suggesting a predisposition for further breaks after an initial break at some chromosomal bands. All of these events, independently, or when taken together, were highly unlikely to have occurred by chance (p < 0.000001). These IACRB band-level cluster hotspots were observed independent of radiation quality, dose, or cellular p53 status. The non-random distribution of instability-associated chromosomal rearrangements described here significantly differs from the distribution that was observed in a first-division post-irradiation metaphase analysis (p = 0.0004). Taken together, these results suggest that genomic instability may be in part driven by chromosomal cis mechanisms.  相似文献   

13.
F. M. Sheen  J. K. Lim    M. J. Simmons 《Genetics》1993,133(2):315-334
Eight independent recessive lethal mutations that occurred on derivatives of an unstable X chromosome (Uc) in Drosophila melanogaster were analyzed by a combination of genetic and molecular techniques. Seven of the mutations were localized to complementation groups in polytene chromosome bands 6E; 7A. In situ hybridization and genomic Southern analysis established that hobo transposable elements were associated with all seven of the mutations. Six mutations involved deletions of DNA, some of which were large enough to be seen cytologically, and in each case, a hobo element was inserted at the junction of the deletion's breakpoints. A seventh mutation was associated with a small inversion between 6F and 7A-B and a hobo element was inserted at one of its breakpoints. One of the mutant chromosomes had an active hobo-mediated instability, manifested by the recurrent production of mutations of the carmine (cm) locus in bands 6E5-6. This instability persisted for many generations in several sublines of an inbred stock. Two levels of instability, high and basal, were distinguished. Sublines with high instability had two hobo elements in the 6E-F region and produced cm mutations by deleting the segment between the two hobos; a single hobo element remained at the junction of the deletion breakpoints. Sublines with low instability had only one hobo element in the 6E-F region, but they also produced deletion mutations of cm. Both types of sublines also acquired hobo-mediated inversions on the X chromosome. Collectively, these results suggest that interactions between hobo elements are responsible for the instability of Uc. It is proposed that interactions between widely separated elements produce gross rearrangements that restructure the chromosome and that interactions between nearby elements cause regional instabilities manifested by the recurrence of specific mutations. These regional instabilities may arise when a copy of hobo transposes a short distance, creating a pair of hobos that can interact to produce small rearrangements.  相似文献   

14.
Mitochondria damage checkpoint in apoptosis and genome stability   总被引:3,自引:0,他引:3  
  相似文献   

15.
Genomic instability is one of the major features of cancer cells. The clinical phenotypes associated with several human diseases have been linked to recurrent DNA rearrangements and dysfunction of DNA replication processes that involve unstable genomic regions. Analysis of these rearrangements, which are frequently submicroscopic and can lead to loss or gain of dosage-sensitive genes or gene disruption, requires the development of sensitive, high-resolution techniques. This will lead to a better understanding of the mechanisms underlying genome instability and a greater awareness of the role of chromosomal rearrangements in disease. A new technology that involves molecular combing, a method that permits straightening and aligning molecules of genomic DNA, should make possible a detailed analysis of genomic events at the level of single DNA molecules. Such a single molecule approach could help to elucidate important properties that are masked in bulk studies.  相似文献   

16.
Delayed chromosomal instability induced by DNA damage.   总被引:16,自引:4,他引:12       下载免费PDF全文
DNA damage induced by ionizing radiation can result in gene mutation, gene amplification, chromosome rearrangements, cellular transformation, and cell death. Although many of these changes may be induced directly by the radiation, there is accumulating evidence for delayed genomic instability following X-ray exposure. We have investigated this phenomenon by studying delayed chromosomal instability in a hamster-human hybrid cell line by means of fluorescence in situ hybridization. We examined populations of metaphase cells several generations after expanding single-cell colonies that had survived 5 or 10 Gy of X rays. Delayed chromosomal instability, manifested as multiple rearrangements of human chromosome 4 in a background of hamster chromosomes, was observed in 29% of colonies surviving 5 Gy and in 62% of colonies surviving 10 Gy. A correlation of delayed chromosomal instability with delayed reproductive cell death, manifested as reduced plating efficiency in surviving clones, suggests a role for chromosome rearrangements in cytotoxicity. There were small differences in chromosome destabilization and plating efficiencies between cells irradiated with 5 or 10 Gy of X rays after a previous exposure to 10 Gy and cells irradiated only once. Cell clones showing delayed chromosomal instability had normal frequencies of sister chromatid exchange formation, indicating that at this cytogenetic endpoint the chromosomal instability was not apparent. The types of chromosomal rearrangements observed suggest that chromosome fusion, followed by bridge breakage and refusion, contributes to the observed delayed chromosomal instability.  相似文献   

