首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We find that monoclonal antibody YTA-1 recognizes an epitope formed by a combination of the integrin alpha(L) and beta(2) subunits of LFA-1. Using human/mouse chimeras of the alpha(L) and beta(2) subunits, we determined that YTA-1 binds to the predicted inserted (I)-like domain of the beta(2) subunit and the predicted beta-propeller domain of the alpha(L) subunit. Substitution into mouse LFA-1 of human residues Ser(302) and Arg(303) of the beta(2) subunit and Pro(78), Thr(79), Asp(80), Ile(365), and Asn(367) of the alpha(L) subunit is sufficient to completely reconstitute YTA-1 reactivity. Antibodies that bind to epitopes that are nearby in models of the I-like and beta-propeller domains compete with YTA-1 monoclonal antibody for binding. The predicted beta-propeller domain of integrin alpha subunits contains seven beta-sheets arranged like blades of a propeller around a pseudosymmetry axis. The antigenic residues cluster on the bottom of this domain in the 1-2 loop of blade 2, and on the side of the domain in beta-strand 4 of blade 3. The I domain is inserted between these blades on the top of the beta-propeller domain. The antigenic residues in the beta subunit localize to the top of the I-like domain near the putative Mg(2+) ion binding site. Thus, the I-like domain contacts the bottom or side of the beta-propeller domain near beta-sheets 2 and 3. YTA-1 preferentially reacts with activated LFA-1 and is a function-blocking antibody, suggesting that conformational movements occur near the interface it defines between the LFA-1 alpha and beta subunits.  相似文献   

2.
In the primary sequence of the integrin beta subunit, the N-terminal region (NTR) and mid-region are separated by the I-like domain. To determine the spatial relationship and functional properties of the integrin beta(2) NTR and mid-region, we constructed beta(2)/beta(7) chimeras in which the NTR, I-like domain, and the mid-region of the beta(2) subunit were replaced by those of beta(7). Changing either the beta(2) NTR or mid-region, but not the I-like domain to that of beta(7) did not affect LFA-1 (alpha(L)beta(2)) formation and surface expression. Thus, the specificity of alpha(L)beta(2) pairing is conferred by the I-like domain but not the NTR or mid-region. Using these chimeras, the epitopes of six anti-beta(2) mAbs (H52, 7E4, AZN-L18, AZN-L27, KIM202, and MEM-148) were mapped. All except H52 require both the NTR and mid-region for epitope expression. Since these mAbs have distinct properties in terms of epitope expression and effect on LFA-1 binding to ICAM-1, we conclude that the beta(2) NTR and mid-region interact extensively. Although the I-like domain is located between the NTR and mid-region, its removal does not affect the folding of the beta(2) NTR/mid-region complex because this complex alone can be expressed as a soluble protein and precipitated by the appropriate mAbs. Finally, the mAbs H52 and 7E4, abrogated KIM185- but not Mg/EGTAinduced LFA-1/ICAM-1 binding and the epitope of MEM-148 is expressed on Mg/EGTA-activated but not resting LFA-1. These results suggest that the NTR/mid-region complex is involved in the regulation of LFA-1 function.  相似文献   

3.
The beta(2) integrin lymphocyte function-associated antigen-1 (LFA-1) is a conformationally flexible alpha/beta heterodimeric receptor, which is expressed on the surface of all leukocytes. LFA-1 mediates cell adhesion crucial for normal immune and inflammatory responses. Intracellular signals or cations are required to convert LFA-1 from a nonligand binding to a ligand binding state. Here we investigated the effect of small molecule inhibitors on LFA-1 by monitoring the binding of monoclonal antibodies mapped to different receptor domains. The inhibitors were found to not only induce epitope changes in the I domain of the alpha(L) chain but also in the I-like domain of the beta(2) chain depending on the individual chemical structure of the inhibitor and its binding site. For the first time, we provide strong evidence that the I-like domain represents a target for allosteric LFA-1 inhibition similar to the well established regulatory L-site on the I domain of LFA-1. Moreover, the antibody binding patterns observed in the presence of the various inhibitors establish a conformational interaction between the LFA-1 I domain and the I-like domain in the native receptor that is formed upon activation. Differentially targeting the binding sites of the inhibitors, the L-site and the I-like domain, may open new avenues for highly specific therapeutic intervention in diseases where integrins play a pathophysiological role.  相似文献   

