首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Varying‐coefficient models have become a common tool to determine whether and how the association between an exposure and an outcome changes over a continuous measure. These models are complicated when the exposure itself is time‐varying and subjected to measurement error. For example, it is well known that longitudinal physical fitness has an impact on cardiovascular disease (CVD) mortality. It is not known, however, how the effect of longitudinal physical fitness on CVD mortality varies with age. In this paper, we propose a varying‐coefficient generalized odds rate model that allows flexible estimation of age‐modified effects of longitudinal physical fitness on CVD mortality. In our model, the longitudinal physical fitness is measured with error and modeled using a mixed‐effects model, and its associated age‐varying coefficient function is represented by cubic B‐splines. An expectation‐maximization algorithm is developed to estimate the parameters in the joint models of longitudinal physical fitness and CVD mortality. A modified pseudoadaptive Gaussian‐Hermite quadrature method is adopted to compute the integrals with respect to random effects involved in the E‐step. The performance of the proposed method is evaluated through extensive simulation studies and is further illustrated with an application to cohort data from the Aerobic Center Longitudinal Study.  相似文献   

2.
Pan W  Lin X  Zeng D 《Biometrics》2006,62(2):402-412
We propose a new class of models, transition measurement error models, to study the effects of covariates and the past responses on the current response in longitudinal studies when one of the covariates is measured with error. We show that the response variable conditional on the error-prone covariate follows a complex transition mixed effects model. The naive model obtained by ignoring the measurement error correctly specifies the transition part of the model, but misspecifies the covariate effect structure and ignores the random effects. We next study the asymptotic bias in naive estimator obtained by ignoring the measurement error for both continuous and discrete outcomes. We show that the naive estimator of the regression coefficient of the error-prone covariate is attenuated, while the naive estimators of the regression coefficients of the past responses are generally inflated. We then develop a structural modeling approach for parameter estimation using the maximum likelihood estimation method. In view of the multidimensional integration required by full maximum likelihood estimation, an EM algorithm is developed to calculate maximum likelihood estimators, in which Monte Carlo simulations are used to evaluate the conditional expectations in the E-step. We evaluate the performance of the proposed method through a simulation study and apply it to a longitudinal social support study for elderly women with heart disease. An additional simulation study shows that the Bayesian information criterion (BIC) performs well in choosing the correct transition orders of the models.  相似文献   

3.
Qu A  Li R 《Biometrics》2006,62(2):379-391
Nonparametric smoothing methods are used to model longitudinal data, but the challenge remains to incorporate correlation into nonparametric estimation procedures. In this article, we propose an efficient estimation procedure for varying-coefficient models for longitudinal data. The proposed procedure can easily take into account correlation within subjects and deal directly with both continuous and discrete response longitudinal data under the framework of generalized linear models. The proposed approach yields a more efficient estimator than the generalized estimation equation approach when the working correlation is misspecified. For varying-coefficient models, it is often of interest to test whether coefficient functions are time varying or time invariant. We propose a unified and efficient nonparametric hypothesis testing procedure, and further demonstrate that the resulting test statistics have an asymptotic chi-squared distribution. In addition, the goodness-of-fit test is applied to test whether the model assumption is satisfied. The corresponding test is also useful for choosing basis functions and the number of knots for regression spline models in conjunction with the model selection criterion. We evaluate the finite sample performance of the proposed procedures with Monte Carlo simulation studies. The proposed methodology is illustrated by the analysis of an acquired immune deficiency syndrome (AIDS) data set.  相似文献   

4.
Tutz G 《Biometrics》2003,59(2):263-273
Semiparametrically structured models are defined as a class of models for which the predictors may contain parametric parts, additive parts of covariates with an unspecified functional form, and interactions which are described as varying coefficients. In the case of an ordinal response the complexity of the predictor is determined by different sorts of effects. Global effects and category-specific effects are distinguished; the latter allow the effect to vary across response categories. A general framework is developed in which global as well as category-specific effects may have unspecified functional form. The framework extends various existing methods of modeling ordinal responses. The Wilkinson-Rogers notation is extended to incorporate smooth model parts and varying coefficient terms, the latter being important for the smooth specification of category-specific effects.  相似文献   

