首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A major 38-kDa protein associated with bovine rod outer segment plasma membranes, but not disk membranes, has been identified as glyceraldehyde-3-phosphate dehydrogenase on the basis of its N-terminal sequence and specific enzyme activity. This enzyme was extracted from lysed rod outer segments or isolated rod outer segment plasma membrane with 0.15 M NaCl and purified to homogeneity by affinity chromatography on a NAD(+)-agarose column. A specific activity of 90-100 units/mg of protein is within the range of activity obtained for glyceraldehyde-3-phosphate dehydrogenase isolated from other mammalian cells. Enzyme activity measurements indicate that this enzyme makes up approximately 2% of the total rod outer segment protein and over 11% of the plasma membrane protein. Protease digestion and binding studies on purified rod outer segment plasma and disk membranes suggest that glyceraldehyde-3-phosphate dehydrogenase reversibly interacts with a protease-sensitive plasma membrane-specific protein of rod outer segments. The finding that glyceraldehyde-3-phosphate dehydrogenase is present in large quantities in rod outer segments suggests that at least some of the energy required for the synthesis of ATP and GTP for phototransduction and other processes of the outer segment is derived from glycolysis which takes place within this organelle.  相似文献   

2.
A light-activated GTPase from octopus photoreceptors   总被引:8,自引:0,他引:8  
A light activatable GTPase has been found in octopus photoreceptor outer segments. The ATPase activity found in these samples is not influenced by light. Light activation of the GTPase seems to be maximal at 400 mM KCl, 0.5 μM GTP, pH 8.0. The light activated GTPase differs from the bovine GTPase of rod outer segment membranes in that it does not dissociate from the photoreceptor's membrane under conditions which dissociate the bovine enzyme.  相似文献   

3.
Abstract— Guanylate cyclase activity of dark-adapted bovine rod outer segments demonstrates a biphasic pattern upon exposure to light. By 10 s of illumination, activity is 20% lower than that observed in dark-adapted outer segments. Activity subsequently increases and then slowly declines to two-thirds of the original activity after 10 min of illumination. In the presence of GTP or ATP, hydrolysis of cyclic GMP is rapidly enhanced by exposure of outer segments to light; the magnitude of this effect is dependent on the amount of substrate present. The rapid effects of light on synthesis and degradation of cyclic GMP indicate that these reactions may be involved in the visual process. The concentration of guanosine 3':5'-cyclic monophosphate (cyclic GMP) is extraordinarily high in dark-adapted bovine rod outer segments and is at least 100-fold that of adenosine 3':5'-cyclic monophosphate (cyclic AMP). No significant decrease in the level of cyclic GMP or cyclic AMP was observed however upon exposure of dark-adapted outer segments to light.  相似文献   

4.
Cholesterol-rich membranes or detergent-resistant membranes (DRMs) have recently been isolated from bovine rod outer segments and were shown to contain several signaling proteins such as, for example, transducin and its effector, cGMP-phosphodiesterase PDE6. Here we report the presence of rhodopsin kinase and recoverin in DRMs that were isolated in either light or dark conditions at high and low Ca2+ concentrations. Inhibition of rhodopsin kinase activity by recoverin was more effective in DRMs than in the initial rod outer segment membranes. Furthermore, the Ca2+ sensitivity of rhodopsin kinase inhibition in DRMs was shifted to lower free Ca2+ concentration in comparison with the initial rod outer segment membranes (IC50=0.76 microm in DRMs and 1.91 microm in rod outer segments). We relate this effect to the high cholesterol content of DRMs because manipulating the cholesterol content of rod outer segment membranes by methyl-beta-cyclodextrin yielded a similar shift of the Ca2+-dependent dose-response curve of rhodopsin kinase inhibition. Furthermore, a high cholesterol content in the membranes also increased the ratio of the membrane-bound form of recoverin to its cytoplasmic free form. These data suggest that the Ca2+-dependent feedback loop that involves recoverin is spatially heterogeneous in the rod cell.  相似文献   

