首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mature rat testis contains both a soluble guanylate cyclase and a soluble adenylate cyclase. Both these soluble enzymes prefer manganous ion for activity. It is known that guanylate cyclase can, when activated by a variety of agents, catalyze the formation of cyclic AMP. The following experiments were performed to determine whether the testicular soluble adenylate and guanylate cyclase activities were carried on the same molecule. Analysis of supernatants from homogenized rat testis by gel filtration and sucrose density gradient centrifugation showed that the two activities were clearly separable. The molecular weight of guanylate cyclase is 143 000, while that of adenylate cyclase is 58 000.Treatment of the column fractions with 0.1 mM sodium nitroprusside allowed guanylate cyclase activity to be expressed with Mg2+ as well as with Mn2+. Sodium nitroprusside did not affect the metal ion or substrate specificity of adenylate cyclase.These experiments show that adenylate and guanylate cyclase activities are physically separable.  相似文献   

2.
Sodium nitroprusside, nitroglycerin, sodium azide and hydroxylamine increased guanylate cyclase activity in particulate and/or soluble preparations from various tissues. While sodium nitroprusside increased guanylate cyclase activity in most of the preparations examined, the effects of sodium azide, hydroxylamine and nitroglycerin were tissue specific. Nitroglycerin and hydroxylamine were also less potent. Neither the protein activator factor nor catalase which is required for sodium azide effects altered the stimulatory effect of sodium nitroprusside. In the presence of sodium azide, sodium nitroprusside or hydroxylamine, magnesium ion was as effective as manganese ion as a sole cation cofactor for guanylate cyclase. With soluble guanylate cyclase from rat liver and bovine tracheal smooth muscle the concentrations of sodium nitroprusside that gave half-maximal stimulation with Mn2+ were 0.1 mM and 0.01 mM, respectively. Effective concentrations were slightly less with Mg2+ as a sole cation cofactor. The ability of these agents to increase cyclic GMP levels in intact tissues is probably due to their effects on guanylate cyclase activity. While the precise mechanism of guanylate cyclase activation by these agents is not known, activation may be due to the formation of nitric oxide or another reactive material since nitric oxide also increased guanylate cyclase activity.  相似文献   

3.
Enzymes in particulate fractions from sea urchin sperm and in soluble fractions from rat lung were shown to catalyze the formation of inosine 3',5'-monophosphate (cyclic IMP) and of 2'-deoxyguanosine 3',5'-monophosphate (cyclic dGMP) from ITP and dGTP, respectively. With sea urchin sperm particulate fractions, Mn2+ was an essential metal cofactor for inosinate, deoxyguanylate, guanylate and adenylate cyclase activities. Heat-inactivation studies differentiated inosinate and deoxyguanylate cyclase activities from adenylate cyclase, but indicated an association of these activities with guanylate cyclase. Preincubation of sea urchin sperm particulate fractions with trypsin altered in a very similar manner guanylate, inosinate, and deoxyguanylate cyclase activities, and various metals and metal-nucleotide combinations protected the three cyclase activities to comparable degrees against trypsin. The relative guanylate, deoxyguanylate and inosinate cyclase activities at 0.1 mM nucleoside triphosphate were 1.0, 0.5 and 0.08, respectively. With these three cyclase activities, plots of reciprocal velocities against reciprocal Mn2+-nucleoside triphosphate concentrations were concave upward, suggesting positive homotropic effects. With rat lung soluble preparations, relative guanylate, deoxyguanylate, inosinate and adenylate cyclase activities at 0.09 mM nucleoside triphosphate were 1.0, 1.7, 0.1 and 0, respectively. MnGTP was a competitive inhibitor of deoxyguanylate cyclase activity (Ki equals 12.2 muM) and MndGTP was a competitive inhibitor of guanylate cyclase activity (Ki equals 16.2 muM). Inhibition studies using ITP were not conducted. When soluble fractions from rat lung were applied to Bio-Gel A 1.5 m columns, elution profiles of guanylate, deoxyguanylate and inosinate cyclase activities were similar. These results suggest that deoxyguanylate, guanylate and inosinate cyclase activities reside within the same protein molecule.  相似文献   

