首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Seasonal population dynamics and the vertical distribution of planktonic ciliates in a hypertrophic and strongly stratified temperate lake were studied from April to October in 2000 and from April to June in 2001. In the epi- and metalimnion the ciliate abundance peaked in spring and late summer, reaching maximum values in the metalimnion (86 cells ml−1) on 7th August 2000. In the epilimnion, the highest biomass content (414 μg C l−1) was observed on 8th May 2000. In the hypolimnion only a late summer peak occurred and the ciliate numbers were always lower than in the epi- and metalimnion. Five groups dominated the community of ciliates: Oligotrichida, Gymnostomatea, Prostomatida, Hymenostomata and Peritrichia, and the community composition varied greatly with depth. In the epilimnion the ciliate numbers were dominated by oligotrichs but small algivorous prostomatids, peritrichs and gymnostomes were also numerous. In the metalimnion these groups were gradually replaced by scuticociliates and mixotrophic Coleps spp. In the hypolimnion scuticociliates and species known as benthic migrants dominated. In the epilimnion and upper metalimnion in spring large herbivores and in summer small bacterivores were more numerous.  相似文献   

3.
Multiple forces structure natural microbial communities, but the relative roles and interactions of these drivers are poorly understood. Gradients of physical and chemical parameters can be especially influential. In traditional ecological theory, variability in environmental conditions across space and time represents habitat heterogeneity, which may shape communities. Here we used aquatic microbial communities as a model to investigate the relationship between habitat heterogeneity and community composition and dynamics. We defined spatial habitat heterogeneity as vertical temperature and dissolved oxygen (DO) gradients in the water column, and temporal habitat heterogeneity as variation throughout the open-water season in these environmental parameters. Seasonal lake mixing events contribute to temporal habitat heterogeneity by destroying and re-creating these gradients. Because of this, we selected three lakes along a range of annual mixing frequency (polymictic, dimictic, meromictic) for our study. We found that bacterial community composition (BCC) was distinct between the epilimnion and hypolimnion within stratified lakes, and also more variable within the epilimnia through time. We found stark differences in patterns of epilimnion and hypolimnion dynamics over time and across lakes, suggesting that specific drivers have distinct relative importance for each community.  相似文献   

4.
The vertical distribution of chlorophyll was examined in relationto physical and chemical parameters in oligomesotrophic LakeSamish, Washington state, during the latter half of a growingseason. A majority of chlorophyll resided in the metalimnionin late July, with metalimnetic populations dominated by diatoms(Cyclotella bodanica) and chrysophytes (Mallomonas caudata,Dinobryon sertularia). A silica gradient appeared to be mostimportant in determining the vertical position of these populations.Later in the season, segregation of nutrients and light, inthe face of a deepening epilimnion, led to transient accumulationsof phytoplankton at the top of the metalimnion. It appearedthat losses due to heterotrophic activities accentuated thelower boundary of this chlorophyll peak.  相似文献   

5.
Yu  Neng  Culver  David A. 《Hydrobiologia》2000,431(2-3):175-184
Colonization and proliferation of zebra mussel (Dreissena polymorpha) population in Hargus lake, a small thermally stratified reservoir in Ohio, U.S.A., caused a significant increase in water clarity and a remarkable decrease in phytoplankton biomass during the period from 1993 to 1995. Increased light penetration and reduced organic matter loading to the meta-and hypolimnion were reflected in the lake stratification patterns, particularly in the temperature and oxygen profiles in the metalimnion. The meta- and hypolimnetic water temperature increased significantly over three years, irrespective of variation in surface water temperature. The epilimnion depth (mixing depth) increased by about the same magnitude as did the average Secchi depth. However, the total heat content of the lake did not show a consistent trend to increasing zebra mussel abundance, as it was largely influenced by the temperature of the large water volumes near the surface, which were in turn affected by weather conditions. Concurrent with the thermal structure change, the dissolved oxygen structure also changed over three years, though to a lesser extent. The changes in oxygen stratification pattern were reflected by increased oxygen concentrations in the metalimnion and a lowered depth of 3 mg l–1 DO isopleth. These observed changes were likely attributed to increased water mixing depth, metalimnion photosynthesis and reduced oxygen consumption by organic matter. With increased epilimnion thickness and improved oxygen conditions in the metalimnion, the habitable space for aquatic macro-organisms (including fish) expanded substantially. Our results suggest that the indirect impacts of zebra mussels on small lake stratification patterns may have much broader implications than do the direct trophic interactions to the whole ecosystem.  相似文献   

