首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of the growth and water relations of expanding grape (Vitis vinifera L.) leaves have been used to determine the relationship between leaf expansion rate and leaf cell turgor. Direct measurement of turgor on the small (approximately 15 micrometer diameter) epidermal cells over the midvein of expanding grape leaves was made possible by improvements in the pressure probe technique. Leaf expansion rate and leaf water status were perturbed by environmentally induced changes in plant transpiration. After establishing a steady state growth rate, a step decrease in plant transpiration resulted in a rapid and large increase in leaf cell turgor (0.25 megapascal in 5 minutes), and leaf expansion rate. Subsequently, leaf expansion rate returned to the original steady state rate with no change in cell turgor. These results indicate that the expansion rate of leaves may not be strongly related to the turgor of the leaf cells, and that substantial control of leaf expansion rate, despite changes in turgor, may be part of normal plant function. It is suggested that a strictly physical interpretation of the parameters most commonly used to describe the relationship between turgor and growth in plant cells (cell wall extensibility and yield threshold) may be inappropriate when considering the process of plant cell expansion.  相似文献   

2.
We have dissected the influences of apoplastic pH and cell turgor on short-term responses of leaf growth to plant water status, by using a combination of a double-barrelled pH-selective microelectrodes and a cell pressure probe. These techniques were used, together with continuous measurements of leaf elongation rate (LER), in the (hidden) elongating zone of the leaves of intact maize plants while exposing roots to various treatments. Polyethylene glycol (PEG) reduced water availability to roots, while acid load and anoxia decreased root hydraulic conductivity. During the first 30 min, acid load and anoxia induced moderate reductions in leaf growth and turgor, with no effect on leaf apoplastic pH. PEG stopped leaf growth, while turgor was only partially reduced. Rapid alkalinization of the apoplast, from pH 4.9 ± 0.3 to pH 5.8 ± 0.2 within 30 min, may have participated to this rapid growth reduction. After 60 min, leaf growth inhibition correlated well with turgor reduction across all treatments, supporting a growth limitation by hydraulics. We conclude that apoplastic alkalinization may transiently impair the control of leaf growth by cell turgor upon abrupt water stress, whereas direct hydraulic control of growth predominates under moderate conditions and after a 30-60 min delay following imposition of water stress.  相似文献   

3.
Diurnal changes of leaf water potential and stomatal conductance were measured for 12 deciduous shrubs and tree saplings in the understorey of a temperate forest. Sunflecks raised the leaf temperature by 4°C, and vapor pressure deficit to 2 kPa. Although the duration of the sunflecks was only 17% of daytime, the photon flux density (PFD) of sunflecks was 52% of total PFD on a sunny summer day. Leaf osmotic potential at full turgor decreased in summer, except in some species that have low osmotic potential in the spring. Plants that endured low leaf water potential had rigid cell walls and low osmotic potential at full turgor. These plants did not have lower relative water content and turgor potential than plants with higher leaf water potential. There were three different responses to an increase in transpiration rate: (i) plants had low leaf water potential and slightly increased soil-to-leaf hydraulic conductance; (ii) plants decreased leaf water potential and increased the hydraulic conductance; and (iii) plants had high leaf water potential and largely increased the hydraulic conductance.  相似文献   

4.
Phaseolus vulgaris plants with expanding primary leaves weresubjected to dark-light or light-dark transition at a root temperatureof 25 °C, or to root cooling to 10 °C. Illuminationor darkening caused rapid changes in water flux through theplants and in epidermal turgor pressure when analysed by pressureprobe. However, these were not concurrent with variations inbulk leaf water potential and turgor pressure as determinedby the pressure chamber method. In addition, the turgor pressureof epidermis measured with the pressure probe was invariably0.05 to 0.15 MPa lower than that measured in bulk tissue withthe pressure chamber. Cooling roots to 10°C induced waterstress and wilting. Both techniques indicated a decrease ofturgor pressure, but a 20-30 min lag was observed with the pressurechamber. Due to stomatal closure and decreased transpiration,root-cooled plants regained cell turgor after 5-7 h of cooling,but bulk tissue and epidermal turgor (as well as leaf growthrate) remained significantly lower than control levels. Thesefindings indicate that changes in turgor pressure as the resultof hydraulic signalling are sufficient to explain the rapidchanges in growth rate following illumination or cooling reportedin earlier work (Sattin et al 1990). They also indicate thatdata obtained by use of the pressure chamber must be treatedwith caution. Key words: Phaseolus vulgaris, expansion growth, water relations, hydraulic signalling, pressure probe, pressure chamber  相似文献   