4.
The 105 000 X g gupernatant fractions from homogenates of various rat tissues catalyzed the formation of both cyclic GMP and cyclic AMP from GTP and ATP, respectively. Generally cyclic AMP formation with crude or purified preparations of soluble guanylate cyclase was only observed when enzyme activity was increased with sodium azide, sodium nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine, sodium nitrite, nitric oxide gas, hydroxyl radical and sodium arachidonate. Sodium fluoride did not alter the formation of either cyclic nucleotide. After chromatography of supernatant preparations on Sephadex G-200 columns or polyacrylamide gel electrophoresis, the formation of cyclic AMP and cyclic GMP was catalyzed by similar fractions. These studies indicate that the properties of guanylate cyclase are altered with activation. Since the synthesis of cyclic AMP and cyclic GMP reported in this study appears to be catalyzed by the same protein, one of the properties of activated guanylate cyclase is its ability to catalyze the formation of cyclic AMP from ATP. The properties of this newly described pathway for cyclic AMP formation are quite different from those previously described for adenylate cyclase preparations. The physiological significance of this pathway for cyclic AMP formation is not known. However, these studies suggest that the effects of some agents and processes to increase cyclic AMP accumulation in tissue could result from the activation of either adenylate cyclase or guanylate cyclase.  相似文献   

5.
The stability of dopamine-sensitive adenylate cyclase, guanylate cyclase, ATPase, and GTPase was measured in homogenates of rat striatal tissue frozen from 0 to 24 h postmortem. ATPase, GTPase, and Mg2+-dependent guanylate cyclase activities showed no significant change over this period. Mn2+-dependent guanylate cyclase activity was stable for 10 h postmortem. Basal and dopamine-stimulated adenylate cyclase activity decreased markedly during the first 5 h. However, when measured in washed membrane preparations, these adenylate cyclase activities remained stable for at least 10 h. Therefore, the postmortem loss of a soluble activator, such as GTP, may decrease the adenylate cyclase activity in homogenates. These results are not consistent with an earlier suggestion that there is a postmortem degradation of the enzyme itself. Other kinetic parameters of dopamine-sensitive adenylate cyclase can also be measured independently of postmortem changes. Thus, it is possible to investigate kinetic parameters of dopamine-sensitive adenylate cyclase, guanylate cyclase, ATPase, and GTPase in human brain obtained postmortem.  相似文献   

6.
Analysis of soluble guanylate cyclase of rat platelets (105,000 g supernatant) revealed no activating effect of sodium nitroprusside on the enzyme activity. Dithiothreitol (2 x 10(-4) H) added to the sample stimulated the basal activity of guanylate cyclase in the presence of Mg2+ but did not induce the enzyme activation by sodium nitroprusside. Hemoglobin added to the enzyme did not influence its basal activity or the activating effect of sodium nitroprusside. DEAE-Cellulose chromatography of the 105,000 g supernatant revealed two protein peaks, I and II, of which only peak II possessed a guanylate cyclase activity. Fraction I added to a partly purified enzyme did not change the enzyme activity, nor did it enhance the sodium nitroprusside-induced activation of guanylate cyclase. Spectral analysis of the 105,000 g supernatant revealed that the presence of a maximum at 415-425 nm (Soret band) depended on the degree of plasma hemolysis. In the absence of hemolysis the Soret band was unobserved either in the 105,000 g supernatant or in fractions I and II. It is suggested that rat platelet guanylate cyclase is present in these cells in a heme-deficient state.  相似文献   