5.
In vertebrate retina, rod outer segment is the site of visual transduction. The inward cationic current in the dark-adapted outer segment is regulated by cyclic GMP. A light flash on the outer segment activates a cyclic GMP phosphodiesterase resulting in rapid hydrolysis of the cyclic nucleotide which in turn causes a decrease in the dark current. Restoration of the dark current requires inactivation of the phosphodiesterase and synthesis of cyclic GMP. The latter is accomplished by the enzyme guanylate cyclase which catalyzes the formation of cyclic GMP from GTP. Therefore, factors regulating the cyclase activity play a critcal role in visual transduction. But regulation of the cyclase by some of these factors — phosphodiesterase, ATP, the soluble proteins and metal cofactors (Mg and Mn) — is controversial. The availability of different types of cyclase preparations, dark-adapted rod outer segments with fully inhibited phosphodiesterase activity, partially purified cyclase without PDE contamination, cloned rod outer segment cyclase free of other rod outer segment proteins, permitted us to address these controversial issues. The results show that ATP inhibits the basal cyclase activity but enhances the stimulation of the enzyme by soluble activator, that cyclase can be activated in the dark at low calcium concentrations under conditions where phosphodiesterase activity is fully suppressed, and that greater activity is observed with manganese as cofactor than magnesium. These results provide a better understanding of the controls on cyclase activity in rod outer segments and suggest how regulation of this cyclase by ATP differs from that of other known membrane guanylate cyclases.This work was supported by the grants from the National Institutes of Health (EY07158, EY 05230, EY 10828, NS 23744) and the equipment grant from Pennsylvania Lions Eye Research Foundation.  相似文献   

6.
Guanylate cyclase (GTP pyrophosphate-lyse (cyclizing), EC 4.6.1.2.) of bovine retinal rod outer segments is almost completely particulate, i.e. associated with rod outer segment membranes. In contrast to particulate guanylate cyclase in other tissues, treatment of rod outer segments with Triton X-100 does not solublize the enzyme but inhibits it. Enzyme activity is dependent on the presence of divalent cation, especially Mn2+ with only poor activation by Mg2+ (10-fold lower) and no activation seen with other cation. Ezpression of maximal activity required Nm2+ and GTP in equimolar concentrations with an apparent Km of 8 . 10(-4) M and V of 10 nmol/min per mg protein. Excess of Mn2+ over that required for the formation of the Mn . GTP complex was inhibitory. Ca2+, Ba2+ and Co2+ inhibited enzyme activity when assayed with the Mn . GTP substrate complex. In the presence of a fixed concentration of 1mM Mn2+, the enzyme exhibited strong negative cooperative interactions with GTP, characterized by an intermediary plateau region in the substrate vs. enzyme activity curve, a curve of downward concavity in the double reciprocal plot and a Hill coefficient of 0.5. Nucleotides such as ITP, ATP and UTP at higher concentrations (1 mM) stimulates activity by 40%. NaN3 has no effect on the guanylate cyclase. It is thus possible that the guanylate cyclase may be regulated in vivo by both the metal : GTP substrate ratio and the free divalent cation concentration as well as by the ATP concentration and thus play an important but yet undefined role in the visual process.  相似文献   

7.
Isolated bovine rod outer segment protein is phosphorylated with GTP-gamma-32P and ATP-gamma 32P and to a much lesser extent by CTP-gamma-32P and UTP-gamma-32P. Phosphorylation with both GTP (GTP-kinase activity) and ATP (ATP-kinase activity) is markedly stimulated by light; phosphorylation with GTP is lower in dark-adapted and higher in light-adapted rod outer segments than is phosphorylation with ATP. Km values of 20 and 200 muM and Vmax values of 2.1 and 5.9 nmol/(mg min(-1)) were calculated using ATP and GTP, respectively, in light-adapted outer segments. When outer segments are incubated with GTP-gamma-32P under the usual conditions employed in these experiments, no formation of ATP-gamma-32P was detected by the techniques of high-pressure liquid chromatography and thin-layer chromatography. In intact, light-bleached outer segments, GTP appears to specifically phosphorylate rhodopsin. Histone and phosvitin are not phosphorylated to any appreciable extent by GTP. Histone appears to block rhodopsin phosphorylation by GTP while histone and, to some extent, phosvitin, both act as substrates for ATP-kinase activity. Cyclic AMP and other adenine derivates have a marked inhibitory effect on GTP-kinase activity. Phosphate also inhibits GTP-kinase activity but stimulates ATP-kinase activity. Such differences in phosphorylation with GTP and ATP indicate that these activities are either due to separate enzyme systems or, if only one enzyme is involved, the activities are under separate physiological control in the photoreceptor unit.  相似文献   

