首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 125 毫秒
1.
以‘津优35号’黄瓜为试材,采用裂区-再裂区设计,研究了CO2加富下水氮耦合对黄瓜叶片光合作用和超微结构的影响.主区设大气CO2浓度(400 μmol·mol-1,A)和加富CO2浓度(800±20 μmol·mol-1,E)2个CO2浓度处理,裂区设无干旱胁迫(田间持水量的95%,W)和干旱胁迫(田间持水量的75%,D)2个水分处理,再裂区设施氮量450 kg·hm-2(低氮,N1)和900 kg·hm-2(高氮,N2)2个氮素处理.结果表明: 在干旱和高氮条件下,CO2加富提高了黄瓜的株高,且使高氮下的叶面积显著增加.正常灌溉条件下,高氮处理的光合速率、气孔导度和蒸腾速率高于低氮处理,而干旱条件下则相反;CO2加富提高了黄瓜叶片的水分利用效率,并且随着施氮量的增加,其水分利用效率提高.干旱胁迫下,黄瓜近轴面气孔密度增加,而CO2加富和高氮却显著降低了气孔密度.高氮处理增加了黄瓜叶片叶绿体数量而减少了淀粉粒数量,干旱胁迫使叶绿体数量减少,但使淀粉粒数量呈上升趋势.干旱胁迫增加了叶绿体长度和宽度,显著增加了淀粉粒的大小,而高氮降低了叶绿体和淀粉粒的长度和宽度.CO2加富和高氮均使基粒厚度和片层数增加(ADN2除外),并且EDN2处理的片层数显著高于ADN2.综上所述,CO2加富和适宜的水、氮条件能促进黄瓜叶片叶绿体类囊体膜系的发育,显著增加基粒厚度和基粒片层数,有效改善黄瓜的叶绿体结构,增强光合性能,提高黄瓜植株对CO2和水、氮的吸收利用能力.  相似文献   

2.
在未来气候进一步变暖的背景下干旱发生的频率也将增加,而CO2浓度升高和干旱均会对作物生长造成影响。本研究对不同CO2浓度(环境大气CO2浓度、环境大气CO2浓度+200μmol·mol-1)和水分处理(土壤含水量为45%~55%和70%~80%的田间土壤最大持水量,分别为适宜土壤含水量和轻度干旱)下谷子叶片细胞结构、光合生理、抗氧化酶、渗透调节物质和产量的变化进行分析。结果表明:CO2浓度升高增加了谷子叶肉细胞叶绿体内淀粉粒个数、单个淀粉粒面积和淀粉粒总面积。与仅轻度干旱处理相比,轻度干旱条件下CO2浓度升高处理孕穗期谷子叶片净光合速率增加37.9%,但对该时期水分利用效率无显著影响,灌浆期谷子叶片净光合速率和水分利用效率分别增加15.0%和44.2%;孕穗期谷子叶片过氧化物酶(POD)活性和可溶性糖含量分别增加39.3%和8.0%,脯氨酸含量下降31.5%,灌浆期谷子叶片POD活性增加26.5%,丙二醛(MDA)和脯氨酸含量分别下降...  相似文献   

3.
以‘津优1号’黄瓜水培幼苗为试材,采用裂区设计,主区设大气CO2浓度(约380 μmol·mol-1)和倍增CO2浓度(760±20 μmol·mol-1)2个CO2浓度处理,裂区设无干旱胁迫、中度干旱胁迫和重度干旱胁迫3个水分处理(以PEG 6000模拟根际干旱胁迫),研究了黄瓜幼苗非结构性碳水化合物代谢对干旱胁迫和CO2倍增的响应.结果表明: CO2倍增促进了黄瓜叶片中非结构性碳水化合物(葡萄糖、果糖、蔗糖、水苏糖)的积累,降低了渗透势,提高了黄瓜的耐旱性.在干旱胁迫处理过程中,叶片中蔗糖合成酶、可溶性酸性转化酶和碱性转化酶活性先上升后下降;根中可溶性酸性转化酶和碱性转化酶活性则逐渐上升,蔗糖磷酸合成酶活性先上升后下降.CO2倍增提高了蔗糖合成酶的活性而降低了蔗糖磷酸合成酶的活性,这两种酶和转化酶相互配合,促进了蔗糖的分解和抑制蔗糖合成,导致己糖积累,从而降低了细胞的渗透势,增强吸水能力.因此,CO2倍增能缓解干旱胁迫造成的不利影响,提高黄瓜的耐旱性,并且这种缓解效应在干旱胁迫严重时表现更为明显.
  相似文献   

