首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Succession after fire and bushcutting in coastal dune fynbos was monitored for two and a half years and comparisons were made with adjacent, mature (13 year-old) fynbos. Sixty-two to 68% of pre-disturbance species, including all the dominants, were found in the successional communities 1.5 yr after disturbance: the patterns thus fitted the initial floristic composition model. On the more mesic south facing slope, post-fire succession differed from the north-facing (burnt) and bushcut sites in that ordinations showed a clear separation between the mature and successional communities. This difference was due to the post-fire abundance on the southfacing slope site of short-and medium-lived species not present in the mature fynbos. One and a half years after disturbance, species richness and equitability had increased relative to mature vegetation. This increase was greatest for the south facing slope where short-and medium-lived species and juveniles of pre-disturbance dominants co-occurred. In general, successional patterns were consistent with those described for other fynbos and fire-prone mediterranean shrublands.  相似文献   

2.
Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories (‘pyrodiversity’), has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg) in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat) and structural habitat attributes (including an index of cattle disturbance) to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age <1 year within 3 km radius) and level of cattle disturbance were observed. Shrub cover was positively related to both mammal abundance and richness, and availability of rock crevices, ground vegetation cover and spatial extent of ≥4 years unburnt habitat were all positively associated with at least some of the mammal species modelled. We found little support for diversity of post-fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to mammals in the north Kimberley. A managed fire mosaic that reduces large scale and intense fires, including the retention of ≥4 years unburnt patches, will clearly benefit savanna mammals. We also highlighted the importance of fire mosaics that retain sufficient shelter for mammals. Along with fire, it is clear that grazing by introduced herbivores also needs to be reduced so that habitat quality is maintained.  相似文献   

3.
Landscape fire (at the scale of square kilometres or more) is relatively rare in the alpine and subalpine environments of Australia. In early 1998, a major fire (the ‘Caledonia Fire’), burnt approximately 35 000 ha, of which approximately 3000 hectares was subalpine heathland, grassland and wetland within the Victorian Alpine National Park. This fire was one of only three landscape‐scale fires that have occurred anywhere in the treeless vegetation of the Victorian Alps in the past 100 years, the others being in 1939 and 1985. Monitoring of regeneration in subalpine vegetation commenced 3 weeks postfire. Sites were established in burnt grassland at Holmes Plain (1400 m a.s.l.) and burnt grassland and heathland at Wellington Plain (1480 m a.s.l.), and in unburnt grassland at both sites. In burnt grassland and heathland, the fire consumed much of the vegetation, leaving extensive areas of bare ground. The cover of dense vegetation declined from > 70% prefire, to approximately 15% immediately postfire. Bare ground at the Holmes and Wellington Plains sites ranged from 70% to 85% immediately postfire. By May 2000, approximately 2.5 years postfire, dense vegetation cover in grassland had increased to approximately 20%, and bare ground had decreased to an average of approximately 30%. In unburnt grassland, dense vegetation cover was generally > 95%, and the amount of bare ground less than 5%. The tussock‐forming snow grasses resprouted vigorously following fire, and had flowered prolifically after 1 year. In heathland, most of the shrubs were incinerated, leaving close to 100% bare soil. Since then, a number of grasses and some dominant shrubs have resprouted vigorously, with some seedling regeneration. By May 2000, in heathland, bare soil was still > 50% and dense vegetation < 20%. Such ground cover conditions during this early postfire period were well below prefire levels, and well below the levels necessary to protect alpine soils from erosion. The Caledonia Fire has provided a rare opportunity to study ecological processes associated with postfire regeneration in treeless subalpine landscapes.  相似文献   