5.
Data on the effects of air temperature increase by 4°C on leaf growth and water relation parameters in barley (Hordeum vulgare L.) plants in original cv. Steptoe and its ABA-deficient mutant (AZ24) are presented. An increase in temperature firstly resulted in the cessation of leaf elongation in both genotypes; however, later in cv. Steptoe plants, as distinct from mutants, the rate of leaf length increment was completely restored. Before air warming, transpiration was more intense in mutant plants; at increased temperature, transpiration was activated in both genotypes. After growth resumption, the water potential in cv. Steptoe plants somewhat increased as compared with initial level (before warming). In AZ34 leaves, in contrast, the water potential, which was initially below that in cv. Steptoe leaves, reduced after temperature increase. The calculation of total hydraulic conductivity of the plants and osmotic hydraulic conductivity in the roots showed that these parameters increased in cv. Steptoe and were not changed in AZ34 mutants. At temperature increase, the level of ABA was not changed in AZ34 mutants, whereas in Steptoe plants it increased in the roots and decreased in the shoots. It was concluded that a capability of ABA synthesis is required for the control of total hydraulic conductivity under changing environmental conditions.  相似文献   

6.
The flacca mutant in tomato (Lycopersicon esculentum Mill. cv Rheinlands Ruhm) was employed to examine the effects of a relatively constant diurnal water stress on leaf growth and water relations. As the mutant is deficient in abscisic acid (ABA) and can be phenotypically reverted to the wild type by applications of the growth substance, inferences can be made concerning the involvement of ABA in responses to water stress. Water potential and turgor were lower in leaves of flacca than of Rheinlands Ruhm, and were increased by ABA treatment. ABA decreased transpiration rates by causing stomatal closure and also increased the hydraulic conductance of the sprayed plants. Osmotic adjustment did not occur in flacca plants despite the daily leaf water deficits. Stem elongation was inhibited by ABA, but leaf growth was promoted. It is concluded that, in some cases, ABA may promote leaf growth via its effect on leaf water balance.  相似文献   

7.
A combined system has been developed in which epidermal cell turgor, leaf water potential, and gas exchange were determined for transpiring leaves of Tradescantia virginiana L. Uniform and stable values of turgor were observed in epidermal cells (stomatal complex cells were not studied) under stable environmental conditions for both upper and lower epidermises. The changes in epidermal cell turgor that were associated with changes in leaf transpiration were larger than the changes in leaf water potential, indicating the presence of transpirationally induced within-leaf water potential gradients. Estimates of 3 to 5 millimoles per square meter per second per megapascal were obtained for the value of within-leaf hydraulic conductivity. Step changes in atmospheric humidity caused rapid changes in epidermal cell turgor with little or no initial change in stomatal conductance, indicating little direct relation between stomatal humidity response and epidermal water status. The significance of within-leaf water potential gradients to measurements of plant water potential and to current hypotheses regarding stomatal response to humidity is discussed.  相似文献   

8.
Sugar beet grown in solution culture, with or without a supplementof 16 millequivalents per litre of sodium, were subjected towater stress with polyethylene glycol solutions of –0.4,–3, and –8 bar osmotic potential. With the –0.4bar solution leaf water potential was between –6 and –8bar and leaf relative water content about 90 per cent. Decreasingthe solution osmotic potential to –8 bar decreased leafwater potential to about –15 bar and relative water contentto 75 per cent; leaves stopped expanding and transpiration andcarbon dioxide uptake were decreased by 80 and 50 per cent respectively.Net assimilation rates were only slightly decreased becauseleaf growth was decreased more than carbon dioxide assimilation.Relative growth rates of the plants were decreased by 8 percent at –3 bar and by 15 per cent at –8 bar. Sodium absorbed by the plant accumulated mainly in the leavesand petioles; it increased the water content of the leaves andstorage root and the plant fresh weight. Sodium decreased theleaf osmotic potential, slightly increased leaf water potential,and significantly increased turgor. It had no effect on carbondioxide uptake, transpiration, net assimilation rate, or relativegrowth rate. Sodium increased the rate at which the leaf areagrew and it is concluded that it did so by altering the leafwater balance.  相似文献   

