首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of nitrate uptake for assimilation in procaryotes is not known. We used the radioactive isotope, 13N as NO3 -, to study this process in a prevalent soil bacterium, Pseudomonas fluorescens. Cultures grown on ammonium sulfate or ammonium nitrate failed to take up labeled nitrate, indicating ammonium repressed synthesis of the assimilatory enzymes. Cultures grown on nitrite or under ammonium limitation had measurable nitrate reductase activity, indicating that the assimilatory enzymes need not be induced by nitrate. In cultures with an active nitrate reductase, the form of 13N internally was ammonium and amino acids; the amino acid labeling pattern indicated that 13NO3 - was assimilated via glutamine synthetase and glutamate synthase. Cultures grown on tungstate to inactivate the reductase concentrated NO3 - at least sixfold. Chlorate had no effect on nitrate transport or assimilation, nor on reduction in cell-free extracts. Ammonium inhibited nitrate uptake in cells with and without active nitrate reductases, but had no effect on cell-free nitrate reduction, indicating the site of inhibition was nitrate transport into the cytoplasm. Nitrate assimilation in cells grown on nitrate and nitrate uptake into cells grown with tungstate on nitrite both followed Michaelis-Menten kinetics with similar K mvalues, 7 M. Both azide and cyanide inhibited nitrate assimilation. Our findings suggest that Pseudomonas fluorescens can take up nitrate via active transport and that nitrate assimilation is both inhibited and repressed by ammonium.  相似文献   

2.
A Mastigocladus species was isolated from the hot spring of Jakrem (Meghalaya) India. Uptake and utilization of nitrate, nitrite, ammonium and amino acids (glutamine, asparagine, arginine, alanine) were studied in this cyanobacterium grown at different temperatures (25°C, 45°C). There was 2–3 fold increase in the heterocyst formation and nitrogenase activity in N-free medium at higher temperature (45°C). Growth and uptake and assimilation of various nitrogen sources were also 2–3 fold higher at 45°C indicating that it is a thermophile. The extent of induction and repression of nitrate uptake by NO3 and NH4 +, respectively, differed from that of nitrite. It appeared that Mastigocladus had two independent nitrate/nitrite transport systems. Nitrate reductase and nitrite reductase activitiy was not NO3 -inducible and ammonium or amino acids caused only partial repression. Presence of various amino acids in the media partially repressed glutamine synthetase activity. Ammonium (methylammonium) and amino acid uptake showed a biphasic pattern, was energy-dependent and the induction of uptake required de novo protein synthesis. Ammonium transport was substrate (NH4 +)-repressible, while the amino acid uptake was substrate inducible. When grown at 25°C, the cyanobacterium formed maximum akinetes that remained viable upto 5 years under dry conditions.  相似文献   

3.
The two enzymes involved in the assimilatory pathway of nitrate in Azotobacter vinelandii are corregulated. Nitrate reductase and nitrite reductase are inducible by nitrate and nitrite. Ammonium represses induction by nitrate of both reductases. Repression by ammonium is higher in media containing 2-oxo-glutarate as carbon source than in media containing sucrose. Mutants in the gene ntrC lost nitrate and nitrite reductase simultaneously. Ten chlorate-resistant mutants with a new phenotype were isolated. In media without ammonium they had a normal phenotype, being sensitive to the toxic effect of chlorate. In media containing low ammonium concentrations they were resistant to chlorate. These mutants seem to be affected in the repression of nitrate and nitrite reductases by ammonium.  相似文献   