4.
Season of fire have marked effects on the germination and establishment of serotinous shrubs of the family Proteaceae in fynbos vegetation. To investigate reasons for this, we simulated the effects of different fire seasons by planting seeds into cleared fynbos and then followed their progress. Four species of Proteaceae were planted monthly at four sites over two and a half years. Exclosures were used to exclude rodent seed predators. Germination was confined largely to the three winter months (June–Aug.). Seeds planted from January–June had higher germination than those planted in the second half of the year. Higher levels of regeneration noted after fires in the first half of the year, were previously hypothesised to be results of predation. However, we obtained similar results despite the exclusion of seed predators. Monthly minimum temperature was strongly correlated with germination percentage but monthly rainfall was not. Loss of seed viability may be important, in determining post-fire seedling densities. Differential seedling mortality of earlier and late germinants appears to be unimportant in determining establishment levels. Our results nevertheless support the current practice of restricting management fires in fynbos to the summer-autumn period.  相似文献   

5.
The effects of fire recurrence on vegetation patterns in Quercus suber L. and Erica-Cistus communities in Mediterranean fire-prone ecosystems of south-eastern France were examined on stands belonging to 5 fire classes, corresponding to different numbers of fires (from 0 to 4) and time intervals between fires since 1959. A common pool of species was identified among the plots, which was typical of both open and closed maquis. Fire recurrence reduced the abundance of trees and herbs, whereas it increased the abundance of small shrubs. Richness differed significantly between the most contrasting classes of fire recurrence, with maximal values found in control plots and minimal values in plots that had burned recurrently and recently. Equitability indices did not vary significantly, in contrast to Shannon's diversity index which mostly correlated with richness. Forest ecosystems that have burnt once or twice in the last 50 years were resilient; that is to say they recovered a biomass and composition similar to that of the pre-fire state. However, after more than 3-4 fires, shrubland communities displayed lower species richness and diversity indices than unburned plots. The time since the last fire and the number of fires were the most explanatory fire variables, governing the structure of post-fire plant communities. However, environmental factors, such as slope or exposure, also made a significant contribution. Higher rates of fire recurrence can affect the persistence or expansion of shrublands in the future, as observed in other Mediterranean areas.  相似文献   

6.
There is now considerable evidence that, as the climate continues to warm, bushfires are becoming more common and severe, particularly in regions such as south-eastern Australia. The extraordinary Australian bushfires over the summer of 2019/2020 resulted in the burning of habitats such as highland peat swamps and intertidal estuarine wetlands over unprecedented spatial scales. Across New South Wales, these bushfires affected 183 ha of saltmarshes and 23 ha of mangroves in 19 estuaries. The percentage of fire-affected saltmarsh ranged from 51% to 81% in the worst impacted estuaries, although typically ≤15% of mapped saltmarsh was damaged. Just over 50% of mangroves were burnt in Wonboyn Lake (although this constituted <0.2 ha), whereas in all other estuaries, ≤5% of mangroves were burnt. At the state-wide scale, the likelihood of saltmarshes being affected by fire was unrelated to adjacent terrestrial vegetation; however, mangroves adjacent to burnt wet sclerophyll forest were more likely to burn than not. Burnt mangroves were almost exclusively associated with extreme or high severity fires in adjacent terrestrial vegetation, yet saltmarshes were also impacted in some cases by moderate or low-intensity fires. Many species of saltmarsh plants had re-sprouted or germinated after 6–24 months, but the extent of any recovery or changes in species composition were not quantified. The majority of fire-affected mangrove trees appeared to be dead 24 months after the fires, despite observations of epicormic growth on some trees after six months. Bushfire impacts to estuarine wetlands are likely to become more frequent and results from our work can help target hazard reduction burning that might be considered for minimising damage to mangroves. More work is required to better understand potential longer term impacts and the capacity for natural recovery of estuarine wetlands from bushfires.  相似文献   