4.
吕宁  尹飞虎  陈云  高志建  刘瑜  石磊 《生态学杂志》2015,26(11):3337-3344
试验设置半开顶式CO2人工气候室,研究了不同CO2浓度处理(360、540 μmol·mol-1)与施氮(N)量(0、150、300 和450 kg·hm-2)对棉花干物质的积累与分配、氮素吸收量及土壤脲酶活性的影响.多样性指数和主成分分析表明: 各施N水平下,CO2浓度增加下棉花蕾、茎、叶和整株的总干物质积累量显著增加;2个CO2浓度下,300 kg·hm-2-N (N300)处理棉花蕾、茎、叶、根及整株干物质量显著高于其他3个N肥处理,合理的氮肥施用可显著提高棉花干物质积累量.棉花蕾和茎的氮素吸收量受CO2浓度影响显著,与360 μmol·mol-1CO2浓度相比,CO2浓度为540 μmol·mol-1条件下蕾和茎的氮含量显著增加,其中N300处理下蕾的氮含量最高,N150和N300处理茎的氮含量高于N0和N450处理;叶的氮素吸收量受CO2和N的交互作用影响显著,在N0、N150、N300处理下,540 μmol·mol-1CO2浓度下叶的氮含量增加;棉花根的氮素吸收量受施N的影响显著,540 μmol·mol-1CO2浓度下根的氮含量随着施N量的增加显著增加.总体上,540 μmol·mol-1CO2浓度下棉花的氮素吸收量高于360 μmol·mol-1 CO2浓度,各CO2和N组合处理下,棉花各器官的氮素积累量蕾铃最高,叶片居中,其次是茎秆,根系最低.各施N水平下,两个土层的土壤脲酶活性随着CO2浓度升高而显著增加;不同CO2浓度处理下,0~20 cm土层土壤脲酶活性随着施N量的增加而增加,20~40 cm土层N300处理下的土壤脲酶活性高于其他N肥处理;CO2和N互作下,0~20 cm土层土壤脲酶活性的平均值显著高于20~40 cm土层.大气CO2浓度为540 μmol·mol-1、氮肥施用量为300 kg·hm-2可显著提高棉花干物质积累量和氮素吸收量.  相似文献   

5.
针对切花红掌日光温室冬季生产时CO2亏缺严重的现象,以不增施CO2为对照,研究了增施700、1000、1300 μmol·mol-1浓度CO2对切花红掌‘火焰’光合特性和生长发育的影响.结果表明: 增施60 d CO2,红掌叶片的净光合速率、胞间CO2浓度和水分利用效率均显著提高,且以1000 μmol·mol-1处理的增幅最大;而气孔导度则较对照显著下降.增施CO2后,红掌叶片的可溶性糖、淀粉和可溶性蛋白含量均较对照显著增加,佛焰苞大小、色泽、花茎长度等切花品质参数,以及叶片发育质量参数和花茎生长速率均有不同程度的提高,且均以1000 μmol·mol-1浓度最佳.增施1000 μmol·mol-1的CO2可以有效促进日光温室切花红掌的冬季生产.  相似文献   