4.
We examined the effect of conformational change at the beta(7) I-like/hybrid domain interface on regulating the transition between rolling and firm adhesion by integrin alpha(4)beta(7). An N-glycosylation site was introduced into the I-like/hybrid domain interface to act as a wedge and to stabilize the open conformation of this interface and hence the open conformation of the alpha(4) beta(7) headpiece. Wild-type alpha(4)beta(7) mediates rolling adhesion in Ca(2+) and Ca(2+)/Mg(2+) but firm adhesion in Mg(2+) and Mn(2+). Stabilizing the open headpiece resulted in firm adhesion in all divalent cations. The interaction between metal binding sites in the I-like domain and the interface with the hybrid domain was examined in double mutants. Changes at these two sites can either counterbalance one another or be additive, emphasizing mutuality and the importance of multiple interfaces in integrin regulation. A double mutant with counterbalancing deactivating ligand-induced metal ion binding site (LIMBS) and activating wedge mutations could still be activated by Mn(2+), confirming the importance of the adjacent to metal ion-dependent adhesion site (ADMIDAS) in integrin activation by Mn(2+). Overall, the results demonstrate the importance of headpiece allostery in the conversion of rolling to firm adhesion.  相似文献   

5.
Integrin undergoes different activation states by changing its quaternary conformation. The integrin beta hybrid domain acts as a lever for the transmission of activation signal. The displacement of the hybrid domain can serve to report different integrin activation states. The monoclonal antibody (mAb) MEM148 is a reporter antibody that recognizes Mg/EGTA-activated but not resting integrin alpha(L) beta2. Herein, we mapped its epitope to the critical residue Pro374 located on the inner face of the beta2 hybrid domain. Integrin alpha(L) beta2 binds to its ligands ICAM-1 and ICAM-3 with different affinities. Integrin is proposed to have at least three affinity states, and the position of the hybrid domain differs in each. We made use of the property of mAb MEM148 to analyze and correlate these affinity states in regard to alpha(L) beta2/intercellular adhesion molecule (ICAM) binding. Our study showed that Mg/EGTA-activated alpha(L)beta2 can adopt a different conformation from that activated by activating mAbs KIM185 or MEM48. Unlike ICAM-1 binding, which required only one activating agent, alpha(L) beta2/ICAM-3 binding required both Mg/EGTA and an activating mAb. This suggests that alpha(L)beta2 with intermediate affinity is sufficient to bind ICAM-1 but not ICAM-3, which requires a high affinity state. Furthermore, we showed that the conformation adopted by alpha(L)beta2 in the presence of Mg/EGTA, depicting an intermediate activation state, could be reverted to its resting conformation.  相似文献   

6.
To establish a structure and function map of the beta2 integrin subunit, we mapped the epitopes of a panel of beta2 monoclonal antibodies including function-blocking, nonblocking, and activating antibodies using human/mouse beta2 subunit chimeras. Activating antibodies recognize the C-terminal half of the cysteine-rich region, residues 522-612. Antibodies that do not affect ligand binding map to residues 1-98 and residues 344-521. Monoclonal antibodies to epitopes within a predicted I-like domain (residues 104-341) strongly inhibit LFA-1-dependent adhesion. These function-blocking monoclonal antibodies were mapped to specific residues with human --> mouse knock-out or mouse --> human knock-in mutations. Combinatorial epitopes involving residues distant in the sequence provide support for a specific alignment between the beta-subunit and I domains that was used to construct a three-dimensional model. Antigenic residues 133, 332, and 339 are on the first and last predicted alpha-helices of the I-like domain, which are adjacent on its "front." Other antigenic residues in beta2 and in other integrin beta subunits are present on the front. No antigenic residues are present on the "back" of the domain, which is predicted to be in an interface with other domains, such as the alpha subunit beta-propeller domain. Most mutations in the beta2 subunit in leukocyte adhesion deficiency are predicted to be buried in the beta2 subunit I-like domain. Two long insertions are present relative to alpha-subunit I-domains. One is tied down to the back of the I-like domain by a disulfide bond. The other corresponds to the "specificity-determining loop" defined in beta1 and beta3 integrins and contains the antigenic residue Glu(175) in a disulfide-bonded loop located near the "top" of the domain.  相似文献   