5.
Covariate-adjusted regression was recently proposed for situations where both predictors and response in a regression model are not directly observed, but are observed after being contaminated by unknown functions of a common observable covariate. The method has been appealing because of its flexibility in targeting the regression coefficients under different forms of distortion. We extend this methodology proposed for regression into the framework of varying coefficient models, where the goal is to target the covariate-adjusted relationship between longitudinal variables. The proposed method of covariate-adjusted varying coefficient model (CAVCM) is illustrated with an analysis of a longitudinal data set containing calcium absorbtion and intake measurements on 188 subjects. We estimate the age-dependent relationship between these two variables adjusted for the covariate body surface area. Simulation studies demonstrate the flexibility of CAVCM in handling different forms of distortion in the longitudinal setting.  相似文献   

6.
Chen H  Wang Y 《Biometrics》2011,67(3):861-870
In this article, we propose penalized spline (P-spline)-based methods for functional mixed effects models with varying coefficients. We decompose longitudinal outcomes as a sum of several terms: a population mean function, covariates with time-varying coefficients, functional subject-specific random effects, and residual measurement error processes. Using P-splines, we propose nonparametric estimation of the population mean function, varying coefficient, random subject-specific curves, and the associated covariance function that represents between-subject variation and the variance function of the residual measurement errors which represents within-subject variation. Proposed methods offer flexible estimation of both the population- and subject-level curves. In addition, decomposing variability of the outcomes as a between- and within-subject source is useful in identifying the dominant variance component therefore optimally model a covariance function. We use a likelihood-based method to select multiple smoothing parameters. Furthermore, we study the asymptotics of the baseline P-spline estimator with longitudinal data. We conduct simulation studies to investigate performance of the proposed methods. The benefit of the between- and within-subject covariance decomposition is illustrated through an analysis of Berkeley growth data, where we identified clearly distinct patterns of the between- and within-subject covariance functions of children's heights. We also apply the proposed methods to estimate the effect of antihypertensive treatment from the Framingham Heart Study data.  相似文献   

7.
Semiparametric smoothing methods are usually used to model longitudinal data, and the interest is to improve efficiency for regression coefficients. This paper is concerned with the estimation in semiparametric varying‐coefficient models (SVCMs) for longitudinal data. By the orthogonal projection method, local linear technique, quasi‐score estimation, and quasi‐maximum likelihood estimation, we propose a two‐stage orthogonality‐based method to estimate parameter vector, coefficient function vector, and covariance function. The developed procedures can be implemented separately and the resulting estimators do not affect each other. Under some mild conditions, asymptotic properties of the resulting estimators are established explicitly. In particular, the asymptotic behavior of the estimator of coefficient function vector at the boundaries is examined. Further, the finite sample performance of the proposed procedures is assessed by Monte Carlo simulation experiments. Finally, the proposed methodology is illustrated with an analysis of an acquired immune deficiency syndrome (AIDS) dataset.  相似文献   

8.
Hogan JW  Lin X  Herman B 《Biometrics》2004,60(4):854-864
The analysis of longitudinal repeated measures data is frequently complicated by missing data due to informative dropout. We describe a mixture model for joint distribution for longitudinal repeated measures, where the dropout distribution may be continuous and the dependence between response and dropout is semiparametric. Specifically, we assume that responses follow a varying coefficient random effects model conditional on dropout time, where the regression coefficients depend on dropout time through unspecified nonparametric functions that are estimated using step functions when dropout time is discrete (e.g., for panel data) and using smoothing splines when dropout time is continuous. Inference under the proposed semiparametric model is hence more robust than the parametric conditional linear model. The unconditional distribution of the repeated measures is a mixture over the dropout distribution. We show that estimation in the semiparametric varying coefficient mixture model can proceed by fitting a parametric mixed effects model and can be carried out on standard software platforms such as SAS. The model is used to analyze data from a recent AIDS clinical trial and its performance is evaluated using simulations.  相似文献   