6.
The community structure of bacterioplankton was studied at different depths (0 to 25 m) of a temperate eutrophic lake (Lake Plusssee in northern Germany) by using comparative 5S rRNA analysis. The relative amounts of taxonomic groups were estimated from 5S rRNA bands separated by high-resolution electrophoresis. Comparison of partial 5S rRNA sequences enabled detection of changes in single taxa over space and during seasons. Overall, the bacterioplankton community was dominated by 3 to 14 abundant (>4% of the total 5S rRNA) taxa. In general, the number of 5S rRNA bands (i.e., the number of bacterial taxa) decreased with depth. In the fall, when thermal stratification and chemical stratification were much more pronounced than they were in the spring, the correlation between the depth layers and the community structure was more pronounced. Therefore, in the fall each layer had its own community structure; i.e., there were different community structures in the epilimnion, the metalimnion, and the hypolimnion. Only three 5S rRNA bands were detected in the hypolimnion during the fall, and one band accounted for about 70% of the total 5S rRNA. The sequences of individual 5S rRNA bands from the spring and fall were different for all size classes analyzed except two bands, one of which was identified as Comamonas acidivorans. In the overall analysis of the depth profiles, the diversity in the epilimnion contrasted with the reduced diversity of the bacterioplankton communities in the hypolimnion, and large differences occurred in the composition of the epilimnion at different seasons except for generalists like C. acidivorans.  相似文献   

7.
1. In a thermally stratified water column with a deep‐water algal maximum, Daphnia face a trade‐off between food (high fecundity) and temperature (fast development). Recent studies showed that Daphnia populations move up and down the entire water column to take advantage of both, but the proportion of time allocated by individuals to the epilimnion, metalimnion and hypolimnion with their specific food and temperature conditions is not yet known. 2. In a system of 1 m deep, vertical perspex tubes, I established three temperature gradients with 2, 5 and 10 °C differences between the surface (epilimnion) and the bottom layer (hypolimnion). Algae were added to the hypolimnion to simulate a deep‐water algal maximum. 3. The migration behaviour of individual neonate and egg‐bearing Daphnia hyalina × galeata was monitored in order to measure the proportions of time the individuals allocated to the different vertical habitats and to assess the frequency of their shifts between epilimnion and hypolimnion. 4. Neonates stayed continuously at the surface, taking advantage of the higher temperature, possibly because feeding was less important for them because of egg yolk reserves. In contrast, egg‐bearing females spent more time feeding in the hypolimnion when the temperature gradient was weak, but also migrated into the epilimnion to take advantage of the higher temperature. In the steepest temperature gradient, the egg‐bearing females either shifted between epilimnion and hypolimnion, or dwelled constantly in the metalimnion with intermediate conditions.  相似文献   

8.
A knowledge of diel variation and the vertical distribution of phytoplankton communities may contribute to a better understanding of the driving factors of key species. Applying functional-group classification provides important information on the causes of species selection in the pelagic community. The diel variation of phytoplankton functional groups was analysed during an autumnal stratification period with the aim of understanding their changes in the vertical position related to light, mixing regime and grazing pressure. Phytoplankton and zooplankton communities were sampled every 4 h during a 24-h period in a vertical profile in a subtropical meso-eutrophic reservoir. Strong stratification during a 24-h cycle and a mixed clear epilimnion with partial atelomixis marked the autumn season in the Faxinal reservoir, southern Brazil. The highest phytoplankton densities and biomass were found during the second part of the day, a general pattern reported in the literature, and may be explained by zooplankton dynamics. During the 24-h cycle, phytoplankton functional groups lacking a self-regulating capacity and those able to regulate their vertical position were vertically segregated in the lake. The diel behaviour of both groups was driven by the mixing regime (including atelomixis), light and zooplankton grazing pressure.  相似文献   