7.
Although integrin alpha subunit I domains exist in multiple conformations, it is controversial whether integrin beta subunit I-like domains undergo structurally analogous movements of the alpha7-helix that are linked to affinity for ligand. Disulfide bonds were introduced into the beta(3) integrin I-like domain to lock its beta6-alpha7 loop and alpha7-helix in two distinct conformations. Soluble ligand binding, ligand mimetic mAb binding and cell adhesion studies showed that disulfide-bonded receptor alpha(IIb)beta(3)(T329C/A347C) was locked in a low affinity state, and dithiothreitol treatment restored the capability of being activated to high affinity binding; by contrast, disulfide-bonded alpha(IIb)beta(3)(V332C/M335C) was locked in a high affinity state. The results suggest that activation of the beta subunit I-like domain is analogous to that of the alpha subunit I domain, i.e. that axial movement in the C-terminal direction of the alpha7-helix is linked to rearrangement of the I-like domain metal ion-dependent adhesion site into a high affinity conformation.  相似文献   

8.
Integrin beta subunits contain a highly conserved I-like domain that is known to be important for ligand binding. Unlike integrin I domains, the I-like domain requires integrin alpha and beta subunit association for optimal folding. Pactolus is a novel gene product that is highly homologous to integrin beta subunits but lacks associating alpha subunits [Chen, Y., Garrison, S., Weis, J. J., and Weis, J. H. (1998) J. Biol. Chem. 273, 8711-8718] and a approximately 30 amino acid segment corresponding to the specificity-determining loop (SDL) in the I-like domain. We find that the SDL is responsible for the defects in integrin beta subunit expression and folding in the absence of alpha subunits. When transfected in the absence of alpha subunits into cells, extracellular domains of mutant beta subunits lacking SDL, but not wild-type beta subunits, were well secreted and contained immunoreactive I-like domains. The purified recombinant soluble beta1 subunit with the SDL deletion showed an elongated shape in electron microscopy, consistent with its structure in alphabeta complexes. The SDL segment is not required for formation of alpha5beta1, alpha4beta1, alphaVbeta3, and alpha6beta4 heterodimers, but is essential for fomation of alpha6beta1, alphaVbeta1, and alphaLbeta2 heterodimers, suggesting that usage of subunit interface residues is variable among integrins. The beta1 SDL is required for ligand binding and for the formation of the epitope for the alpha5 monoclonal antibody 16 that maps to loop segments connecting blades 2 and 3 of beta-propeller domain of alpha5, but is not essential for nearby beta-propeller epitopes.  相似文献   

9.
The leukocyte-restricted integrin alpha(L)beta(2) is required in immune processes such as leukocyte adhesion, migration, and immune synapse formation. Activation of alpha(L)beta(2) by conformational changes promotes alpha(L)beta(2) binding to its ligands, ICAMs. It was reported that different affinity states of alpha(L)beta(2) are required for binding ICAM-1 and ICAM-3. Recently, the bent, extended with a closed headpiece, and extended with open headpiece conformations of alpha(L)beta(2), was reported. To address the overall conformational requirements of alpha(L)beta(2) that allow selective binding of these ICAMs, we examined the adhesion properties of these alpha(L)beta(2) conformers. alpha(L)beta(2) with different conformations were generated by mutations, and verified by using a panel of reporter mAbs that detect alpha(L)beta(2) extension, hybrid domain movement, or I-like domain activation. We report a marked difference between extended alpha(L)beta(2) with closed and open headpieces in their adhesive properties to ICAM-1 and ICAM-3. Our data show that the extension of alpha(L)beta(2) alone is sufficient to mediate ICAM-1 adhesion. By contrast, an extended alpha(L)beta(2) with an open headpiece is required for ICAM-3 adhesion.  相似文献   