9.
Statistical analysis of longitudinal data often involves modeling treatment effects on clinically relevant longitudinal biomarkers since an initial event (the time origin). In some studies including preventive HIV vaccine efficacy trials, some participants have biomarkers measured starting at the time origin, whereas others have biomarkers measured starting later with the time origin unknown. The semiparametric additive time-varying coefficient model is investigated where the effects of some covariates vary nonparametrically with time while the effects of others remain constant. Weighted profile least squares estimators coupled with kernel smoothing are developed. The method uses the expectation maximization approach to deal with the censored time origin. The Kaplan–Meier estimator and other failure time regression models such as the Cox model can be utilized to estimate the distribution and the conditional distribution of left censored event time related to the censored time origin. Asymptotic properties of the parametric and nonparametric estimators and consistent asymptotic variance estimators are derived. A two-stage estimation procedure for choosing weight is proposed to improve estimation efficiency. Numerical simulations are conducted to examine finite sample properties of the proposed estimators. The simulation results show that the theory and methods work well. The efficiency gain of the two-stage estimation procedure depends on the distribution of the longitudinal error processes. The method is applied to analyze data from the Merck 023/HVTN 502 Step HIV vaccine study.  相似文献   

10.
Transition models are an important framework that can be used to model longitudinal categorical data. They are particularly useful when the primary interest is in prediction. The available methods for this class of models are suitable for the cases in which responses are recorded individually over time. However, in many areas, it is common for categorical data to be recorded as groups, that is, different categories with a number of individuals in each. As motivation we consider a study in insect movement and another in pig behaviou. The first study was developed to understand the movement patterns of female adults of Diaphorina citri, a pest of citrus plantations. The second study investigated how hogs behaved under the influence of environmental enrichment. In both studies, the number of individuals in different response categories was observed over time. We propose a new framework for considering the time dependence in the linear predictor of a generalized logit transition model using a quantitative response, corresponding to the number of individuals in each category. We use maximum likelihood estimation and present the results of the fitted models under stationarity and non-stationarity assumptions, and use recently proposed tests to assess non-stationarity. We evaluated the performance of the proposed model using simulation studies under different scenarios, and concluded that our modeling framework represents a flexible alternative to analyze grouped longitudinal categorical data.  相似文献   

11.
This article considers unbiased estimation of mean, variance and sensitivity level of a sensitive variable via scrambled response modeling. In particular, we focus on estimation of the mean. The idea of using additive and subtractive scrambling has been suggested under a recent scrambled response model. Whether it is estimation of mean, variance or sensitivity level, the proposed scheme of estimation is shown relatively more efficient than that recent model. As far as the estimation of mean is concerned, the proposed estimators perform relatively better than the estimators based on recent additive scrambling models. Relative efficiency comparisons are also made in order to highlight the performance of proposed estimators under suggested scrambling technique.  相似文献   

12.
Cai J  Zeng D 《Biometrics》2011,67(4):1340-1351
We propose an additive mixed effect model to analyze clustered failure time data. The proposed model assumes an additive structure and includes a random effect as an additional component. Our model imitates the commonly used mixed effect models in repeated measurement analysis but under the context of hazards regression; our model can also be considered as a parallel development of the gamma-frailty model in additive model structures. We develop estimating equations for parameter estimation and propose a way of assessing the distribution of the latent random effect in the presence of large clusters. We establish the asymptotic properties of the proposed estimator. The small sample performance of our method is demonstrated via a large number of simulation studies. Finally, we apply the proposed model to analyze data from a diabetic study and a treatment trial for congestive heart failure.  相似文献   