4.
Nitrite and nitrate uptake by wheat (Triticum vulgare) from 0.5 mM potassium solutions both showed an apparent induction pattern characterized by a slow initial rate followed by an accelerated rate. The accelerated phase was more rapid for nitrate uptake, was initiated earlier, and was seriously restricted by the presence of equimolar nitrite. The accelerated phase of nitrite uptake was restricted by nitrate to a lesser extent. The two anions seem not to be absorbed by identical mechanisms. Ammonium pretreatments or prior growth with ammonium had relatively little influence on the pattern of nitrite uptake. However, prior growth with nitrate eliminated the slow initial phase and induced development of the accelerated phase of nitrite uptake. A beneficial effect was noted after 3 h nitrate pretreatment and full development had occurred by 12 h nitrate pretreatment. The evidence suggests that a small amount of tissue nitrite, which could be supplied either by absorption or by nitrate reduction, was specifically required for induction of the accelerated phase of nitrite uptake. Cycloheximide (2 μg ml?1) seriously restricted development of the accelerated phase of nitrite uptake, but its effect was not as severe when it was added after the accelerated phase had been induced by prior exposure to nitrite or nitrate. However, translocation of 15N from the absorbed nitrite was sharply decreased under the latter conditions, indicating a difference in sensitivity of the uptake and translocation processes to cycloheximide. Potassium uptake was greater from KNO3 than from KNO2 and in both instances it was enhanced during the early stages of the accelerated phase of anion uptake. Moreover, addition of NaNO3 to KNO2 substantially increased potassium uptake. A coupling between anion and potassium uptake was therefore evident, but the coupling was not obligatory because the accelerated phase of nitrite uptake could occur in absence of rapid potassium uptake.  相似文献   

5.
Effects of sodium on mineral nutrition in rose plants   总被引:2,自引:0,他引:2  
The effects of sodium (Na+) ion concentration on shoot elongation, uptake of ammonium (NH4+) and nitrate (NO3?) and the activities of nitrate reductase (NR) and glutamine synthetase (GS) were studied in rose plants (Rosa hybrida cv. “Lambada”). The results showed that shoot elongation was negatively correlated with sodium concentration, although no external symptoms of toxicity were observed. Nitrate uptake decreased at high sodium levels, specifically at 30 meq litre4 of sodium. As flower development was normal under high saline conditions, this could suggest that nitrogen was being mobilised from shoot and leaf reserves. Ammonium uptake was not affected by any of the salt treatments applied probably because it diffuses through the cell membrane at low concentrations. Nitrate reductase activity was reduced by 50% at 30 meq litre 1 compared with control treatment, probably due to a decrease in the free nitrate related to nitrate uptake pattern. None of the salt treatments used affected total leaf GS activity (both chloroplastic and cytosolic isoforms) or leaf NPK mineral contents. Nitrate reductase activity in leaves increased at 10 meq litre?1 of sodium and GS activity in roots (cytosolic isoform only) followed the same pattern as NR. It is suggested that the activation of both enzymes at low salt level could be attributed to the beneficial effect of increased sulphur in the nutrient solutions.  相似文献   

6.
The aim of the present study is to test the role of intracellular nitrite in external nitrite suppressing algal growth. We examined the growth of Microcystis aeruginosa at different nitrite levels under high nitrate conditions and without nitrate conditions. There were higher intracellular nitrite and lower Pmchla, Rd chla, αchl, maximum cell density and specific growth rate in high nitrate group than nitrate absence group at 5 mg NO2?‐N L?1. At 10 and 15 mg NO2?‐N L?1, Pmchla, Rd chla, αchl, maximum cell densities and specific growth rates in the high nitrate group became higher than those of the nitrate absence group, while a lower intracellular nitrite in the high nitrate group than nitrate absence group was observed. In addition, the intracellular nitrite and the growth of M. aeruginosa in the high nitrate group did not change from 5 to 10 mg NO2?‐N L?1. In the nitrite uptake experiment, with nitrite concentration increasing from 5 to 15 mg NO2?‐N L?1, maximum nitrite uptake rate of alga increased, and half‐saturation constant of alga decreased. These results indicate that external nitrite inhibited algal growth through stimulating intracellular nitrite rise, which resulted from overexpression of nitrite transporter.  相似文献   

7.
Fifteen nitrate assimilation-deficient mutants of the euryhaline green alga, Dunaliella tertiolecta Butcher were selected by their chlorate resistance. Ten mutants, unable to grow on NO3? but able to grow on NO2?, had no detectable nitrate reductase activity. Five mutants, unable to grow on either NO3? or NO2?, had depressed levels of both nitrate and nitrite reductase. A method for assaying methyl viologen-nitrate reductase in the presence of nitrite reductase is described.  相似文献   