7.
Fire management attempts to coerce fire into a desired regime using three primary strategies: prescribed burning, fire suppression and ignition management. The West Arnhem Land Fire Abatement project (WALFA), where prescribed Early Dry Season burning is used to reduce unplanned Late Dry Season burning, is heralded as model for prescribed burning. However, a previous analysis found that Late Dry Season area burnt in WALFA had been reduced further than would be expected based purely on the Early Dry Season treatment area. This study investigated whether treatment has reduced the number and size of unplanned fires. Daily burnt area mapping from MODIS satellite sensors was used to identify individual fires to compare fire activity before and after management was introduced in WALFA (2005) and in a control region in East Arnhem Land. Late Dry Season area burnt reduced after treatment in WALFA but also in the control region. The number of fires in August–October increased after treatment. There is a period from early August until late September when human ignitions can cause huge fires. Late Dry Season area burnt was strongly influenced by the size of the largest single fire and only weakly by the number of ignitions. Early Dry Season area burnt had modest effects on both the number and maximum size of Late Dry Season fires. Eliminating the largest fire in each 1600 km2 sample block would have halved the total Late Dry Season area burnt. A similar reduction could be obtained from a 14% annual treatment with Early Dry Season fire, but this may not reduce the overall area burnt. If overall fire frequency is the main threat to biodiversity in the savannas, then the best solution will be to prevent the small subset of fires that have the potential to become very large.  相似文献   

8.
Wildfire is the major natural agent of disturbance in interior Alaska. We examined the magnitude of human impact on fire by comparing fire regime between individual 1-km2 grid cells designated for fire suppression with lands where fires are allowed to burn naturally. Two-thirds of interior Alaska has an essentially natural fire regime, with few human ignitions, negligible suppression activity, and many large lightning-caused fires. In the 17% of land that is designated for fire suppression due to its proximity to communities and roads, there was a 50% reduction in the proportion of area burned from 1992–2001, relative to areas without suppression. The remaining 16% of land serves as a buffer, receives some suppression, and has an intermediate fire regime. Even though there were 50 times more fires and the fire season began two months earlier in lands designated for suppression, most of these fires were lit by people and remained small because fires tended to occur at times and places less favorable for fire spread and were more accessible to fire fighters compared to lands not designated for suppression. Even in the absence of fire suppression, human-caused fires were less likely to exceed 400 ha compared to lightning-caused fires. Fire suppression reduced area burned in all fuel types but was somewhat more effective in less flammable (non-forest) vegetation. Alaska’s fire policy of focusing suppression efforts on a small proportion of the fire-prone region maximizes the ecological and social benefits associated with fire-dependent ecosystem services, while minimizing the social and ecological costs of suppression. Application of this policy to other areas would require well-informed managers and stakeholders to make difficult decisions about the relative costs and benefits of fire across ecologically and culturally variable landscapes.  相似文献   

9.
The area of grassland affected by uncontrolled fires was recorded in the Rwenzori National Park for each dry season between July 1970 and July 1973 with the exception of the January 1973 season. The seasonal total of burnt grassland rose to a peak of 32 7% in January 1971 but there was then a marked decline to a negligible level in July 1971. This was followed by a further steady rise which by July 1973 had reached to within 3% of the previous peak. 13 4% of the park was burnt at least once a year on average, and 55 3% was burnt at some time or other during the 3 years. Burning was not uniformly distributed throughout the park and four regions at high risk from fire are identified for particular attention should a fire control policy be introduced. The need for a controlled burning policy is emphasized particularly in view of the destruction of trees which is taking place through the agency of elephants.  相似文献   

10.
The Australian Government has sanctioned development of greenhouse gas emissions (GHG) abatement methodologies to meet international emissions reduction obligations. Savanna burning emissions abatement methodologies have been available since 2012, and there are currently 72 registered projects covering approximately 32 million ha. Abatement to date has exceeded 4 million tonnes of carbon dioxide equivalent (CO2‐e) principally through the application of low intensity early dry season fire management to reduce the amount of biomass combusted in higher intensity late dry season (LDS) fires. Savanna burning projects can only be conducted on areas with eligible fire‐prone vegetation fuel types where implementing the improved fire management regime is considered ecologically appropriate. This study assesses the suitability of including tall Acacia shrublands (‘Pindan’) as a new eligible fuel type. These shrublands make up 12% (~2 million ha) of the Kimberley region, Western Australia, where, on average, 32% is fire affected annually, mostly in the LDS. A standard assessment protocol was applied to describe vegetation fuel type structural and pyrolysis characteristics. We show that Pindan (i) can be identified and mapped as a unique tall Acacia shrubland vegetation fuel type, (ii) characterised by a significantly greater shrubby fuel load biomass, and (iii) the conservation status of which would benefit from imposition of strategic prescribed burning programme. Savanna burning projects in the Pindan fuel type could potentially abate up to 24.43 t.CO2e/km2 per year, generating significant income and employment opportunities for predominantly Indigenous land managers in the region.  相似文献   