7.
Complementary DNA clones corresponding to the 70- and 82-kDa subunits of soluble guanylate cyclase of rat lung have been isolated. Blot hybridization of total poly(A)+ RNA from rat tissues detected mRNA of about 3.4 kilobases for the 70-kDa subunit and about 5.5 kilobases for the 82-kDa subunit. Messenger RNA levels of both subunits were abundant in lung and cerebrum, moderate in cerebellum, heart, and kidney, and low in liver and muscle, consistent with previously described enzyme activities in these tissues. Southern blot analysis of high molecular weight genomic DNA from rat liver indicated that the genes for the 70- and 82-kDa subunits are different. The carboxyl-terminal region of the 70- and 82-kDa subunits showed a high degree of homology and also had a partial homology with the putative catalytic domain of particulate guanylate cyclase and adenylate cyclase, indicating that both the 70- and 82-kDa subunits have catalytic domains. The cDNAs were subcloned to an expression vector and transfected to L cells. The cells transfected with cDNA of the 70-kDa subunit or the 82-kDa subunit showed no guanylate cyclase activity, whereas the cells transfected with both the 70- and 82-kDa subunit cDNAs showed significant guanylate cyclase activity that was activated markedly by sodium nitroprusside. These data suggest that both subunits are required for both the basal catalytic and regulatory activity of soluble guanylate cyclase. Presumably both catalytic subunits must be present and interactive to permit synthesis of cyclic GMP and nitrovasodilator activation.  相似文献   

8.
Cyclic AMP formation from ATP was stimulated by unpurified and partially purified soluble hepatic guanylate cyclase in the presence of nitric oxide (NO) or compounds containing a nitroso moiety such as nitroprusside, N-methyl-N-nitro-N-nitrosoguanidine (MNNG), nitrosyl ferroheme, and S-nitrosothiols. Cyclic AMP formation was undetectable in the absence of NO or nitroso compounds and was not stimulated by fluoride or glucagon, indicating the absence of adenylate cyclase activity. The nitroso compounds failed to activate, whereas fluoride or glucagon activated, adenylate cyclase in washed rat liver membrane fractions. Cyclic GMP formation from GTP was markedly stimulated by the soluble hepatic fraction in the presence of NO or nitroso compounds. Cyclic AMP formation by partially purified guanylate cyclase was competitively inhibited by GTP and cyclic GMP formation is well-known to be competitively inhibited by ATP. Therefore, it appears that activated guanylate cyclase, rather than adenylate cyclase, was responsible for the formation of cyclic AMP from ATP. Formation of cyclic AMP of cyclic GMP was enhanced by thiols, inhibited by hemoproteins and oxidants, and required the addition of either Mg2+ or Mn2+. Further, several nitrosyl ferroheme compounds and S-nitrosothiols stimulated the formation of both cyclic AMP and cyclic GMP by the soluble hepatic fraction. These observations support the view that soluble guanylate cyclase is capable, under certain well-defined conditions, of catalyzing the conversion of ATP to cyclic AMP.  相似文献   

9.
Adenylate and guanylate cyclase activities were confirmed in crude homogenates from rat peritoneal mast cells. Both enzyme activities were associated with the 105, 000 X g particulate fractions, but not detected in the supernatant fractions. The optimal pH for both cyclase activities was 8.2. Mn++ was essentially required for guanylate cylcase activity, while adenylate cyclase activity was observed in the presence of either Mg++ or Mn++. The apparent Km values of adenylate cyclase for Mn++-ATP and Mg++-ATP were 160 μM and 340 μM, respectively, whereas the value of guanylate cyclase for Mn++-GTP was 100 μM. Adenylate cyclase was activated by 10 mM NaF. However, both adenylate and guanylate cyclase activities were neither stimulated nor inhibited by the addition of various kinds of agents which stimulate or inhibit the release of histamine from mast cells.  相似文献   