6.
氮素对高大气CO2浓度下小麦叶片光合作用的影响   总被引:2,自引:0,他引:2  
通过测定小麦拔节期叶片的光合气体交换参数和光强-光合速率(Pn)响应曲线,研究了氮素对长期高大气CO2浓度(760 μmol·mol-1)下小麦叶片光合作用的影响.结果表明:在长期高大气CO2浓度下,增施氮肥能提高小麦叶片Pn、蒸腾速率(Tr)和瞬时水分利用效率(WUEi);与正常大气CO2浓度相比,高大气CO2浓度下小麦叶片的Pn和WUEi增加,气孔导度(Gs)和胞间CO2浓度(Ci)降低.随光合有效辐射的增强,高大气CO2浓度下小麦叶片的Pn和WUEi均高于正常大气CO2浓度处理,Gs则较低,而Ci和Tr无显著变化.高氮水平下小麦叶片Gs与Pn、Tr、WUEi呈线性正相关,Gs与Ci在正常大气CO2浓度下呈线性负相关,但高大气CO2浓度下二者无相关性;低氮水平下小麦叶片的Gs与Pn、WUEi无相关性,而与Ci和Tr呈线性正相关,表明高大气CO2浓度下低氮水平的小麦叶片Pn由非气孔因素限制.  相似文献   

7.
通过测定小麦拔节期叶片的光合气体交换参数和光强-光合速率(Pn)响应曲线,研究了氮素对长期高大气CO2浓度(760 μmol·mol-1)下小麦叶片光合作用的影响.结果表明:在长期高大气CO2浓度下,增施氮肥能提高小麦叶片Pn、蒸腾速率(Tr)和瞬时水分利用效率(WUEi);与正常大气CO2浓度相比,高大气CO2浓度下小麦叶片的Pn和WUEi增加,气孔导度(Gs)和胞间CO2浓度(Ci)降低.随光合有效辐射的增强,高大气CO2浓度下小麦叶片的Pn和WUEi均高于正常大气CO2浓度处理,Gs则较低,而Ci和Tr无显著变化.高氮水平下小麦叶片Gs与Pn、Tr、WUEi呈线性正相关,Gs与Ci在正常大气CO2浓度下呈线性负相关,但高大气CO2浓度下二者无相关性;低氮水平下小麦叶片的Gs与Pn、WUEi无相关性,而与Ci和Tr呈线性正相关,表明高大气CO2浓度下低氮水平的小麦叶片Pn由非气孔因素限制.  相似文献   

8.
针对切花红掌日光温室冬季生产时CO2亏缺严重的现象,以不增施CO2为对照,研究了增施700、1000、1300 μmol·mol-1浓度CO2对切花红掌‘火焰’光合特性和生长发育的影响.结果表明: 增施60 d CO2,红掌叶片的净光合速率、胞间CO2浓度和水分利用效率均显著提高,且以1000 μmol·mol-1处理的增幅最大;而气孔导度则较对照显著下降.增施CO2后,红掌叶片的可溶性糖、淀粉和可溶性蛋白含量均较对照显著增加,佛焰苞大小、色泽、花茎长度等切花品质参数,以及叶片发育质量参数和花茎生长速率均有不同程度的提高,且均以1000 μmol·mol-1浓度最佳.增施1000 μmol·mol-1的CO2可以有效促进日光温室切花红掌的冬季生产.  相似文献   

9.
采用水培方式研究了LaCl3对140 mmol·L-1 NO3-硝酸盐胁迫下黄瓜幼苗光合特性的影响.结果表明: 硝酸盐胁迫显著降低了黄瓜幼苗叶绿素及类胡萝卜素含量,叶片Mg2+ ATPase、Ca2+ ATPase活性也随之降低;硝酸盐胁迫7 d,黄瓜幼苗叶片光合速率的降低以气孔限制为主,叶片AQY与CE下降,胁迫12 d则以非气孔限制为主.硝酸盐胁迫下,外加LaCl3可以使黄瓜叶片保持较高的Mg2+ ATPase、Ca2+ ATPase活性及叶绿素和类胡萝卜素含量,尤其是外加低浓度(20 μmol·L-1)LaCl3显著增加了叶片类胡萝卜素含量;LaCl3还具有降低气孔关闭、改善叶片气体交换功能,减缓叶片Fv/Fm、ФPSII、AQY、CE及qP的降低幅度等作用,使叶片在盐胁迫下保持较高的光能利用率及CO2同化能力.20 μmol·L-1 LaCl3可以有效缓解硝酸盐对黄瓜幼苗光合作用的影响,而200 μmol·L-1LaCl3在胁迫初期对黄瓜幼苗有缓解效果,后期则效果不明显.该结果可为设施土壤的改良提供新的途径.  相似文献   