13.
Kong M  Lee JJ 《Biometrics》2008,64(2):396-405
Summary .   When multiple drugs are administered simultaneously, investigators are often interested in assessing whether the drug combinations are synergistic, additive, or antagonistic. Existing response surface models are not adequate to capture the complex patterns of drug interactions. We propose a two-component semiparametric response surface model with a parametric function to describe the additive effect of a combination dose and a nonparametric function to capture the departure from the additive effect. The nonparametric function is estimated using the technique developed in thin plate splines, and the pointwise bootstrap confidence interval for this function is constructed. The proposed semiparametric model offers an effective way of formulating the additive effect while allowing the flexibility of modeling a departure from additivity. Example and simulations are given to illustrate that the proposed model provides an excellent estimation for different patterns of interactions between two drugs.  相似文献   

14.
森林生物量计算是全球碳储量估算的基础,现已纳入全球国家森林清单项目。普遍的森林碳汇计量采用的材积源生物量法针对胸径5 cm以上的树木,幼树(胸径<6 cm,树高>0.3 m)的碳汇量并未被完整计入其中,导致生态系统碳汇能力被低估。基于青藏高原137株5种典型人工林幼树的实测生物量数据,以地径代替胸径作为预测变量,采用加权广义最小二乘法建立独立生物量模型,选择比例总量直接控制及代数和控制2种结构形式的相容性生物量模型,并通过加权非线性似乎不相关回归进行方程组估算,建立了整株及各组分的相容性生物量方程。结果表明: 二元相容性模型优于一元以及独立模型,对整株生物量来说,R2达到0.90~0.99,两种相容性模型对于不同树种来说各有优势但精度差距可以忽略,从林业生产实践角度考虑,比例总量直接控制生物量模型更有实践意义,从遥感技术的变量提取角度考虑,本研究构建了更适于遥感估算的幼树生物量模型,其整体上拟合精度高,可以准确地进行类似气候环境中的幼树整株和各组分生物量的估算。  相似文献   

15.
The current state of the art in automated measurement of grazingrates of zooplankton and bivalves is evaluated. Limitationsto the development of automated methods are discussed with referenceto theoretical considerations. Different approaches to time-seriesmeasurements are examined, and some inadequately investigatedtime scales for measurement of grazing rates are outlined. Levelsof automation of existing experimental systems are described,and a recently developed grazing system based on in vivo fluorescenceadvanced. The new system is suited to use with zooplankton orbivalves, but depends on precise calibration of in vivo fluorescence.It facilitates rapid measurement of functional response to foodconcentration, estimation of time-series rates at constant foodconcentrations, and measurement of rates while simulating patchyfood distribution. Results derived from experiments with krill(Nyctiphanes australis) and cockles (Chione stutchburyi) usingthis grazing system are presented, and some future directionsfor instrument development suggested.  相似文献   

16.
For observational longitudinal studies of geriatric populations, outcomes such as disability or cognitive functioning are often censored by death. Statistical analysis of such data may explicitly condition on either vital status or survival time when summarizing the longitudinal response. For example a pattern-mixture model characterizes the mean response at time t conditional on death at time S = s (for s > t), and thus uses future status as a predictor for the time t response. As an alternative, we define regression conditioning on being alive as a regression model that conditions on survival status, rather than a specific survival time. Such models may be referred to as partly conditional since the mean at time t is specified conditional on being alive (S > t), rather than using finer stratification (S = s for s > t). We show that naive use of standard likelihood-based longitudinal methods and generalized estimating equations with non-independence weights may lead to biased estimation of the partly conditional mean model. We develop a taxonomy for accommodation of both dropout and death, and describe estimation for binary longitudinal data that applies selection weights to estimating equations with independence working correlation. Simulation studies and an analysis of monthly disability status illustrate potential bias in regression methods that do not explicitly condition on survival.  相似文献   