10.
The leukocyte beta2 integrins are heterodimeric adhesion receptors required for a functional immune system. Many leukocyte adhesion deficiency-1 (LAD-1) mutations disrupt the expression and function of beta2 integrins. Herein, we further characterized the LAD-1 mutation N329S in the beta2 inserted (I)-like domain. This mutation converted alphaLbeta2 from a resting into a high affinity conformer because alphaLbeta2N329S transfectants adhered avidly to ligand intercellular adhesion molecule (ICAM)-3 in the absence of additional activating agent. An extended open conformation is adopted by alphaLbeta2N329S because of its reactivity with the beta2 activation reporter monoclonal antibodies MEM148 and KIM127. A corresponding mutation in beta3 generated constitutively active alphaIIbbeta3 that adhered to fibrinogen. This Asn is conserved in all human beta subunits, and it resides before the last helix of the I-like domain, which is known to be important in activation signal propagation. By mutagenesis studies and review of existing integrin structures, we conjectured that this conserved Asn may have a primary role in shaping the I-like domain by stabilizing the conformation of the alpha7 helix and the beta6-alpha7 loop in the I-like domain.  相似文献   

11.
The trafficking of leukocytes through tissues is supported by an interaction between the beta 2 (CD18) integrins CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1) and their ligand ICAM-1. The most recently identified and fourth member of the beta 2 integrins, alpha D beta 2, selectively binds ICAM-3 and does not appear to bind ICAM-1. We have reported recently that alpha D beta 2 can support eosinophil adhesion to VCAM-1. Here we demonstrate that expression of alpha D beta 2 in a lymphoid cell that does not express alpha 4 integrins confers efficient binding to VCAM-1. In addition, a soluble form of alpha D beta 2 binds VCAM-1 with greater efficiency relative to ICAM-3. The I domain of alpha D contains a binding site for VCAM-1 since recombinant alpha D I domain binds specifically to VCAM-1. In addition, alpha D mAb that block cellular binding to VCAM-1 bind the alpha D I domain. Using VCAM-1 mutants we have determined that the binding site on VCAM-1 for alpha D beta 2 overlaps with that of alpha 4++ integrins. Substitution of VCAM-1 aspartate at position 40, D40, within the conserved integrin binding site, diminishes binding to alpha D beta 2 and abrogates binding to the alpha D I domain. The corresponding integrin binding site residue in ICAM-3 is also essential to alpha D beta 2 binding. Finally, we demonstrate that alpha D beta 2 can support lymphoid cell adhesion to VCAM-1 under flow conditions at levels equivalent to those mediated by alpha 4 beta 1. These results indicate that VCAM-1 can bind to an I domain and that the binding of alpha D beta 2 to VCAM-1 may contribute to the trafficking of a subpopulation of leukocytes that express alpha D beta 2.  相似文献   

12.
Integrins are cell surface receptors that transduce signals bidirectionally across the plasma membrane. The key event of integrin signaling is the allosteric regulation between its ligand-binding site and the C-terminal helix (alpha7) of integrin's inserted (I) domain. A significant axial movement of the alpha7 helix is associated with the open, active conformation of integrins. We describe the crystal structure of an engineered high-affinity I domain from the integrin alpha(L)beta(2) (LFA-1) alpha subunit in complex with the N-terminal two domains of ICAM-5, an adhesion molecule expressed in telencephalic neurons. The finding that the alpha7 helix swings out and inserts into a neighboring I domain in an upside-down orientation in the crystals implies an intrinsically unusual mobility of this helix. This remarkable feature allows the alpha7 helix to trigger integrin's large-scale conformational changes with little energy penalty. It serves as a mechanistic example of how a weakly bound adhesion molecule works in signaling.  相似文献   