11.
Natural grasslands in southern Australia commonly exist in altered states. One widespread altered state is grassland pasture dominated by cool‐season (C3) native grasses maintained by ongoing grazing. This study explores the consequences of removing grazing and introducing fire as a conservation management tool for such a site. We examined the abundance of two native and three exotic species, across a mosaic of fire regimes that occurred over a three‐year period: unburnt, summer wild‐fire (>2 years previous), autumn management fire (<1 year previously) and burnt in both fires. Given that one aim of conservation management is to increase native species at the expense of exotics, the impacts of the fires were largely positive. Native grasses were at higher cover levels in the fire‐managed vegetation than in the unburnt vegetation. Of the three exotic species, one was consistently at lower density in the burnt plots compared to the unburnt plots, while the others were lower only in those plots burnt in summer. The results show that the response of a species varies significantly between different fire events, and that the effects of one fire can persist through subsequent fires. Importantly, some of the effects were large, with changes in the density of plants of over 100‐fold. Fire is potentially a cost‐effective tool to assist the ecological restoration of retired grassland pastures at large scales.  相似文献   

12.
Aim To describe the spatial and temporal pattern of landscape burning with increasing distance from Aboriginal settlements. Location Central Arnhem Land, a stronghold of traditional Aboriginal culture, in the Australian monsoon tropics. Methods Geographical information system and global positioning system technologies were used to measure spatial and temporal changes in fire patterns over a one decade period in a 100 × 80 km area that included a cluster of Aboriginal settlements and a large uninhabited area. The major vegetation types were mapped and fire activity was assessed by systematic visual interpretation of sequences of cloud‐free Landsat satellite images acquired in the first (May to July) and second (August to October) halves of the 7‐month dry season. Fire activity in the middle and end of one dry season near an Aboriginal settlement was mapped along a 90‐km field traverse. Canopy scorch height was determined by sampling burnt areas beside vehicle tracks. Results Satellite fire mapping was 90% accurate if the satellite pass followed shortly after a fire event, but the reliability decayed dramatically with increasing time since the fire. Thus the satellite mapping provided a conservative index of fire activity that was unable to provide reliable estimates of the spatial extent of individual fires. There was little landscape fire activity in the first half of the dry season, that was mostly restricted to areas immediately surrounding Aboriginal settlements, with burning of both inhabited and uninhabited landscapes concentrated in the second half of the dry season. The mean decadal fire indices for the three dominant vegetation types in the study area were three in the plateau savanna, two in the sandstone and five in the wet savanna. The spatial and temporal variability of Aboriginal burning apparent in the satellite analyses were verified by field traverse surrounding a single settlement. Fires set by Aborigines had low scorch height of tree crowns reflecting low intensity, despite generally occurring late in the dry season. Conclusions Our findings support the idea that Aboriginal burning created a fine‐scale mosaic of burnt and unburnt areas but do not support the widely held view that Aboriginal burning was focused primarily in the first half of the dry season (before July). The frequency and scale of burning by Aborigines appears to be lower compared with European fire regimes characterized by fires of annual or biennial frequencies that burn large areas. The European fire regime appears to have triggered a positive feedback cycle between fire frequency and flammable grass fuels. The widely advocated management objective of burning in the first half of the dry season burning provides one of the few options to control fires once heavy grass fuel loads have become established, however we suggest it is erroneous to characterize such a regime as reflecting traditional Aboriginal burning practices. The preservation of Aboriginal fire management regimes should be a high management priority given the difficulty in breaking the grass‐fire cycle once it has been initiated.  相似文献   