8.
In the non-diazotrophic cyanobacterium Synechocystis sp. strain PCC 6803, an osmolality of 30 and 40 mosmol/kg sorbitol and NaCl resulted in 3.5- and 4.5-fold increase of nitrate uptake, respectively. The NaCl-stimulated uptake was abolished by treatment with chloramphenicol. At 25 mosmol/kg or higher, NaCl induced higher nitrate uptake than sorbitol suggesting an ionic effect of Na+. The nitrate uptake in Synechocystis showed K s and V max values of 46 μM and 1.37 μmol/min/mg Chl, respectively. Mutants disrupted in nitrate and nitrite reductase exhibited a decreased nitrate uptake. Ammonium, chlorate, and dl-glyceraldehyde caused a reduction of nitrate uptake. Dark treatment caused a drastic reduction of uptake by 70% suggesting an energy-dependent system. Nitrate transport was sensitive to various metabolic inhibitors including those dissipating proton gradients and membrane potential. The results suggest that nitrate uptake in Synechocystis is stimulated by Na+ ions and requires energy provided by the functioning electron transport chain.  相似文献   

9.
The toxicity of copper on a sole nitrate medium containing KH2PO4 as the phosphate source has been studied inNeurospora crassa. Iron counteracted the copper toxicity by suppressing the copper uptake and restored complete growth at a lower iron-copper molar ratio. Nitrite reductase activity was inhibited (75%) in copper toxic cultures, while the nitrate reductase activity was unaltered. Nitrite accumulated in the medium; this indicated decreased conversion of nitrate to ammonia. Alanine transaminase was also inhibited in copper toxicity, resulting in an accumulation of keto acids. Iron could restore the nitrite reductase and the transaminase activities to about 70% of the control value. The accumulation of both nitrite and keto acids disappeared under conditions of reversal of copper toxicity by iron.  相似文献   

10.
11.
Batch cultures of Chlorella fusca excreted nitrite into the medium if gassed with air (0.03% CO2), but they did not if supplied with air containing 5% CO2. After a change from high to low CO2 concentration in the gas stream, nitrite excretion started immediately. After an increase in CO2 concentration to 5%, nitrite uptake started within only 30 min. Changes of in-vitro activities of nitrate reductase, nitrite reductase and glutamine synthetase did not correspond to changes of nitrite concentration in the medium and therefore could not explain these observations. A nitrite-binding site, whose activity corresponded with both nitrite excretion and uptake, was detected at the chloroplast envelope. From these data an additional regulatory step in the assimilatory nitrate-reduction sequence is suggested. This includes an envelopeprotein fraction probably regulating the availability of nitrite within the chloroplast.Abbreviations FMN riboflavin 5-phosphate - GS glutamine synthetase - NIR nitrite reductase - NR nitrate reductase  相似文献   

12.
Heterotrophic nitrification and aerobic and anaerobic denitrification byAlcaligenes faecalis strain TUD were studied in continuous cultures under various environmental conditions. Both nitrification and denitrification activities increased with the dilution rate. At dissolved oxygen concentrations above 46% air saturation, hydroxylamine, nitrite and nitrate accumulated, indicating that both the nitrification and denitrification were less efficient. The overall nitrification activity was, however, essentially unaffected by the oxygen concentration. The nitrification rate increased with increasing ammonia concentration, but was lower in the presence of nitrate or nitrite. When present, hydroxylamine, was nitrified preferentially. Relatively low concentrations of acetate caused substrate inhibition (KI=109 M acetate). Denitrifying or assimilatory nitrate reductases were not detected, and the copper nitrite reductase, rather than cytochrome cd, was present. Thiosulphate (a potential inhibitor of heterotrophic nitrification) was oxidized byA. faecalis strain TUD, with a maximum oxygen uptake rate of 140–170nmol O2·min-1·mg prot-1. Comparison of the behaviour ofA. faecalis TUD with that of other bacteria capable of heterotrophic nitrification and aerobic denitrification established that the response of these organisms to environmental parameters is not uniform. Similarities were found in their responses to dissolved oxygen concentrations, growth rate and ammonia concentration. However, they differed in their responses to externally supplied nitrite and nitrate.  相似文献   