13.
The immunesuppressive cytokine TGF-β plays crucial regulatory roles in the induction and maintenance of immunologic tolerance and prevention of immunopathologies. However, it remains unclear how circulating T-cells can escape from the quiescent state maintained by TGF-β. Here, we report that the T-cell integrin leukocyte function-associated antigen-1 (LFA-1) interaction with its ligand intercellular adhesion molecule-1 (ICAM-1) induces a genetic signature associated with reduced TGF-β responsiveness via up-regulation of SKI, E3 ubiquitin-protein ligase SMURF2, and SMAD7 (mothers against decapentaplegic homolog 7) genes and proteins. We confirmed that the expression of these TGF-β inhibitory molecules was dependent on STAT3 and/or JNK activation. Increased expression of SMAD7 and SMURF2 in LFA-1/ICAM-1 cross-linked T-cells resulted in impaired TGF-β-mediated phosphorylation of SMAD2 and suppression of IL-2 secretion. Expression of SKI caused resistance to TGF-β-mediated suppression of IL-2, but SMAD2 phosphorylation was unaffected. Blocking LFA-1 by neutralizing antibody or specific knockdown of TGF-β inhibitory molecules by siRNA substantially restored LFA-1/ICAM-1-mediated alteration in TGF-β signaling. LFA-1/ICAM-1-stimulated human and mouse T-cells were refractory to TGF-β-mediated induction of FOXP3(+) (forkhead box P3) and RORγt(+) (retinoic acid-related orphan nuclear receptor γt) Th17 differentiation. These mechanistic data suggest an important role for LFA-1/ICAM-1 interactions in immunoregulation concurrent with lymphocyte migration that may have implications at the level of local inflammatory response and for anti-LFA-1-based therapies.  相似文献   

14.
We have investigated receptor function and epitope expression of recombinant alpha(IIb)beta(3) mutated at Cys(177) or Cys(273) in the I-like domain as well as Cys(598), located in the fourth repeat of the membrane-proximal cysteine-rich region and mutated in a Glanzmann's thrombasthenia type II patient. The beta(3) mutants beta(3)C177A, beta(3)C273A, and beta(3)C598Y exhibited a decreased electrophoretic mobility in SDS-polyacrylamide gel electrophoresis under nonreducing conditions, confirming the disruption of the respective disulfide loops. Despite reduced surface expression, the alpha(IIb)beta(3)C177A, alpha(IIb)beta(3)C273A, and alpha(IIb)beta(3)C598Y receptors mediated cell adhesion to immobilized fibrinogen and translocated into focal adhesion plaques. The beta(3)C598Y mutation, but not the beta(3)C177A or beta(3)C273A mutations, induced spontaneous binding of the ligand mimetic monoclonal antibody PAC-1, while the beta(3)C177A and beta(3)C273A mutants exhibited reduced complex stability in the absence of Ca(2+). Epitope mapping of function-blocking monoclonal antibodies (mAbs) allowed the identification of two distinct subgroups; mAbs A2A9, pl2-46, 10E5, and P256 did not interact with alpha(IIb)beta(3)C273A and bound only weakly to alpha(IIb)beta(3)C177A, while mAbs AP2, LM609 and 7E3 bound normally to mutant alpha(IIb)beta(3)C273A, but interacted only weakly with mutant alpha(IIb)beta(3)C177A. Furthermore, a cryptic epitope recognized by mAb 4D10G3 and not exposed on wild type alpha(IIb)beta(3) became accessible only on mutant alpha(IIb)beta(3)C177A and was mapped to the 60-kDa chymotrypsin fragment of beta(3). Finally, the ligand-induced binding site (LIBS) epitopes AP5, D3, LIBS1, and LIBS2 were spontaneously expressed on all three mutants independent of RGDS or dithiothreitol treatment. Our results provide evidence that disruption of a single cysteine disulfide bond in the cysteine-rich repeat domain, but not in the I-like domain, activates integrin alpha(IIb)beta(3). In contrast, disruption of each of the disulfide bonds in the two long insertions of the I-like domain predicted to be in close contact with the alpha subunit beta-propeller domain affect the stability of the alpha(IIb)beta(3) heterodimer and inhibit complex-specific mAb binding without affecting the RGD binding capacity of the metal ion-dependent adhesion site-like domain.  相似文献   