13.
We investigate interactions between successive naturally occurring fires, and assess to what extent the environments in which fires burn influence these interactions. Using mapped fire perimeters and satellite-based estimates of post-fire effects (referred to hereafter as fire severity) for 19 fires burning relatively freely over a 31-year period, we demonstrate that fire as a landscape process can exhibit self-limiting characteristics in an upper elevation Sierra Nevada mixed conifer forest. We use the term ‘self-limiting’ to refer to recurring fire as a process over time (that is, fire regime) consuming fuel and ultimately constraining the spatial extent and lessening fire-induced effects of subsequent fires. When the amount of time between successive adjacent fires is under 9 years, and when fire weather is not extreme (burning index <34.9), the probability of the latter fire burning into the previous fire area is extremely low. Analysis of fire severity data by 10-year periods revealed a fair degree of stability in the proportion of area burned among fire severity classes (unchanged, low, moderate, high). This is in contrast to a recent study demonstrating increasing high-severity burning throughout the Sierra Nevada from 1984 to 2006, which suggests freely burning fires over time in upper elevation Sierra Nevada mixed conifer forests can regulate fire-induced effects across the landscape. This information can help managers better anticipate short- and long-term effects of allowing naturally ignited fires to burn, and ultimately, improve their ability to implement Wildland Fire Use programs in similar forest types. BC wrote paper, performed analysis; JM gathered/processed data, performed analysis, contributed to writing; AT gathered/processed data, conducted field research; MK contributed new methods for analysis; JvW performed analysis, conceived the study; SS designed study, contributed to writing.  相似文献   

14.
Abstract

Detailed knowledge of factors controlling fire regime is a prerequisite for efficient fire management. We analyzed the fire selectivity of given forest vegetation classes both in terms of fire frequency and fire size for the present fire regime (1982–2005) in Canton Ticino (southern Switzerland). To this end, we investigated the dataset in four categories (all fires, anthropogenic winter fires, anthropogenic summer fires, and natural summer fires) and performed 1000 random Monte Carlo simulations on frequency and size. Anthropogenic winter and summer fires have a similar selectivity, occurring mostly at low elevations in chestnut stands, broadleaved forests, and in the first 50 m from the forest edge. In winter half of the fires in chestnut stands are significantly larger than 1.0 ha and the average burnt area in some coniferous forests tends to be high. Lightning fires seem to occur more frequently in spruce stands and less often in the summer‐humid chestnut and beech stands and the 50–100 m buffer area. In beech forests, in mixed forests, and in the spruce stands affected by natural fire in summer, the fires tend to be small in size. The selectivity observed, especially the selectivity of anthropogenic fires in terms of fire frequency, seems to be also related to geographical parameters such as altitude and aspect, and to anthropogenic characteristics such as closeness to roads or buildings.  相似文献   

15.
Kennedy  A.D.  Potgieter  A.L.F. 《Plant Ecology》2003,167(2):179-192
Wildfires may be started naturally by lightning or artificially by humans. In the savanna regions of southern Africa, lightning fires tend to occur at the start of the wet season, during October and November, while anthropogenic fires are usually started during the dry season, between July and August. A long-term field manipulation experiment initiated in the Kruger National Park in 1952 was used to explore whether this seasonal divergence affects tree abundance, spatial pattern, size and architecture. After 44 years of prescribed burning treatments that simulated the seasonal incidence of lightning and anthropogenic fires, mean densities of the locally-dominant shrub, Colophospermum mopane, were 638 and 500 trees ha–1 respectively. Trees in burnt plots had aggregated distributions while trees in unburnt plots had random distributions. Significant differences (p < 0.001) were recorded in a range of morphological parameters including tree height, canopy diameter, mean stem circumference and number of stems. The incidence of resprouting also differed significantly between treatments, with burnt trees containing a high proportion of coppiced stems. The differences in tree size and architecture between the mid-dry season and early-wet season burning plots suggest that anthropogenic fires applied during July and August cannot substitute for a natural lightning fire regime. Anthropogenic fire yields a landscape that is shorter, more scrubby and populated by numerous coppiced shrubs than the landscape generated by natural lightning fire conditions.  相似文献   