8.
The effect of tocopherol, all-trans retinol and retinyl palmitate on the non enzymatic lipid peroxidation induced by ascorbate-Fe2+ of rod outer segment membranes isolated from bovine retina was examined. The inhibition of light emission (maximal induced chemiluminescence) by tocopherol, all-trans retinol and retinyl palmitate was concentration dependent. All trans retinol showed a substantial degree of inhibition against ascorbate-Fe2+ induced lipid peroxidation in rod outer segment membranes that was 10 times higher than the observed in the presence of either tocopherol or retinyl palmitate. Inhibition of lipid peroxidation of rod outer segment membranes by tocopherol and retinyl palmitate was almost linear for up to 0,5 mol vitamin/mg membrane protein, whereas all-trans retinol showed linearity up to 0,1 mol vitamin/mg membrane protein. Incubation of rod outer segments with increasing amounts of low molecular weight cytosolic proteins carrying 1-[14C] linoleic acid, [3H] retinyl palmitate or [3H] all-trans retinol during the lipid peroxidation process produced a net transfer of ligand from soluble protein to membranes. Linoleic acid was 4 times more effectively transferred to rod outer segment membranes than all-trans retinol or retinyl palmitate. Incubation of rod outer segments with delipidated low molecular weight cytosolic proteins produced inhibition of lipid peroxidation. The inhibitory effect was increased when the soluble retinal protein fraction containing a tocopherol was used. These data provide strong support for the role of all-trans retinol as the major retinal antioxidant and open the way for many fruitful studies on the interaction and precise roles of low molecular weight cytosolic retinal proteins involved in the binding of antioxidant hydrophobic compounds with rod outer segments.  相似文献   

9.
In the presence of exogenous GTP, vertebrate whole rod outer segments (ROS), with perforated plasma membranes in the "single particle" scattering range, elicit a light-induced light-scattering transient which we call the "G" signal. Here, we report on the characteristics of the "G" signal relative to the "binding" and "dissociation" signals reported by Kuhn and colleagues. Replacing GTP with guanylyl imidodiphosphate (GMP-PNP) does not give rise to the G signal. This indicates that hydrolysis of the terminal phosphate is required for the G signal and, in addition, GTP and GMP-PNP compete for the same binding site of the enzyme responsible for the G signal (i.e., GTP-binding protein). Also, neither GDP nor its nonhydrolyzable analogue, guanosine 5'-O-(2-thiodiphosphate), when present in ROS suspensions yield any light-scattering transient in the time period tested.  相似文献   

10.
Bovine as well as frog rod outer segments contain a membrane-bound protein which binds the GTP analog GppNp in the light (Kd=0.3μM). The amount of GppNp bound is 2.5–3.5 mmole per mol rhodopsin. The binding protein (M.Wt. ? 54,000) can be extracted from rod membranes with detergent and purified on an Agarose column. The chromatographic profile indicates that the binding protein is distinct from rhodopsin, GTPase or cyclic nucleotide phosphodiesterase.  相似文献   

11.
The light-activated cyclic GMP phosphodiesterase (PDE) of frog photoreceptor membranes has been assayed in isolated outer segments suspended in a low-calcium Ringer's solution. Activation occurs over a range of light intensity that also causes a decrease in the permeability, cyclic GMP levels, and GTP levels of isolated outer segments. At intermediate intensities, PDE activity assumes constant intermediate values determined by the rate of rhodopsin bleaching. Washing causes an increase in maximal enzyme activity. Increasing light intensity from darkness to a level bleaching 5 x 10(3) rhodopsin molecules per outer segment per second shifts the apparent Michaelis constant (Km) from 100 to 900 microM. Maximum enzyme velocity increases at least 10-fold. The component that normally regulates this light- induced increase in the Km of PDE is removed by the customary sucrose flotation procedures. The presence of 10(-3) M Ca++ increases the light sensitivity of PDE, and maximal activation is caused by illumination bleaching only 5 x 10(2) rhodopsin molecules per outer segment per second. Calcium acts by increasing enzyme velocity while having little influence on Km. The effect of calcium appears to require a labile component, sensitive to aging of the outer segment preparation. The decrease in the light sensitivity of PDE that can be observed upon lowering the calcium concentration may be related to the desensitization of the permeability change mechanism that occurs during light adaptation of rod photoreceptors.  相似文献   