15.
A subset of integrin alpha subunits contain an I domain, which is important for ligand binding. We have deleted the I domain from the beta2 integrin lymphocyte function-asssociated antigen-1 (LFA-1) and expressed the resulting non-I domain-containing integrin (DeltaI-LFA-1) in an LFA-1-deficient T cell line. DeltaI-LFA-1 showed no recognition of LFA-1 ligands, confirming the essential role of the I domain in ligand binding. Except for I domain monoclonal antibodies (mAbs), DeltaI-LFA-1 was recognized by a panel of anti-LFA-1 mAbs similarly to wild-type LFA-1. However, DeltaI-LFA-1 had enhanced expression of seven mAb epitopes that are associated with beta2 integrin activation, suggesting that it exhibited an "active" conformation. In keeping with this characteristic, DeltaI-LFA-1 induced constitutive activation of alpha4beta1 and alpha5beta1, suggesting intracellular signaling to these integrins. This "cross-talk" was not due to an effect on beta1 integrin affinity. However, the enhanced activity was susceptible to inhibition by cytochalasin D, indicating a role for the cytoskeleton, and also correlated with clustering of beta1 integrins. Thus, removal of the I domain from LFA-1 created an integrin with the hallmarks of a constitutively active receptor mediating signals into the cell. These findings suggest a key role for the I domain in controlling integrin activity.  相似文献   

16.
Liu Y  Pan D  Bellis SL  Song Y 《Proteins》2008,73(4):989-1000
Glycosylation plays an important role in the regulation of integrin function. Molecular mechanisms underlying the effects of altered glycosylation on beta1 integrin structure and function are still largely unknown. In this study, we used a molecular modeling approach to study the effects of altered glycosylation, with alpha2-6 sialic acid and without alpha2-6 sialic acid, on the structure of the I-like domain of the beta1 integrin. Our results demonstrated that altered glycosylation affected the interactions between oligosaccharides and the I-like domain, which in turn changed the accessibility of the specificity-determining loop for ligand binding. Altered glycosylation caused significant conformational changes for most of the key functional regions of the I-like domain of beta1 integrin, including the metal ion-dependent adhesion site that contains a DLSYS motif, and other critical residues for ligand binding (Asn-224, Glu-229, Asp-233, Asp-267, and Asp-295). In addition, altered glycosylation caused significant movement of the alpha1 and alpha7 helices, which are important for the activation of beta1 integrin. The results from this study offered molecular mechanisms for the experimental observations that variant glycosylation regulates integrin function.  相似文献   

17.
The leukocyte-specific beta(2) integrin lymphocyte function-associated antigen-1 (LFA-1) (alpha(L)/beta(2)) mediates activation-dependent adhesion to intercellular adhesion molecule (ICAM)-1. In leukocytes, LFA-1 requires activation by intracellular messengers to bind ICAM-1. We observed malfunctioning of LFA-1 activation in leukemic T cells and K562-transfected cells. This defective inside-out integrin activation is only restricted to beta(2) integrins, since beta(1) integrins expressed in K562 readily respond to activation signals, such as phorbol 12-myristate 13-acetate. To unravel these differences in inside-out signaling between beta(1) and beta(2) integrins, we searched for amino acids in the beta(2) cytoplasmic domain that are critical in the activation of LFA-1. We provide evidence that substitution of a single amino acid (L732R) in the beta(2) cytoplasmic DLRE motif, creating the DRRE motif, is sufficient to completely restore PMA responsiveness of LFA-1 expressed in K562. In addition, an intact TTT motif in the C-terminal domain is necessary for the acquired PMA responsiveness. We observed that restoration of the PMA response altered neither LFA-1 affinity nor the phosphorylation status of LFA-1. In contrast, strong differences were observed in the capacity of LFA-1 to form clusters, which indicates that inside-out activation of LFA-1 strongly depends on cytoskeletal induced receptor reorganization that was induced by activation of the Ca(2+)-dependent protease calpain.  相似文献   