16.
Ecosystems managed with contrasting fire regimes provide insight into the responses of vegetation and soil. Heathland, woodland and forest ecosystems along a gradient of resource availability were burnt over four decades in approximately 3- or 5-year intervals or were unburnt for 45–47 years (heathland, woodland), or experienced infrequent wildfires (forest: 14 years since the last fire). We hypothesized that, relative to unburnt or infrequent fires, frequent burning would favour herbaceous species over woody species and resprouting over obligate seeder species, and reduce understorey vegetation height, and topsoil carbon and nitrogen content. Our hypothesis was partially supported in that herbaceous plant density was higher in frequently burnt vegetation; however, woody plant density was also higher in frequently burnt areas relative to unburnt/infrequently burnt areas, across all ecosystems. In heathland, omission of frequent fire resulted in the dominance of fern Gleichenia dicarpa and subsequent competitive exclusion of understorey species and lower species diversity. As hypothesized, frequent burning in woodland and forest increased the density of facultative resprouters and significantly reduced soil organic carbon levels relative to unburnt sites. Our findings confirm that regular burning conserves understorey diversity and maintains an understorey of lower statured herbaceous plants, although demonstrates the potential trade-off of frequent burning with lower topsoil carbon levels in the woodland and forest. Some ecosystem specific responses to varied fire frequencies were observed, reflecting differences in species composition and fire response traits between ecosystems. Overall, unburnt vegetation resulted in the dominance of some species over others and the different vegetation types were able to withstand relatively high-frequency fire without the loss of biodiversity, mainly due to high environmental productivity and short juvenile periods.  相似文献   

17.
Aim This study of contemporary landscape burning patterns in the North Kimberley aims to determine the relative influences of environmental factors and compare the management regimes occurring on Aboriginal lands, pastoral leases, national park and crown land. Location The study area is defined at the largest scale by Landsat Scene 108–70 that covers a total land area of 23,134 km2 in the North Kimberley Bioregion of north‐west Australia, including the settlement of Kalumburu, coastline between Vansittart Bay in the west and the mouth of the Berkeley River in the east, and stretching approximately 200 km inland. Methods Two approaches are applied. First, a 10‐year fire history (1990–1999) derived from previous study of satellite (Landsat‐MSS) remote sensing imagery is analysed for broad regional patterns. And secondly, a 2‐year ground‐based survey of burning along major access roads leading to an Aboriginal community is used to show fine‐scale burning patterns. anova and multiple regression analyses are used to determine the influence of year, season, geology, tenure, distance from road and distance from settlement on fire patterns. Results Satellite data indicated that an average of 30.8% (±4.4% SEM) of the study area was burnt each year with considerable variability between years. Approximately 56% of the study area was burnt on three or more occasions over the 10‐year period. A slightly higher proportion of burning occurred on average in the late dry season (17.2 ± 3.6%), compared with the early dry season (13.6 ± 3.3%). The highest fire frequency occurred on basalt substrates, on pastoral tenures, and at distances 5–25 km from roads. Three‐way anova demonstrated that geological substrate and land use were the most significant factors influencing fire history, however a range of smaller interactions were also significant. Analysis of road transects, originating from an Aboriginal settlement, showed that the timing of fire and geology type were the most significant factors affecting the pattern of area burnt. Of the total transect area, 28.3 ± 2.9% was burnt annually with peaks in burning occurring into the dry season months of June, August and September. Basalt uplands (81.2%) and lowlands (30.1%) had greater areas burnt than sandstone (12.3%) and sands (17.7%). Main conclusions Anthropogenic firing is constrained by two major environmental determinants; climate and substrate. Seasonal peaks in burning activity in both the early and late dry season relate to periods of optimal fire‐weather conditions. Substrate factors (geology, soils and physiognomy) influence vegetation‐fuel characteristics and the movement of fire in the landscape. Basalt hills overwhelmingly supported the most frequent wildfire regime in the study region because of their undulating topography and relatively fertile soils that support perennial grasslands. Within these spatial and temporal constraints people significantly influenced the frequency and extent of fire in the North Kimberley thus tenure type and associated land uses had a significant influence on fire patterning. Burning activity is high on pastoral lands and along roads and tracks on some tenure types. While the state government uses aerial control burning and legislation to try to restrict burning to the early dry season across all geology types, in practice burning is being conducted across the full duration of the dry season with early dry season burning focused on sandstone and sand substrates and late dry season burning focused on basalt substrates. There is greater seasonal and spatial variation in burning patterns on landscapes managed by Aboriginal people.  相似文献   