9.
Suboptimal levels of phosphorus (P) strongly inhibited leaf expansion in young cotton (Gossypium hirsutum L.) plants during the daytime, but had little effect at night. The effect of P was primarily on cell expansion. Compared to plants grown on high P, plants grown on low P had lower leaf water potentials and transpiration rates, and greater diurnal fluctuations in leaf water potential. Hydraulic conductances of excised root systems and of intact transpiring plants were determined from curves relating water flow rate per unit root length to the pressure differential across the roots. Both techniques showed that low P significantly decreased root hydraulic conductance. The effects of P nutrition on hydraulic conductance preceded effects on leaf area. Differences in total root length, shoot dry weight, and root dry weight all occurred well after the onset of differences in leaf expansion. The data strongly indicate that low P limits leaf expansion by decreasing the hydraulic conductance of the root system.  相似文献   

10.
In order to investigate the factors causing fast growth of sprouts ofPasania edulis, photosynthetic activity and water relation characteristics of lower (mature) leaves and upper (expanding) leaves of the sprouts were compared with those of seedlings and adult trees ofP. edulis. Apparent quantum yield was generally low. Maximum photosynthetic rate was highest in the lower leaves of sprouts. Stomatal frequency was higher in sprout leaves than in seedling leaves. Osmotic potential at the water saturation point and water potential at the turgor loss point, in leaves, were higher in sprouts than in seedlings and adult trees. Symplasmic water content per unit leaf area was higher in sprouts than in seedlings. These water relation parameters in leaves indicated that sprout leaves are superior in maintaining cell turgor against water loss, but are not tolerant to water stress. In field measurements, sprout leaves showed higher stomatal conductance and transpiration rates. These results indicated that sprout leaves fully realized their high potential productivity even under field conditions. The leaf specific conductance, from the soil to the leaf, was higher in sprouts than in seedlings. Large and deep root systems of the original stumps of the sprouts may be attributed to the high leaf specific conductance.  相似文献   

11.
Acclimation of leaf growth to low water potentials in sunflower   总被引:13,自引:5,他引:13  
Abstract Leaf growth is one of the most sensitive of plant processes to water deficits and is frequently inhibited in field crops. Plants were acclimated for 2 weeks under a moderate soil water deficit to determine whether the sensitivity of leaf growth could be altered by sustained exposure to low water potentials. Leaf growth under these conditions was less than in the controls because expansion occurred more slowly and for less of the day than in control leaves. However, acclimated leaves were able to grow at leaf water potentials (Ψ1) low enough to inhibit growth completely in control plants. This ability was associated with osmotic adjustment and maintenance of turgor in the acclimated leaves. Upon rewatering, the growth of acclimated leaves increased but was less than the growth of controls, despite higher concentrations of cell solute and greater turgor in the acclimated leaves than in controls. Therefore, factors other than turgor and osmotic adjustment limited the growth of acclimated leaves at high ψ1 Four potentially controlling factors were investigated and the results showed that acclimated leaves were less extensible and required more turgor to initiate growth than control leaves. The slow growth of acclimated leaves was not due to a decrease in the water potential gradient for water uptake, although changes in the apparent hydraulic conductivity for water transport could have occurred. It was concluded that leaf growth acclimated to low ψ1, by adjusting osmotically, and the concomitant maintenance of turgor permitted growth where none otherwise would occur. However, changes in the extensibility of the tissue and the turgor necessary to initiate growth caused generally slow growth in the acclimated leaves.  相似文献   

12.
The tos1 (tomato osmotically sensitive) mutant, isolated from an in vitro screen of root growth during osmotic stress, was less sensitive to exogenous ABA, but accumulated more ABA under osmotic stress than WT plants. We assessed growth and water relations characteristics of hydroponically grown tos1 seedlings (in the absence of osmotic stress) at low and high evaporative demands. Growth of tos1 was severely inhibited at both high and low evaporative demands. Twenty DAS, WT and tos1 genotypes had a similar leaf water and turgor potential, but mature tos1 plants (45 day old) showed a significant diurnal loss of leaf turgor, with recovery overnight. Increased evaporative demand increased turgor loss of tos1 plants. High evaporative demand at the beginning of the day decreased stomatal conductance of tos1, without diurnal recovery, thus whole plant transpiration was decreased. De-topped tos1 seedlings showed decreased root hydraulic conductance and had a 1.4-fold increase in root ABA concentration. Impaired root function of tos1 plants failed to meet transpirational water demand and resulted in shoot turgor loss, stomatal closure and growth inhibition.  相似文献   