10.
The chromatography of soluble human and rat platelet guanylate cyclases (105000 g supernatants) on DEAE-cellulose in 50 mM Tris HCl buffer, containing 0.22 M NaCl, has yielded virtually identical elution profiles, each with two protein peaks (I and II). Only peak II was found to have guanylate cyclase activity. Experiments with human platelets showed that inactive protein peak I inhibited the activity of guanylate cyclase preparation (peak II) and restored the already lost ability of the enzyme to be activated by sodium nitroprusside. In experiments with rat platelets, inactive fraction I had no effect on guanylate cyclase activity (peak II), and the enzyme was not activated by sodium nitroprusside either before or after DEAE-cellulose. 105000g supernatant of human platelets had an absorbance maximum at 415 nm (Soret band), which disappeared from the spectrum of the active fraction (II) but was found in the spectrum of the inactive (inhibitory) fraction I. Experiments with rat platelets demonstrated the absence of Soret band in the corresponding spectra. It was concluded that, contrary to the generally accepted notion, heme is not a prosthetic group of the soluble rat platelet guanylate cyclase.  相似文献   

11.
Basal activities of membrane-bound adenylate and guanylate cyclase were determined in confluent rat embryo cells stimulated to proliferate by either the renewal of serum-supplemented growth medium or the addition of a mitogen, the 12-0-tetradecanoyl-phorbol-13-acetate (TPA). A transient increase in guanylate cyclase activity was observed within minutes following either treatment while adenylate cyclase activity either abruptly declined in serum-stimulated cells or remained unaffected in TPA-treated cells. In response to both mitogenic treatment, adenylate and guanylate cyclase activities varied reciprocally throughout the pre-replicative phase up to DNA synthesis. The lower levels of guanylate over adenylate activity ratio occurred prior to the onset of the replicative phase whereas the higher levels were coincident with DNA synthesis. A similar pattern of oscillating levels of sodium-fluoride-stimulated adenylate and lubrol-treated guanylate cyclase activities was observed.  相似文献   

12.
Sodium nitroprusside, a potent activator of soluble guanylate cyclase, potentiated mixed disulfide formation between cystine, a potent inhibitor of the cyclase, and enzyme purified from rat lung. Incubation of soluble guanylate cyclase with nitroprusside and [35S]cystine resulted in a twofold increase in protein-bound radioactivity compared to incubations in the absence of nitroprusside. Purified enzyme preincubated with nitroprusside and then gel filtered (activated enzyme) was activated 10- to 20-fold compared to guanylate cyclase preincubated in the absence of nitroprusside and similarly processed (nonactivated enzyme). This activation was completely reversed by subsequent incubation at 37 degrees C (activation-reversed enzyme). Incorporation of [35S]cystine into guanylate cyclase was increased twofold with activated enzyme, while no difference was observed with activation-reversed enzyme, compared to nonactivated enzyme. Cystine decreased the activity of nonactivated and activation-reversed enzyme about 40% while it completely inhibited activated guanylate cyclase. Mg+2- or Mn+2-GTP inhibited the incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. Also, diamide, a potent thiol oxidant that converts juxtaposed sulfhydryls to disulfides, completely blocked incorporation of [35S]cystine into nonactivated or activated guanylate cyclase. These data indicate that activation of soluble guanylate cyclase by nitroprusside results in an increased availability of protein sulfhydryl groups for mixed disulfide formation with cystine. Protection against mixed disulfide formation with diamide or substrate suggests that these groups exist as two or more juxtaposed sulfhydryl groups at the active site or a site on the enzyme that regulates catalytic activity. Differential inhibition by mixed disulfide formation of nonactivated and activated enzyme suggests a mechanism for amplification of the on-off signal for soluble guanylate cyclase within cells.  相似文献   