9.
Abstract In order to relate the benthic lipid composition to possible sources in the water column, the sestonic communities of a monomictic lake were profiled using their saponifiable polar lipid fatty acids, which were identified by capillary gas chromatography-mass spectrometry (GC-MS). The epilimnion, dominated by the dinoflagellate alga Ceratium hirundella , was characterized by C20:5 and C22:6 polyunsaturated fatty acids. The photic anoxic metalimnion supported a radically different community, dominated by photosynthetic sulfur-oxidizing bacteria ( Chromatium and Chloronema spp.) and a Synechococcus -like cyanobacterium, and was characterized by high concentrations of C16 and C18 monounsaturated fatty acids. The fatty acid compositions of the hypolimnetic seston and the sediment were qualitatively similar to that of the metalimnion. Methyl-branched acids, commonly found in eubacteria, increased with depth in the water column. The concentrations of several unusual fatty acids found in Desulfovibrio spp. Desulfobacter spp. and Desulfotomaculum spp. were inversely related to sulfate concentration in the metalimnion. After the water column mixed in the winter, steep gradients of respiratory terminal electron acceptors developed in the surface sediment and were reflected in the polar lipid fatty acid compositions. The results show that fatty acids derived from the membranes of epilimnetic phytoplankton were efficiently metabolized in the oxic portion of the water column. The fatty acids synthesized by prokaryotic microorganisms at and below the oxycline dominated the sediment. The polar lipid fatty acid composition of the sediment showed seasonal changes which can be associated with concentrations of terminal electron acceptors of microbial respiration, and thus with physiologically distinct bacterial groups.  相似文献   

10.
SUMMARY. 1. A taxonomic analysis of 171 phytoplankton samples obtained from Crater Luke, Oregon, between 1985 and 1987 revealed 132 taxa in the upper 250 m of the water column. The greatest temporal variation in taxonomic structure occurred between 40 and 80 m below the water surface, a depth range which corresponded to the zone of maximum primary production.
2. Phytoplankton cell biovolume in the upper 20 m of the water column was relatively high during the summer months, a period when Nitzschia gracilis was dominant in the epilimnion. However, 72% or more of the cell biovolume between 0 and 200 m was distributed below 20 m and, during the winter and spring months, 61% was found below 80 m.
3. Cluster analysis identified a sparse, temporally ubiquitous flora which was modified to various degrees when environmental conditions became favourable for the growth of a few dominant taxa. These surges ot dominance by individual taxa accounted for 2 to 5-fold increases in cell biovolume and generated a pronounced taxonomic discontinuity between the floras in the epilimnion and hypolimnion.
4. While the taxonomic structure of the phytoplankton in the epilimnion corresponded closely with the structure found in a 1978–80 study, the flora below the metalimnion was more diverse and less predictable in species composition than the pattern reported in the earlier study.  相似文献   

11.
12.
Producers, consumers, and decomposers are the three key functional groups that form the basis of all ecosystems. But, little is known about how these functional groups coexist with each other in aquatic environments, particularly in subtropical reservoirs. In this study, we describe the nature of microeukaryotic communities in a subtropical deep reservoir during the strongly stratified period. Denaturing gradient gel electrophoresis gel band sequencing, pyrosequencing, and light microscopy were used together to facilitate an in‐depth investigation of the community structure of phytoplankton, zooplankton, and fungi. Our results showed that thermal and oxygen stratification shaped the composition of the phytoplankton, zooplankton, and fungi populations in the reservoir. Stratification was evident among ecological functional groups in autumn: producers and consumers were overwhelmingly dominant in the epilimnion characterized by high temperatures and oxygen levels, whereas decomposers were inclined to inhabit the hypolimnion. These results contribute to our understanding of the relationship of ecosystem functional groups in the man‐made aquatic systems and have important practical implications for reservoir management. Results suggest that the strategies for the control of eutrophication and harmful algal bloom prevention should focus on a fuller understanding of the consequences of both thermal stratification and vertical distribution of microplankton.  相似文献   