13.
To test whether the inhibition of leaf expansion by high evaporative demand is a result of hydraulic processes, we have followed both leaf elongation rate (LER) and cell turgor in leaves of maize plants either normally watered or in water-saturated soil in which hydraulic resistance at the soil-root interface was abolished. Cell turgor was measured in situ with a pressure probe in the elongating zone of the first and sixth leaves, and LERs of the same leaves were measured continuously with transducers or by following displacements of marks along the growing leaves. Both variables displayed spatial variations along the leaf and positively correlated within the elongating zone. Values peaked at mid-distance of this zone, where the response of turgor to evaporative demand was further dissected. High evaporative demand decreased both LER and turgor for at least 5 h, with dose-effect linear relations. This was observed in five genotypes with appreciable differences in turgor maintenance among genotypes. In contrast, the depressing effects of evaporative demand on both turgor and LER disappeared when the soil was saturated, thereby opposing a negligible resistance to water flow at the soil-root interface. These results suggest that the response of LER to evaporative demand has a hydraulic origin, enhanced by the resistance to water flux at the soil-root interface. They also suggest that turgor is not completely maintained under high evaporative demand, and may therefore contribute to the reductions in LER observed in non-saturated soils.  相似文献   

14.
Leaf and whole plant-level functional traits were studied in five dominant woody savannah species from Central Brazil (Cerrado) to determine whether reduction of nutrient limitations in oligotrophic Cerrado soils affects carbon allocation, water relations and hydraulic architecture. Four treatments were used: control, N additions, P additions and N plus P additions. Fertilizers were applied twice yearly, from October 1998 to March 2004. Sixty-three months after the first nutrient addition, the total leaf area increment was significantly greater across all species in the N- and the N + P-fertilized plots than in the control and in the P-fertilized plots. Nitrogen fertilization significantly altered several components of hydraulic architecture: specific conductivity of terminal stems increased with N additions, whereas leaf-specific conductivity and wood density decreased in most cases. Average daily sap flow per individual was consistently higher with N and N + P additions compared to the control, but its relative increase was not as great as that of leaf area. Long-term additions of N and N + P caused midday PsiL to decline significantly by a mean of 0.6 MPa across all species because N-induced relative reductions in soil-to-leaf hydraulic conductance were greater than those of stomatal conductance and transpiration on a leaf area basis. Phosphorus-fertilized trees did not exhibit significant changes in midday PsiL. Analysis of xylem vulnerability curves indicated that N-fertilized trees were significantly less vulnerable to embolism than trees in control and P-fertilized plots. Thus, N-induced decreases in midday PsiL appeared to be almost entirely compensated by increases in resistance to embolism. Leaf tissue water relations characteristics also changed as a result of N-induced declines in minimum PsiL: osmotic potential at full turgor decreased and symplastic solute content on a dry matter basis increased linearly with declining midday PsiL across species and treatments. Despite being adapted to chronic nutrient limitations, Cerrado woody species apparently have the capacity to exploit increases in nutrient availability by allocating resources to maximize carbon gain and enhance growth. The cost of increased allocation to leaf area relative to water transport capacity involved increased total water loss per plant and a decrease in minimum leaf water potentials. However, the risk of increased embolism and turgor loss was relatively low as xylem vulnerability to embolism and leaf osmotic characteristics changed in parallel with changes in plant water status induced by N fertilization.  相似文献   

15.
Abstract. In four dicotyledonous species low levels of N strongly inhibited leaf expansion during the day but had little or no effect at night. In contrast, daytime and night-time expansion were equally affected in four cereal species. The results support the general concept that in dicotyledons, N controls leaf expansion through its effects on hydraulic conductivity. In such N-limited plants, water deficits generated by transpiration may inhibit daytime cell expansion. In cereals, cell expansion and transpiration occur in separate zones of the leaf and are apparently unrelated.
Growth analysis showed that low levels of N inhibited leaf area growth more strongly in dicotyledons than in cereals, but had similar effects on net assimilation rates of plants in the two groups. As a result, dry matter production was more efficient in cereals than in dicotyledons when N was limiting.  相似文献   