18.
The red cell ICAM-4/LW blood group glycoprotein, which belongs to the family of intercellular adhesion molecules (ICAMs), has been reported to interact with CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1) beta(2) integrins. To better define the basis of the ICAM-4/beta(2) integrin interaction, we have generated wild-type, domain-deleted and mutated recombinant chimeric ICAM-4-Fc proteins and analyzed their interaction in a cellular adhesion assay with LFA-1 and Mac-1 L-cell stable transfectants. We found that monoclonal antibodies against CD11a, CD11b, CD18, or LW(ab) block adhesion of transfectant L-cells to immobilized ICAM-4-Fc protein and that the ICAM-4/beta(2) integrin interaction was highly sensitive to the presence of the divalent cations Ca(2+) and Mg(2+). Deletion of individual Ig-domains D1 or D2 of the extracellular part of ICAM-4 showed that LFA-1 binds to the first Ig-like domain, whereas the Mac-1 binding site encompassed both the first and the second Ig-like domains. Based on the crystal structure of ICAM-2, we propose a model for the Ig-like domains D1 and D2 of ICAM-4. Accordingly, by site-directed mutagenesis of 22 amino acid positions spread out on all faces of the ICAM-4 molecule, we identified four exposed residues, Leu(80), Trp(93), and Arg(97) on the CFG face and Trp(77) on the E-F loop of domain D1 that may contact LFA-1 as part of the binding site. However, the single and double mutants R52E and T91Q on the CFG face of domain D1, which correspond to the key residues Glu(34) and Gln(73) for ICAM-1 binding to LFA-1, had no effect on LFA-1 binding. In contrast, all mutants on the CFG face of domain D1 and residues Glu(151) and Thr(154) in the C'-E loop of the domain D2 seem to play a dominant role in Mac-1 binding. These data suggest that the binding site for LFA-1 on ICAM-4 overlaps but is distinct from the Mac-1 binding site.  相似文献   

19.
We describe a novel interaction between the disintegrin and cysteine-rich (DC) domains of ADAM12 and the integrin alpha7beta1. Integrin alpha7beta1 extracted from human embryonic kidney 293 cells transfected with alpha7 cDNA was retained on an affinity column containing immobilized DC domain of ADAM12. 293 cells stably transfected with alpha7 cDNA adhered to DC-coated wells, and this adhesion was partially inhibited by 6A11 integrin alpha7 function-blocking antibody. The X1 and the X2 extracellular splice variants of integrin alpha7 supported equally well adhesion to the DC protein. Integrin alpha7beta1-mediated cell adhesion to DC had different requirements for Mn2+ than adhesion to laminin. Furthermore, integrin alpha7beta1-mediated cell adhesion to laminin, but not to DC, resulted in efficient cell spreading and phosphorylation of focal adhesion kinase (FAK) at Tyr397. We also show that adhesion of L6 myoblasts to DC is mediated in part by the endogenous integrin alpha7beta1 expressed in these cells. Since integrin alpha7 plays an important role in muscle cell growth, stability, and survival, and since ADAM12 has been implicated in muscle development and regeneration, we postulate that the interaction between ADAM12 and integrin alpha7beta1 may be relevant to muscle development, function, and disease. We also conclude that laminin and the DC domain of ADAM12 represent two functional ligands for integrin alpha7beta1, and adhesion to each of these two ligands via integrin alpha7beta1 triggers different cellular responses.  相似文献   

20.
The red cell intercellular adhesion molecule-4 (ICAM-4) binds to different members of the integrin receptor families. To better define the ICAM-4 integrin receptor specificity, cell transfectants individually expressing various integrins were used to demonstrate that alphaLbeta2, alphaMbeta2, and alphaIIbbeta3 (activated) bind specifically and dose dependently to the recombinant ICAM-4-Fc protein. We also show that cell surface ICAM-4 interacts with the cell surface alphaVbeta3 integrin. In addition, using a alpha4beta1 cell transfectant and beta2 integrin-deficient LAD cells, we show here that ICAM-4 failed to interact with alpha4beta1 even after alpha4beta1 activation by phorbol ester or with the monoclonal antibody TS2/16 (+ Mn2+). ICAM-4 amino acids that are critical for alphaIIbbeta3 and alphaVbeta3 interaction were identified by domain deletion analysis, site-directed mutagenesis and synthetic peptide inhibition. Our results provide evidence that the beta3 integrin binding sites encompass the first and second Ig-like domains of ICAM-4. However, while the alphaIIbbeta3 contact site comprises the ABED face of domain D1 with an extension in the C'-E loop of domain D2, the alphaVbeta3 contact site comprises residues on both faces of D1 and in the C'-E loop of D2. These data, together with our previous results, demonstrate that different integrins bind to different but partly overlapping sites on ICAM-4, and that ICAM-4 may accommodate multiple integrin receptors present on leukocytes, platelets and endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号