13.
Abstract The dominant members of the bacterioplankton community in a set of 10 small, thermally stratified lakes in northeastern Indiana were determined by denaturing gradient gel electrophoresis (DGGE) of a polymerase chain reaction amplified fragment of 16S rDNA. The variability in community composition was analyzed as function of vertical stratification (epilimnion vs metalimnion), time (July vs August samples), and geographical location. In 58 discrete samples, a range of 8–23 bands were detected (mean = 14, s.d. = 4). For all variables, sample pairs shared about 40–70% of bands. In comparisons between depth strata, pairs of oxic samples shared more bands than an oxic–anoxic pair. There was no obvious relationship between the geographical location of lakes (or their physical connection) and band sharing. Received: 4 March 1999; Accepted: 11 May 1999  相似文献   

14.

Aim

We use lake phytoplankton community data to quantify the spatio-temporal and scale-dependent impacts of eutrophication, land-use and climate change on species niches and community assembly processes while accounting for species traits and phylogenetic constraints.

Location

Finland.

Time period

1977–2017.

Major taxa

Phytoplankton.

Methods

We use hierarchical modelling of species communities (HMSC) to model metacommunity trajectories at 853 lakes over four decades of environmental change, including a hierarchical spatial structure to account for scale-dependent processes. Using a “region of common profile” approach, we evaluate compositional changes of species communities and trait profiles and investigate their temporal development.

Results

We demonstrate the emergence of novel and widespread community composition clusters in previously more compositionally homogeneous communities, with cluster-specific community trait profiles, indicating functional differences. A strong phylogenetic signal of species responses to the environment implies similar responses among closely related taxa. Community cluster-specific species prevalence indicates lower taxonomic dispersion within the current dominant clusters compared with the historically dominant cluster and an overall higher prevalence of smaller species sizes within communities. Our findings denote profound spatio-temporal structuring of species co-occurrence patterns and highlight functional differences of lake phytoplankton communities.

Main conclusions

Diverging community trajectories have led to a nationwide reshuffling of lake phytoplankton communities. At regional and national scales, lakes are not single entities but metacommunity hubs in an interconnected waterscape. The assembly mechanisms of phytoplankton communities are strongly structured by spatio-temporal dynamics, which have led to novel community types, but only a minor part of this reshuffling could be linked to temporal environmental change.  相似文献   

15.
SUMMARY. I. Movement of 33P from hypolimnion to epilimnion in a small, dystrophic lake was investigated using small-diameter experimental tubes enclosing thermally stratified water columns. This approach was made possible by the extremely sharp stratification found in such lakes, in which the euphotic zone closely coincides with the epilimnion.
2. The vertical distribution of inorganic phosphorus in the lake showed a sharp increase across the thermocline so that enhanced concentrations were available to phytoplankton just below the thermocline. Inorganic nitrogen concentrations did not show such a marked relation to thermal stratification.
3. One abundant motile alga ( Cryptomonas marssonii ) showed striking and regular vertical migrations in the lake, moving below the thermocline at night and returning to the surface waters in early morning. These migrations took cells across a 10°C temperature gradient. Non-motile phytoplankton showed constant vertical distributions.
4. In the experimental tubes an upward movement of phosphorus took place from hypolimnion to epilimnion which was only attributable to transport by phytoplankton cells undertaking active vertical migrations. No equivalent movement of phosphorus occurred in control tubes from which algae were absent.
5. The possible significance of such nutrient retrieval is discussed with reference to plankton phosphorus budgets and competition between phytoplankton species.  相似文献   