17.
Summary .   Missing data, measurement error, and misclassification are three important problems in many research fields, such as epidemiological studies. It is well known that missing data and measurement error in covariates may lead to biased estimation. Misclassification may be considered as a special type of measurement error, for categorical data. Nevertheless, we treat misclassification as a different problem from measurement error because statistical models for them are different. Indeed, in the literature, methods for these three problems were generally proposed separately given that statistical modeling for them are very different. The problem is more challenging in a longitudinal study with nonignorable missing data. In this article, we consider estimation in generalized linear models under these three incomplete data models. We propose a general approach based on expected estimating equations (EEEs) to solve these three incomplete data problems in a unified fashion. This EEE approach can be easily implemented and its asymptotic covariance can be obtained by sandwich estimation. Intensive simulation studies are performed under various incomplete data settings. The proposed method is applied to a longitudinal study of oral bone density in relation to body bone density.  相似文献   

18.
Menggang Yu  Bin Nan 《Biometrics》2010,66(2):405-414
Summary In large cohort studies, it often happens that some covariates are expensive to measure and hence only measured on a validation set. On the other hand, relatively cheap but error‐prone measurements of the covariates are available for all subjects. Regression calibration (RC) estimation method ( Prentice, 1982 , Biometrika 69 , 331–342) is a popular method for analyzing such data and has been applied to the Cox model by Wang et al. (1997, Biometrics 53 , 131–145) under normal measurement error and rare disease assumptions. In this article, we consider the RC estimation method for the semiparametric accelerated failure time model with covariates subject to measurement error. Asymptotic properties of the proposed method are investigated under a two‐phase sampling scheme for validation data that are selected via stratified random sampling, resulting in neither independent nor identically distributed observations. We show that the estimates converge to some well‐defined parameters. In particular, unbiased estimation is feasible under additive normal measurement error models for normal covariates and under Berkson error models. The proposed method performs well in finite‐sample simulation studies. We also apply the proposed method to a depression mortality study.  相似文献   

19.
Wu S  Müller HG 《Biometrics》2011,67(3):852-860
We propose a response-adaptive model for functional linear regression, which is adapted to sparsely sampled longitudinal responses. Our method aims at predicting response trajectories and models the regression relationship by directly conditioning the sparse and irregular observations of the response on the predictor, which can be of scalar, vector, or functional type. This obliterates the need to model the response trajectories, a task that is challenging for sparse longitudinal data and was previously required for functional regression implementations for longitudinal data. The proposed approach turns out to be superior compared to previous functional regression approaches in terms of prediction error. It encompasses a variety of regression settings that are relevant for the functional modeling of longitudinal data in the life sciences. The improved prediction of response trajectories with the proposed response-adaptive approach is illustrated for a longitudinal study of Kiwi weight growth and by an analysis of the dynamic relationship between viral load and CD4 cell counts observed in AIDS clinical trials.  相似文献   

20.
Li E  Wang N  Wang NY 《Biometrics》2007,63(4):1068-1078
Summary .   Joint models are formulated to investigate the association between a primary endpoint and features of multiple longitudinal processes. In particular, the subject-specific random effects in a multivariate linear random-effects model for multiple longitudinal processes are predictors in a generalized linear model for primary endpoints. Li, Zhang, and Davidian (2004, Biometrics 60 , 1–7) proposed an estimation procedure that makes no distributional assumption on the random effects but assumes independent within-subject measurement errors in the longitudinal covariate process. Based on an asymptotic bias analysis, we found that their estimators can be biased when random effects do not fully explain the within-subject correlations among longitudinal covariate measurements. Specifically, the existing procedure is fairly sensitive to the independent measurement error assumption. To overcome this limitation, we propose new estimation procedures that require neither a distributional or covariance structural assumption on covariate random effects nor an independence assumption on within-subject measurement errors. These new procedures are more flexible, readily cover scenarios that have multivariate longitudinal covariate processes, and can be implemented using available software. Through simulations and an analysis of data from a hypertension study, we evaluate and illustrate the numerical performances of the new estimators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号