13.
The activities of adenylate and guanylate cyclase and cyclic nucleotide 3':5'-phosphodiesterase were determined during the aggregation of human blood platelets with thrombin, ADP, arachidonic acid and epinephrine. The activity of guanylate cyclase is altered to a much larger degree than adenylate cyclase, while cyclic nucleotide phosphodiesterease activity remains unchanged. During the early phases of thrombin-and ADP-induced platelet aggregation a marked activation of the guanylate cyclase occurs whereas aggregation induced by arachidonic acid or epinephrine results in a rapid diminution of this activity. In all four cases, the adenylate cyclase activity is only slightly decreased when examined under identical conditions. Platelet aggregation induced by a wide variety of aggregating agents including collagen and platelet isoantibodies results in the "release" of only small amounts (1-3%) of guanylate cyclase and cyclic nucleotide phosphodiesterase and no adenylate cyclase. The guanylate cyclase and cyclic nucleotide phosphodiesterase activities are associated almost entirely with the soluble cytoplasmic fraction of the platelet, while the adenylate cyclase if found exclusively in a membrane bound form. ADP and epinephrine moderately inhibit guanylate and adenylate cyclase in subcellular preparations, while arachidonic and other unsaturated fatty acids moderately stimulate (2-4-fold) the former. It is concluded that (1) the activity of platelet guanylate cyclase during aggregation depends on the nature and mode of action of the inducing agent, (2) the activity of the membrnae adenylate cyclase during aggregation is independent of the aggregating agent and is associated with a reduction of activity and (3) cyclic nucleotide phosphodiesterase remains unchanged during the process of platelet aggregation and release. Furthermore, these observations suggest a role for unsaturated fatty acids in the control of intracellular cyclic GMP levels.  相似文献   

14.
In subcellular fractions prepared from homogenate of adult rat testis adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) activity was found in the particulate, primarily 600 X g for 10 min, fractions, as well as in the cytosol. The properties of the adenylate cyclase in the cytosol differs substantially from the adenylate cyclase system associated with the 600 X g for 10 min particulate fraction. The cytosol enzyme, in contrast to the particulate adenylate cyclase, was found to be fluoride- and gonadotropin hormone-insensitive. The cytosol adenylate cyclase appears to be located in the germ cell while the particulate enzyme system in the non-germ cell component of the seminiferous tubules, The cytosol adenylate cyclase was found to be distinct also from the guanylate cyclase present in the rat testis cytosol. The adenylate cyclase appears to be located in the germ cell component while the guanylate cyclase, in the non-germ cell tubular component. Furthermore, it was found that the cytosol guanylate cyclase develops at an earlier stage of spermatogenesis, and precedes the development of the cytosol adenylate cyclase.  相似文献   

15.
The 105 000 × g supernatant fractions from homogenates of various rat tissues catalyzed the formation of both cyclic GMP and cyclic AMP from GTP and ATP, respectively. Generally cyclic AMP formation with crude or purified preparations of soluble guanylate cyclase was only observed when enzyme activity was increased with sodium azide, sodium nitroprusside, N-methyl-N′-nitro-N-nitrosoguanidine, sodium nitrite, nitric oxide gas, hydroxyl radical and sodium arachidonate. Sodium fluoride did not alter the formation of either cyclic nucleotide. After chromatography of supernatant preparations on Sephadex G-200 columns or polyacrylamide gel electrophoresis, the formation of cyclic AMP and clycic GMP was catalyzed by similar fractions. These studies indicate that the properties of guanylate cyclase are altered with activation. Since the synthesis of cyclic AMP and cyclic GMP reported in this study appears to be catalyzed by the same protein, one of the properties of activated guanylate cyclase is its ability to catalyze the formation of cyclic AMP from ATP. The properties of this newly described pathway for cyclic AMP formation are quite different from those previously described for adenylate cyclase preparations. The physiological significance of this pathway for cyclic AMP formation is not known. However, these studies suggest that the effects of some agents and processes to increase cyclic AMP accumulation in tissue could result from the activation of either adenylate cyclase or guanylate cyclase.  相似文献   