17.
The ribonuclease DIS3 is one of the most frequently mutated genes in the hematological cancer multiple myeloma, yet the basis of its tumor suppressor function in this disease remains unclear. Herein, exploiting the TCGA dataset, we found that DIS3 plays a prominent role in the DNA damage response. DIS3 inactivation causes genomic instability by increasing mutational load, and a pervasive accumulation of DNA:RNA hybrids that induces genomic DNA double‐strand breaks (DSBs). DNA:RNA hybrid accumulation also prevents binding of the homologous recombination (HR) machinery to double‐strand breaks, hampering DSB repair. DIS3‐inactivated cells become sensitive to PARP inhibitors, suggestive of a defect in homologous recombination repair. Accordingly, multiple myeloma patient cells mutated for DIS3 harbor an increased mutational burden and a pervasive overexpression of pro‐inflammatory interferon, correlating with the accumulation of DNA:RNA hybrids. We propose DIS3 loss in myeloma to be a driving force for tumorigenesis via DNA:RNA hybrid‐dependent enhanced genome instability and increased mutational rate. At the same time, DIS3 loss represents a liability that might be therapeutically exploited in patients whose cancer cells harbor DIS3 mutations.  相似文献   

18.
Cytogenetic analysis of human multiple myeloma (MM) cell lines L363, Karpas 707, RPMI 8226, and U-266 was carried out. During long-term existence in vitro, the number of chromosomes in the cell lines was shown to be preserved at the near-diploid level (L363, Karpas 707, U-266) or to increase up to the hypotriploid level (RPMI 8226). There were complexly rearranged karyotypes with abnormalities of chromosomes of all pairs in all cell lines; however, no identical chromosomal translocations have been revealed. Loci of chromosomes involved in structural rearrangements in these cell lines often coincided with sites of DNA copy number imbalances characteristic for MM in vivo. Distinct types of the karyotypic structure of cell populations differing in the combination of cells with the main and additional structural variants of karyotype and of cells with nonclonal chromosome rearrangements were found in MM cell lines. In general, the karyotypic variability of the MM cell lines corresponds to the dynamics of karyotype of myeloma cells in vivo and, hence, has a tumor-specific character.  相似文献   

19.
Recent studies have demonstrated that cells exposed to ionizing radiation or alkylating agents can develop prolonged genetic instability. Induced genetic instability is manisested in multiple ways, including delayed reproductive death, an increased rate of point mutations, and an increased rate of chromosome rearrangements. In many respects these changes are similar to the genetic instability associated with cancer and some human genetic diseases. Therefore, as with cancer cells, multiple mechanisms may be involved, some occuring in the early stages and some in the later stages. The high percentage of cells that develop induced genetic instability after exposure to stress, and the prolonged period over which the instability occurs, indicates that the instability is not in response to residual damage in the DNA or mutations in specific genes. Instead, changes affecting most of the exposed cells, such as epigenetic alterations in gene expression or chain reactions of chromosome rearrangements, are a more likely explanation. Learning more about the mechanisms involved in this process is essential for understanding the consequences of exposure of cells to ionizing radiation or alkylating agents.  相似文献   

20.
Common fragile sites as targets for chromosome rearrangements   总被引:4,自引:0,他引:4  
Arlt MF  Durkin SG  Ragland RL  Glover TW 《DNA Repair》2006,5(9-10):1126-1135
Common fragile sites are large chromosomal regions that preferentially exhibit gaps or breaks after DNA synthesis is partially perturbed. Fragile site instability in cultured cells is well documented and includes gaps and breaks on metaphase chromosomes, translocation and deletions breakpoints, and sister chromosome exchanges. In recent years, much has been learned about the genomic structure at fragile sites and the cellular mechanisms that monitor their stability. The study of fragile sites has merged with that of cell cycle checkpoints and DNA repair, with multiple proteins from these pathways implicated in fragile site stability, including ATR, BRCA1, CHK1, and RAD51. Since their discovery, fragile sites have been implicated in constitutional and cancer chromosome rearrangements in vivo and recent studies suggest that common fragile sites may serve as markers of chromosome damage caused by replication stress during early tumorigenesis. Here we review the relationship of fragile sites to chromosome rearrangements, particularly in tumor cells, and discuss the mechanisms that may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号