13.
The haloarchaeon Haloferax mediterranei is able to assimilate nitrate or nitrite using the assimilatory nitrate pathway. An assimilatory nitrate reductase (Nas) and an assimilatory nitrite reductase (NiR) catalyze the first and second reactions, respectively. The genes involved in this process are transcribed as two messengers, one polycistronic (nasABC; nasA encodes Nas) and one monocistronic (nasD; codes for NiR). Here we report the Hfx mediterranei growth as well as the Nas and NiR activities in presence of high nitrate, nitrite and salt concentrations, using different approaches such as physiological experiments and enzymatic activities assays. The nasA and nasD expression profiles are also analysed by real-time quantitative PCR. The results presented reveal that the assimilatory nitrate/nitrite pathway in Hfx mediterranei takes place even if the salt concentration is higher than those usually present in the environments where this microorganism inhabits. This haloarchaeon grows in presence of 2 M nitrate or 50 mM nitrite, which are the highest nitrate and nitrite concentrations described from a prokaryotic microorganism. Therefore, it could be attractive for bioremediation applications in sewage plants where high salt, nitrate and nitrite concentrations are detected in wastewaters and brines.  相似文献   

14.
Phototrophic bacteria of the genus Rhodobacter possess several forms of nitrate reductase including assimilatory and dissimilatory enzymes. Assimilatory nitrate reductase from Rhodobacter capsulatus E1F1 is cytoplasmic, it uses NADH as the physiological electron donor and reduced viologens as artificial electron donors, and it is coupled to an ammonium-producing nitrite reductase. Nitrate reductase induction requires a high C/N balance and the presence of nitrate, nitrite, or nitroarenes. A periplasmic 47-kDa protein facilitates nitrate uptake, thus increasing nitrate reductase activity. Two types of dissimilatory nitrate reductases have been found in strains from Rhodobacter sphaeroides. One of them is coupled to a complete denitrifying pathway, and the other is a periplasmic protein whose physiological role seems to be the dissipation of excess reducing power, thus improving photoanaerobic growth. Periplasmic nitrate reductase does not use NADH as the physiological electron donor and is a 100-kDa heterodimeric hemoprotein that receives electrons through an electron transport chain spanning the plasma membrane. This nitrate reductase is regulated neither by the intracellular C/N balance nor by O2 pressure. The enzyme also exhibits chlorate reductase activity, and both reaction products, nitrite and chlorite, are released almost stoichiometrically into the medium; this accounts for the high resistance to chlorate or nitrite exhibited by this bacterium. Nitrate reductases from both strains seem to be coded by genes located on megaplasmids. Received: 17 April 1996 / Accepted: 28 May 1996  相似文献   

15.
Since the recognition of iron‐limited high nitrate (or nutrient) low chlorophyll (HNLC) regions of the ocean, low iron availability has been hypothesized to limit the assimilation of nitrate by diatoms. To determine the influence of non‐steady‐state iron availability on nitrogen assimilatory enzymes, cultures of Thalassiosira weissflogii (Grunow) Fryxell et Hasle were grown under iron‐limited and iron‐replete conditions using artificial seawater medium. Iron‐limited cultures suffered from decreased efficiency of PSII as indicated by the DCMU‐induced variable fluorescence signal (Fv/Fm). Under iron‐replete conditions, in vitro nitrate reductase (NR) activity was rate limiting to nitrogen assimilation and in vitro nitrite reductase (NiR) activity was 50‐fold higher. Under iron limitation, cultures excreted up to 100 fmol NO2?·cell?1·d?1 (about 10% of incorporated N) and NiR activities declined by 50‐fold while internal NO2? pools remained relatively constant. Activities of both NR and NiR remained in excess of nitrogen incorporation rates throughout iron‐limited growth. One possible explanation is that the supply of photosynthetically derived reductant to NiR may be responsible for the limitation of nitrogen assimilation at the NO2? reduction step. Urease activity showed no response to iron limitation. Carbon:nitrogen ratios were equivalent in both iron conditions, indicating that, relative to carbon, nitrogen was assimilated at similar rates whether iron was limiting growth or not. We hypothesize that, diatoms in HNLC regions are not deficient in their ability to assimilate nitrate when they are iron limited. Rather, it appears that diatoms are limited in their ability to process photons within the photosynthetic electron transport chain which results in nitrite reduction becoming the rate‐limiting step in nitrogenassimilation.  相似文献   