18.
High-resolution macroscopic charcoal and pollen analyses were used to reconstruct the fire and vegetation history of the Willamette Valley for the last 1200 years. Presented in this paper are three new paleoecological reconstructions from Lake Oswego, Porter Lake, and Warner Lake, Oregon, and portions of previous reconstructions from Battle Ground Lake, Washington, and Beaver Lake, Oregon. The reconstructions show that prior to Euro-American settlement vegetation and fire regimes were influenced by a combination of natural and anthropogenic factors. Battle Ground Lake shows a stronger influence from climate, while Lake Oswego, Beaver Lake, Porter Lake, and Warner Lake were more controlled by human activity. However, human-set fires were also modulated by regional climate variability during the Medieval Climate Anomaly and the Little Ice Age. Fire reconstructions from Battle Ground Lake, Lake Oswego, Beaver Lake, and Porter Lake imply that fires were infrequent in the Willamette Valley 200-300 years prior to Euro-American settlement. The decline of Native American populations due to introduced disease may have led to this reduction in fire activity. The prehistoric record from Warner Lake, however, indicates that fires in the foothills of the Cascade Range were more frequent than on the valley floor, at least until ca. AD 1800. The historic portions of the reconstructions indicate that Euro-American land clearance for agriculture and logging produced the most dramatic shifts in vegetation and fire regimes. All five records indicate that few fires in the Willamette Valley have occurred since ca. AD 1930, and fires today are predominantly grass fires.  相似文献   

19.
Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning.  相似文献   

20.
《Acta Oecologica》2002,23(2):51-58
Prescribed burning is now widely used in ecosystems in Mediterranean regions as an efficient management practice to reduce both the quantities of fuel biomass and the fire frequency, seasonality, intensity and size. The regime of prescribed burning should be adapted to maintain the biological diversity and impact on population dynamics must be determined. We studied the effect of prescribed burning on the capture and survival rates of a population of small mammals, the wood mouse (Apodemus sylvaticus) in the Mediterranean region of Tordères, France. To this end, we used a rectangular trapping quadrat measuring 300 × 225 m2, in which 1366 individuals were captured and marked over a total of 18 trapping sessions (May 1991–June 1996). Several prescribed fires were ignited between the fifth and sixth trapping sessions. These multiple fires resulted in a partial burning of the study site, which left a number of small patches of vegetation intact. To estimate the influence of this prescribed burning on capture and survival rates of the wood mouse, the Cormack–Jolly–Seber model was fitted. Likelihood ratio test and AIC criterion allowed us to select the most parsimonious model for our survival data, the additive model Φs t. This model did not demonstrate any significant change in survival rates after the prescribed fires, probably because the fire left behind small patches of vegetation and the wood mouse can quickly recolonize the study site. Our result is in accordance with other studies, which found little impact of prescribed burning on survival rates and abundance in animal populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号