16.
SUMMARY 1. In oligotrophic lakes, phytoplankton and bacteria growing in the deep chlorophyll maximum in the cool metalimnion of lakes often dominate biomass and production, but the importance of this source of food for zooplankton is unknown.
2. During much of the day, Daphnia rosea in two mountain lakes inhabited deep chlorophyll layers where food availability was at least equal to that in the epilimnion.
3. To determine the importance of the two strata (epilimnion and metalimnion) for Daphnia , we used a cross-classified factorial experiment to measure how epilimnetic and metalimnetic food and temperature (10 and 16 °C) influenced survival, growth and reproduction.
4. Daphnia survived and grew better when fed seston from the epilimnion of one lake, although chlorophyll, particulate nitrogen and particulate carbon were 2–2.5 times greater in the metalimnion.
5. Temperature had no significant influence on Daphnia survival or growth. Similar results were obtained with food from the second lake, with Daphnia surviving and reproducing better when provided with epilimnetic, rather than metalimnetic food, although the quantities of chlorophyll and carbon in the two strata were similar.
6. Food quality, rather than quantity or temperature, appeared to be the most important determinant influencing survival, growth and reproduction, and the greater food quantity in the metalimnia was not used effectively by the Daphnia .  相似文献   

17.
This study documents for the first time both vertical and horizontal distribution patterns of the zooplankton community in Lake Kinneret during the period of thermal stratification. The zooplankton distribution patterns were explored in relation to abiotic (temperature, oxygen) and biotic (picocyanobacteria, ciliates, flagellates, phytoplankton, fish) environmental gradients. Sampling was carried out on 6–7 July 1992 at five stations and six depths from nearshore to offshore. Zooplankton abundance and biomass varied from 5 to 267 ind. l–1(mean: 95 ind. l–1), and from 0.1 to 65 d.w. mg m–3(mean: 24 d.w. mg m–3). Zooplankton taxonomic groups (Rotifera, Cladocera, Cyclopoida, Calanoida) and size classes (micro-, meso- and macrozooplankton) showed peaks of maximal density and biomass in the epilimnetic and metalimnetic strata (5 and 14 m). Depth, accounting for 31–39% of total spatial variation, reflected the vertical distribution of zooplankton in relation to temperature and oxygen declines, and the higher concentration of food resources (protists and phytoplankton) in the epilimnion and metalimnion. Onshore–offshore distance, accounting for 17–22% of the total spatial variance, reflected different distribution patterns shown among zooplankton groups and size classes. The macrozooplankton (Copepoda, Cladocera) was more abundant offshore, whereas microzooplankton (Rotifera and nauplii) predominated nearshore. These horizontal distribution patterns were related to small increases in temperature and phytoplankton biomass, and higher concentrations of fish in the littoral zone. Although limited to a short temporal scale, our study indicated that zooplankton spatial distribution in Lake Kinneret during the period of thermal stratification was related to physicochemical, food and predation factors, manifested differently along the vertical and nearshore–offshore gradients.  相似文献   

18.
Beatrix E. Beisner 《Oikos》2001,95(3):496-510
Environmental variability in space and time can have significant influences on community structure. Temporal heterogeneity in nutrient supply has been shown in laboratory studies to have strong impacts on the diversity and composition of phytoplankton communities, depending on the scale of fluctuations. This paper extends the work in chemostats in a number of ways: using large-scale field mesocosms with natural plankton communities exposed to various frequencies of vertical mixing, modifying environmental productivity and incorporating higher trophic levels. The first major question and experiment focus on whether vertical mixing at various frequencies, and the associated nutrient pulse, has similar effects in nutrient-rich and nutrient-poor environments for predominantly single trophic level systems. The results indicate that the temporal scale of fluctuation is more of a structuring factor for phytoplankton communities in enriched enclosures, with little response under oligotrophic conditions. The second experiment examines the responsiveness of entire plankton communities (three trophic levels). Major shifts in community structure were absent under both nutrient-rich and nutrient-poor conditions. Responses were seen only in the demography of the top trophic level ( Chaoborus flavicans ). It appears from these experiments that the spatial disruption that accompanies mixing events may be more important than the temporal component (nutrient pulses) for phytoplankton. This appears to be the case only under conditions where natural spatial heterogeneity is high as it is when systems are enriched. When nutrient pulses are small, as they are in oligotrophic systems where recycling is efficient, little phytoplankton community response is observed. Finally, the inclusion of entire plankton food webs here suppressed the effects of the scale of intermittency in water column mixing at both low and high nutrient levels for all but the highest trophic level.  相似文献   