10.
研究了不同土壤氮和土壤水分条件下,大气CO2浓度升高对春小麦光合作用、气孔导度、蒸散和水分利用效率的影响.结果表明,CO2浓度升高,干旱处理的春小麦(Triticum aestivum L.)叶片光合作用速率幅度增加大于湿润处理,随着氮肥用量增加光合速率相应增加,而不施氮肥增加有限;干旱处理气孔导度幅度减少大于湿润处理,不施氮肥的大于氮肥充足的.CO2浓度升高,干旱处理的蒸散量减少比湿润处理多,不施氮肥的蒸散量减少较为明显;但干旱处理单叶WUE增加大于湿润处理;随着氮肥用量增加,冠层WUE提高,而不施氮肥的冠层WUE最低.因而CO2浓度升高、光合速率增加和蒸散量减少会减缓干旱的不利影响,增强作物对干旱胁迫的抵御能力.  相似文献   

11.
在FACE(free-aircarbondioxideenrichment)平台上,采用静态暗箱气相色谱法观测研究了大气CO2浓度增加对稻田CH4和N2O排放的影响.结果表明,在150和250kgN·hm-2两种氮肥水平下大气CO2浓度增加200μmol·mol-1均明显促进水稻生长,水稻生物量积累.大气CO2浓度增加对150和250kgN·hm-2两种氮肥水平下稻田CH4排放均无显著影响,并简要分析了与现有文献报道结果不一致的原因.大气CO2浓度增加也未导致150和250kgN·hm-2两种氮肥水平下稻田N2O排放的明显变化,与大多数研究结果一致.  相似文献   

12.
利用黑龙江省科学院自然与生态研究所三江平原湿地生态定位研究站内的长期模拟氮沉降试验平台,采用静态箱-气相色谱法,设置低氮(40 kg N·hm-2·a-1)和高氮(80 kg N·hm-2·a-1)处理,以及对照(0 kg N·hm-2·a-1),测定小叶章湿地温室气体排放通量及其相关环境因子,研究三江平原小叶章湿地温室气体排放对氮沉降的响应.结果表明: 低氮和高氮输入均显著增加了温室气体的排放通量,低氮和高氮处理使CO2排放通量增加47.5%和47.9%,CH4排放通量增加76.8%和110.1%,N2O排放通量增加42.4%和10.6%.低氮输入改变了N2O排放的季节动态,但对CO2和CH4排放的季节动态没有显著影响,高氮处理对3种气体排放的季节动态均未造成影响.CO2排放通量和CH4排放通量均与土壤温度呈显著正相关,而影响N2O排放的因素较为复杂,未与土壤温度出现显著的相关关系.  相似文献   

13.
在CO2浓度分别为350μmol·mol-1和倍增浓度(700μmol·mol-1)的两个开顶式生长室内,研究了干旱胁迫下小麦(Triticum aestivum L.)光合作用和抗氧化酶活性的变化.结果表明,CO2浓度升高显著提高了小麦的净光合速率,降低了蒸腾速率,提高了气孔阻力和水分利用效率.倍增CO2浓度明显提高了SOD、POD及CAT酶活性,增强了小麦的抗氧化保护能力和抗旱性.  相似文献   

14.
研究了用开顶箱控制CO2浓度在500和700μmol·mol-1左右时红松幼苗的生理生态反应.结果表明,高浓度CO2(500、700μmol·mol-1CO2)和对照(对照开顶箱、裸地)条件下,红松幼苗的净光合速率与气孔导度之间的变化不同.红松幼苗在500μmol·mol-1CO2条件下,RuBPcase活性最高,呈现光合上调反应,日平均净光合速率最大,叶绿素及可溶性糖含量最高;而生长在700μmol·mol-1CO2的红松幼苗呈现光合下调反应,光合作用明显低于对照植株,其酶活性及物质含量均最低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号