12.
Summary Guanosine triphosphatase (GTPase) activity was studied histo- and cytochemically in the rod outer segments of the rat retina by means of a newly developed method. Differences in the distribution pattern of the enzyme activity exist within the outer segment: the activity is more intense at the tip of the rod outer segments near the pigment epithelium than in their proximal portion. Ultracytochemically, the new procedure reveals the reaction product of GTPase activity partly (i) on the extradisk membrane side and (ii) on the disk membranes. This result is in contrast to the cytochemical localization of guanylate cyclase (GCLase), an enzyme also localized at the tip of the rod outer segments: GCLase activity is restricted to the intradisk membrane area of the rod outer segments. The functional role of GTPase activity in the outer segments of rods is discussed.The authors dedicate this paper to Professor K. Ogawa  相似文献   

13.
Mg2+-ATP was found to produce a 15 to 30% drop in the turbidity of suspensions of broken retinal rod outer segments from the toad Bufo marinus, prepared by washing or flotation in sucrose. This in vitro process has a half-time of about two minutes and appears to be irreversible. It is not affected by the bleaching of rhodopsin. Direct measurements show that the drop in turbidity is not due to swelling of the disc internal space measured in outer segments recovered by centrifugation. Instead, the total packed volume of the outer segments increases following incubation in Mg2+-ATP. Under the specific conditions of these experiments, the total pellet volume increase was 26 +/- 22% (13 experiments) when corrected for the percent of rhodopsin recovered in the centrifugal pellet. The magnitude of the ATP effect on turbidity suggests that the majority of the discs are involved in some kind of structural change. Vanadium in the +5 oxidation state (vanadate) is an inhibitor of the Mg2+-ATP effect on turbidity at a half-maximal concentration of 0.2 to 0.4 microM, and inhibition is rapidly reversed by norepinephrine, which complexes vanadate. A Mg2+-ATPase activity in extensively washed outer segment membranes, previously shown to be activated as much as twofold following light exposure of the membranes, is not sensitive to vanadate at the concentrations which block the ATP-dependent change of turbidity.  相似文献   

14.
Rhodopsin, the major transmembrane protein in both the plasma membrane and the disk membranes of photoreceptor rod outer segments (ROS) forms the apo-protein opsin upon the absorption of light. In vivo the regeneration of rhodopsin is necessary for subsequent receptor activation and for adaptation, in vitro this regeneration can be followed after the addition of 11-cis retinal. In this study we investigated the ability of bleached rhodopsin to regenerate in the compositionally different membrane environments found in photoreceptor rod cells. When 11-cis retinal was added to bleached ROS plasma membrane preparations, rhodopsin did not regenerate within the same time course or to the same extent as bleached rhodopsin in disk membranes. Over 80% of the rhodopsin in newly formed disks regenerated within 90 minutes while only 40% regenerated in older disks. Since disk membrane cholesterol content increases as disks are displaced from the base to the apical tip of the outer segment, we looked at the affect of membrane cholesterol content on the regeneration process. Enrichment or depletion of disk membrane cholesterol did not alter the % rhodopsin that regenerated. Bulk membrane properties measured with a sterol analog, cholestatrienol and a fatty acid analog, cis parinaric acid, showed a more ordered, less fluid, lipid environment within plasma membrane relative to the disks. Collectively these results show that the same membrane receptor, rhodopsin, functions differently as monitored by regeneration in the different lipid environments within photoreceptor rod cells. These differences may be due to the bulk properties of the various membranes.  相似文献   

15.
Ca2+-dependent GTPase activity is found to be present in the rod outer segments of frog retina. GTPase localization in rod outer segments is shown by fractionating the rod outer segment preparation in the sucrose density gradient. The enzyme is readily washed out of cells with isotonic NaCl solution. The Km is 0.6 mM for GTP. The activity is inhibited by 78 +/- 12% with the increase in Ca2+ concentration from 10(-9) to 10(-7) M. GTP hydrolysis is inhibited by the same concentrations of Ca2+ which block the sodium conductivity of the rod outer segment cytoplasmic membrane.  相似文献   