19.
Autotrophic picoplankton (APP) were studied in Chilko Lake, a large, deep ultra-oligotrophic pre-alpine lake (elevation: 1172 m) in the south central coast mountains of British Columbia. Data from 1985 (untreated) and 1990 (treated) were used to compare and contrast APP community response to a whole-lake fertilization experiment. The APP communities of Chilko Lake were dominated by the coccoid cyanobacteria Synechococcus and its colonial morph which comprised about 99% of the APP community of Chilko Lake. Chlorella-like eukaryotic picoplankters and small cyanobacteria were rare, comprising < 1 % of the APP community. In 1990 autotrophic picoplankters contributed an average of 73% to total chlorophyll, and 54% to total photosynthesis. Average APP abundance ranged from lows of 4,000–5,000 cells ml-1 in winter and spring to highs of 50000–150000 cells ml-1 in early August with no apparent autumnal increase. APP populations were uniformly distributed in the epilimnion, but during calm periods in August often formed a peak near the metalimnion/hypolimnion boundary. Seasonal and vertical distribution patterns of APP showed little relation to temperature or to light. When nutrients were added to the lake in 1990, APP populations doubled within 3 wk of addition and average abundance (6.16 × 104 cells · ml-1) was twice 1985 APP numbers. Bottom-up control by scarce nutrient supplies is considered the primary factor regulating community composition and abundance during the initial population growth phase (June, July) with top-down control by grazing during nutrient colimitation periods when the epilimnion is deplete of both nitrogen and phosphorus (August, September).  相似文献   

20.
Increases in the magnitude and variability of precipitation events have been predicted for the Chihuahuan Desert region of West Texas. As patterns of moisture inputs and amounts change, soil microbial communities will respond to these alterations in soil moisture windows. In this study, we examined the soil microbial community structure within three vegetation zones along the Pine Canyon Watershed, an elevation and vegetation gradient in Big Bend National Park, Chihuahuan Desert. Soil samples at each site were obtained in mid-winter (January) and in mid-summer (August) for 2 years to capture a component of the variability in soil temperature and moisture that can occur seasonally and between years along this watershed. Precipitation patterns and amounts differed substantially between years with a drought characterizing most of the second year. Soils were collected during the drought period and following a large rainfall event and compared to soil samples collected during a relatively average season. Structural changes within microbial community in response to site, season, and precipitation patterns were evaluated using fatty acid methyl ester (FAME) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses. Fungal FAME amounts differed significantly across seasons and sites and greatly outweighed the quantity of bacterial and actinomycete FAME levels for all sites and seasons. The highest fungal FAME levels were obtained in the low desert scrub site and not from the high elevation oak–pine forests. Total bacterial and actinomycete FAME levels did not differ significantly across season and year within any of the three locations along the watershed. Total bacterial and actinomycete FAME levels in the low elevation desert-shrub and grassland sites were slightly higher in the winter than in the summer. Microbial community structure at the high elevation oak–pine forest site was strongly correlated with levels of NH4 +–N, % soil moisture, and amounts of soil organic matter irrespective of season. Microbial community structure at the low elevation desert scrub and sotol grasslands sites was most strongly related to soil pH with bacterial and actinobacterial FAME levels accounting for site differences along the gradient. DGGE band counts of amplified soil bacterial DNA were found to differ significantly across sites and season with the highest band counts found in the mid-elevation grassland site. The least number of bands was observed in the high elevation oak–pine forest following the large summer-rain event that occurred after a prolonged drought. Microbial responses to changes in precipitation frequency and amount due to climate change will differ among vegetation zones along this Chihuahuan Desert watershed gradient. Soil bacterial communities at the mid-elevation grasslands site are the most vulnerable to changes in precipitation frequency and timing, while fungal community structure is most vulnerable in the low desert scrub site. The differential susceptibility of the microbial communities to changes in precipitation amounts along the elevation gradient reflects the interactive effects of the soil moisture window duration following a precipitation event and differences in soil heat loads. Amounts and types of carbon inputs may not be as important in regulating microbial structure among vegetation zones within in an arid environment as is the seasonal pattern of soil moisture and the soil heat load profile that characterizes the location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号