16.
17.
Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.  相似文献   

18.
Treatment of bean (Phaseolus vulgaris L.) seedlings with low levels of salinity (50 or 100 millimolar NaCl) decreased the rate of light-induced leaf cell expansion in the primary leaves over a 3 day period. This decrease could be due to a reduction in one or both of the primary cellular growth parameters: wall extensibility and cell turgor. Wall extensibility was assessed by the Instron technique. Salinity did not decrease extensibility and caused small increases relative to the controls after 72 hours. On the other hand, 50 millimolar NaCl caused a significant reduction in leaf bulk turgor at 24 hours; adaptive decreases in leaf osmotic potential (osmotic adjustment) were more than compensated by parallel decreases in the xylem tension potential and the leaf apoplastic solute potential, resulting in a decreased leaf water potential. It is concluded that in bean seedlings, mild salinity initially affects leaf growth rate by a decrease in turgor rather than by a reduction in wall extensibility. Moreover, longterm salinization (10 days) resulted in an apparent mechanical adjustment, i.e. an increase in wall extensibility, which may help counteract reductions in turgor and maintain leaf growth rates.  相似文献   

19.
In response to light, water relation parameters (turgor, half-time of water exchange, T(1/2), and hydraulic conductivity, Lp; T(1/2) proportional 1/Lp) of individual cells of parenchyma sitting in the midrib of leaves of intact corn (Zea mays L.) plants were investigated using a cell pressure probe. Parenchyma cells were used as model cells for the leaf mesophyll, because they are close to photosynthetically active cells at the abaxial surface, and there are stomata at both the adaxial and abaxial sides. Turgor ranged from 0.2 to 1.0 MPa under laboratory light condition (40 micromol m(-2) s(-1) at the tissue level), and individual cells could be measured for up to 6 h avoiding the variability between cells. In accordance with earlier findings, there was a big variability in T(1/2)s measured ranging from 0.5 s to 100 s, but the action of light on T(1/2)s could nevertheless be worked out for cells having T(1/2)s greater than 2 s. Increasing light intensity ranging from 100 micromol m(-2) s(-1) to 650 micromol m(-2) s(-1) decreased T(1/2) by a factor up to five within 10 min and increased Lp (and aquaporin activity) by the same factor. In the presence of light, turgor decreased due to an increase in transpiration, and this tended to compensate or even overcompensated for the effect of light on T(1/2). For example, during prolonged illumination, cell turgor dropped from 0.2 to 1.0 MPa to -0.03 to 0.4 MPa, and this drop caused an increase of T(1/2) and a reduction of cell Lp, i.e. there was an effect of turgor on cell Lp besides that of light. To separate the two effects, cell turgor (water potential) was kept constant while changing light intensity by applying gas pressure to the roots using a pressure chamber. At a light intensity of 160 micromol m(-2) s(-1), there was a reduction of T(1/2) by a factor of 2.5 after 10-30 min, when turgor was constant within +/-0.05 MPa. Overall, the effects of light on T(1/2) (Lp) were overriding those of turgor only when decreases in turgor were less than about 0.2 MPa. Otherwise, turgor became the dominant factor. The results indicate that the hydraulic conductivity increased with increasing light intensity tending to improve the water status of the shoot. However, when transpiration induced by light tends to cause a low turgidity of the tissue, cell Lp was reduced. It is concluded that, when measuring the overall hydraulic conductivity of leaves, both the effects of light and turgor should be considered. Although the mechanism(s) of how light and turgor influence the cell Lp is still missing, it most likely involves the gating of aquaporins by both parameters.  相似文献   

20.
The role of plasma membrane aquaporins (PIPs) in water relations of Arabidopsis was studied by examining plants with reduced expression of PIP1 and PIP2 aquaporins, produced by crossing two different antisense lines. Compared with controls, the double antisense (dAS) plants had reduced amounts of PIP1 and PIP2 aquaporins, and the osmotic hydraulic conductivity of isolated root and leaf protoplasts was reduced 5- to 30-fold. The dAS plants had a 3-fold decrease in the root hydraulic conductivity expressed on a root dry mass basis, but a compensating 2.5-fold increase in the root to leaf dry mass ratio. The leaf hydraulic conductance expressed on a leaf area basis was similar for the dAS compared with the control plants. As a result, the hydraulic conductance of the whole plant was unchanged. Under sufficient and under water-deficient conditions, stomatal conductance, transpiration rate, plant hydraulic conductance, leaf water potential, osmotic pressure, and turgor pressure were similar for the dAS compared with the control plants. However, after 4 d of rewatering following 8 d of drying, the control plants recovered their hydraulic conductance and their transpiration rates faster than the dAS plants. Moreover, after rewatering, the leaf water potential was significantly higher for the control than for the dAS plants. From these results, we conclude that the PIPs play an important role in the recovery of Arabidopsis from the water-deficient condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号