16.
We have compared the characteristics of nitrate uptake by Aphanothece halophytica grown under non-stress and salt-stress conditions. Both cell types showed essentially similar patterns of nitrate uptake toward ammonium, nitrite, and DL-glyceraldehyde. Although the affinities of nitrate to non-stress cells and salt-stress cells were not significantly different, i.e., Ks = 416 and 450 µM, respectively, the Vmax value for non-stress cells was about twofold of that for salt-stress cells (9.1 vs 5.3 µmol min–1 mg–1 Chl). Nitrate uptake by A. halophytica was found to be dependent on Na+. Ammonium inhibited nitrate uptake, and the presence of methionine sulfoximine could not release the inhibition by ammonium. Nitrite appeared to competitively inhibit nitrate uptake with a Ki value of 84 µM. Both chloride and phosphate anions did not affect nitrate uptake. DL-Glyceraldehyde, an inhibitor of CO2 fixation, caused a reduction in the uptake of nitrate.Received: 22 October 2002 / Accepted: 6 December 2002  相似文献   

17.
In a batch culture experiment the microaerophilic Campylobacter-like bacterium “Spirillum” 5175 derived its energy for growth from the reduction of nitrate to nitrite and nitrite to ammonia. Hereby, formate served as electron donor, acetate as carbon source, and l-cysteine as sulfur source. Nitrite was quantitatively accumulated in the medium during the reduction of nitrate; reduction of nitrite began only after nitrate was exhausted from the medium. The molar growth yield per mol formate consumed, Ym, was 2.4g/mol for the reduction of nitrate to nitrite and 2.0 g/mol for the conversion of nitrite to ammonia. The gain of ATP per mol of oxidized formate was 20% higher for the reduction of nitrate to nitrite, compared to the reduction of nitrite to ammonia. With succinate as carbon source and nitrite as electron acceptor, Ym was 3.2g/mol formate, i.e. 60% higher than with acetate as carbon source. No significant amount of nitrous oxide or dinitrogen was produced during growth with nitrate or nitrite both in the presence or absence of acetylene. No growth on nitrous oxide was found. The hexaheme c nitrite reductase of “Spirillum” 5175 was an inducible enzyme. It was present in cells cultivated with nitrate or nitrite as electron acceptor. It was absent in cells grown with fumarate, but appeared in high concentration in “Spirillum” 5175 grown on elemental sulfur. Furthermore, the dissimilatory enzymes nitrate reductase and hexaheme c nitrite reductase were localized in the periplasmic part of the cytoplasmic membrane.  相似文献   

18.
Staphylococcus carnosus reduces nitrate to ammonia in two steps. (i) Nitrate was taken up and reduced to nitrite, and nitrite was subsequently excreted. (ii) After depletion of nitrate, the accumulated nitrite was imported and reduced to ammonia, which again accumulated in the medium. The localization, energy gain, and induction of the nitrate and nitrite reductases in S. carnosus were characterized. Nitrate reductase seems to be a membrane-bound enzyme involved in respiratory energy conservation, whereas nitrite reductase seems to be a cytosolic enzyme involved in NADH reoxidation. Syntheses of both enzymes are inhibited by oxygen and induced to greater or lesser degrees by nitrate or nitrite, respectively. In whole cells, nitrite reduction is inhibited by nitrate and also by high concentrations of nitrite (> or = 10 mM). Nitrite did not influence nitrate reduction. Two possible mechanisms for the inhibition of nitrite reduction by nitrate that are not mutually exclusive are discussed. (i) Competition for NADH nitrate reductase is expected to oxidize the bulk of the NADH because of its higher specific activity. (ii) The high rate of nitrate reduction could lead to an internal accumulation of nitrite, possibly the result of a less efficient nitrite reduction or export. So far, we have no evidence for the presence of other dissimilatory or assimilatory nitrate or nitrite reductases in S. carnosus.  相似文献   

19.
Summary The assimilatory nitrate reductase of the N2-fixing bacterium Azotobacter chroococcum has been prepared in a soluble form from cells grown with nitrate as the nitrogen source, and some of its properties (electron donors and cofactors, K mvalues for substrates, molecular weight, inhibitors, activators, etc.) have been studied. The enzyme is of an inducible nature and can exist in two interconvertible forms, either active or inactive.Tungstate very efficiently inhibits growth of the microorganism in media with nitrate. When either nitrite or ammonia are substituted for nitrate as the nitrogen source, growth is unaffected by tungstate concentrations which otherwise completely suppress growth on nitrate. Tungstate interferes by decreasing the cellular level of nitrate reductase activity, preventing, as a consequence, utilization of nitrate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号