16.
The light-activated GTP-binding protein (GBP) in toad rod outer segments has been located on the cytoplasmic surface (CS) of rod disk membranes by correlating biochemical results with images of quick- frozen, freeze-fractured, and deep-etched rod outer segments. This has been accomplished by selectively removing and replacing the 8-12-nm particles that are found on the CS of disk membranes, exactly in parallel with the GBP. In contrast, the large particles are not correlated with another major disk enzyme, the light-activated cGMP phosphodiesterase. We have been unable to visualize this protein. The surface density of large particles, one particle per eleven rhodopsins in isolated rod outer segments and one particle per nine rhodopsins in intact retina, correlates well with previous biochemical estimates of GBP numbers based on enzyme activity. After the identification of the large particles, we tested the effects of light on the density of particles on the surface of disk membranes in intact retinas. Retinas quick-frozen at various intervals after a bright flash of light show a modest increase (approximately 30%) in particle density by 10 s after the flash but no increase before 1 s. The number of particles on the disk membrane returns to dark levels between 1 and 10 min after the flash. The 1-s latency in the change of particle binding would appear to rule out this process as a mechanism for initiating phototransduction in the rod.  相似文献   

17.
Protein kinase activity of isolated rod outer segments from bovine retinas is activated by cGMP when in a soluble form, and it is cyclic nucleotide independent when associated with the rod outer segment membranes. The soluble protein kinase phosphorylates in a cyclic nucleotide-dependent manner only a single endogenous protein with an apparent molecular weight of 30,000 daltons. The 30,000-dalton phosphoprotein is localized specifically in the visual cells of the retina. It is proposed that the light-induced changes in cGMP levels that occur in rod outer segments in vivo are linked by the cyclic nucleotide-dependent protein kinase to alterations in the content of the 30,000-dalton phosphoprotein.  相似文献   

18.
Synthesis of nitric oxide in the bovine retina.   总被引:6,自引:0,他引:6  
In the absence of light, high concentrations of cGMP open ion channels in the plasma membranes of rod outer segments. The source of stimulation of retinal guanylate cyclase is not known. Nitric oxide is a potent stimulator of guanylate cyclase in other cell systems. The present data demonstrate that nitric oxide synthase, an enzyme responsible for the production of nitric oxide, is present in retina, and specifically in the rod outer segments. This enzyme uses L-arginine as a substrate and is NADPH- and calcium- dependent. L-arginine-derived nitric oxide may be a source of activation of guanylate cyclase in the retina.  相似文献   

19.
Soluble proteins can be extracted by osmotic shock of purified rod (photoreceptor cell) outer segments that have intact plasma membranes. The soluble proteins include a component that contains tightly bound GDP-Exchange of this GDP with exogenous nucleotide is catalyzed by (and requires) the membranes from the outer segments. ATP does not participate in these reactions. Approximately one-half of the binding sites in the soluble component require GTP as the source of exogenous nucleotide; the remainder accept GTP or GDP with equal facility. When exogenous GTP is the source of bound nucleotide, it is found in the complex in the form of GDP. Exchange of bound nucleotide with GTP is stoichiometrically related to GTPase activity; this activity is highly dependent upon the presence of both membranes and soluble protein. The soluble nucleotide binding protein was purified by making use of the fact that it binds tightly to the membranes (under conditions of moderate ionic strength) in the absence of GTP and can be eluted by solutions containing low concentrations of GTP (but not GDP or ATP, nor can it be eluted by GTP-free solutions of low ionic strength). The purified protein contains two polypeptide chains of molecular weights 41,000 and 37,000; these are the major species that can be extracted from the outer segments by osmotic shock, and they constitute approximately 7% of the total protein of the isolated organelle.  相似文献   

20.
Association of guanylate cyclase with the axoneme of retinal rods   总被引:4,自引:0,他引:4  
Axonemes were isolated from purified bovine retinal rod outer segments by dissolving the outer segment membranes in detergent and separating the axonemes by centrifugation on a linear detergent-containing sucrose density gradient. Guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.61.2) activity was concentrated in the axoneme fraction. Guanylate cyclase eluted in the void volume when detergent-solubilized rod outer segments were subjected to exclusion chromatography on Sepharose 4B. Attempts to extract guanylate cyclase from isolated axonemes with salt, EDTA, base and other reagents were successful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号