16.
The subcellular localization of guanylate cyclase was examined in rat liver. About 80% of the enzyme activity of homogenates was found in the soluble fraction. Particulate guanylate cyclase was localized in plasma membranes and microsomes. Crude nuclear and microsomal fractions were applied to discontinuous sucrose gradients, and the resulting fractions were examined for guanylate cyclase, various enzyme markers of cell components, and electron microscopy. Purified plasma membrane fractions obtained from either preparation had the highest specific activity of guanylate cyclase, 30 to 80 pmol/min/mg of protein, and the recovery and relative specific activity of guanylate cyclase paralleled that of 5'-nucleotidase and adenylate cyclase in these fractions. Significant amounts of guanylate cyclase, adenylate cyclase, 5'-nucleotidase, and glucose-6-phosphatase were recovered in purified preparation of microsomes. We cannot exclude the presence of guanylate cyclase in other cell components such as Golgi. The electron microscopic studies of fractions supported the biochemical studies with enzyme markers. Soluble guanylate cyclase had typical Michaelis-Menten kinetics with respect to GTP and had an apparent Km for GTP of 35 muM. Ca-2+ stimulated the soluble activity in the presence of low concentrations of Mn-2+. The properties of guanylate cyclase in plasma membranes and microsomes were similar except that Ca-2+ inhibited the activity associated with plasma membranes and had no effect on that of microsomes. Both particulate enzymes were allosteric in nature; double reciprocal plots of velocity versus GTP were not linear, and Hill coefficients for preparations of plasma membranes and microsomes were calculated to be 1.60 and 1.58, respectively. The soluble and particulate enzymes were inhibited by ATP, and inhibition of the soluble enzyme was slightly greater. While Mg-2+ was less effective than Mn-2+ as a sole cation, all enzyme fractions were markedly stimulated with Mg-2+ in the presence of a low concentration of Mn-2+. Triton X-100 increased the activity of particulate fractions about 3- to 10-fold and increased the soluble activity 50 to 100%.  相似文献   

17.
The influence of ambroxol (a mucolytic agent) on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside (SNP) and Sin-1) were investigated. Ambroxol in the range of concentrations from 0.1 to 10 ??M had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the SNP-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values of 3.9 and 2.1 ??M, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX. The influence of artemisinin (an antimalarial agent) on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1?100 ??M) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the SNP-induced activation of human platelet guanylate cyclase with the IC50 value of 5.6 ??M. Artemisinin (10 ??M) also inhibited (by 71 ± 4.0%) the activation of the enzyme by a thiol-dependent NO-donor, the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 ??M), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the signaling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin.  相似文献   

18.
The effect of dithiothreitol on the activity of soluble guanylate cyclase and on enzyme activation by sodium nitroprusside and free stable radical was studied. A higher degree of oxidation of guanylate cyclase from rat platelets in comparison with that of the enzyme from human platelets was found, which influences both the value of the enzyme activity and its regulation. It was shown that dithiothreitol enhanced the stimulating effect of nitroprusside but inhibited the activation of guanylate cyclase by free radical, which was suggestive of a difference in the mechanisms of the activating effect of these agents. A scheme of the biological role of cyclic 3',5'-guanosine monophosphate was proposed. On the basis of this scheme, different pathological states caused by disturbances in the functions of guanylate cyclase were identified and investigated.  相似文献   

19.
Purification of soluble guanylate cyclase activity from rat liver resulted in loss of enzyme responsiveness to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), nitroprusside, nitrite, and NO. Responses were restored by addition of heat-treated hepatic supernatant fraction, implying a requirement for heat-stable soluble factor(s) in the optimal expression of the actions of the activators. Addition of free hematin, hemoglobin, methemoglobin, active or heat-inactivated catalase partially restores responsiveness of purified guanylate cyclase to MNNG, NO, nitrite, and nitroprusside. These responses were markedly potentiated by the presence of an appropriate concentration of reducing agent (dithiothreitol, ascorbate, cysteine, or glutathione), which maintains heme iron in the ferro form and favors formation of paramagnetic nitrosyl . heme complexes from the activators. High concentrations of heme or reducing agents were inhibitory, and heme was not required for the expression of the stimulatory effects of Mn2+ or Mg2+ on purified guanylate cyclase. Preformed nitrosyl hemoglobin (10 micron) increased activity of the purified enzyme 10- to 20-fold over basal with Mn2+ as the metal cofactor and 90- to 100-fold with Mg2+. Purified guanylate cyclase was more sensitive to preformed NO-hemoglobin (minimally effective concentration, 0.1 micron) than to MNNG (1 micron), nitroprusside (50 micron), or nitrite (1 mM). A reducing agent was not required for optimal stimulation of guanylate cyclase by NO-hemoglobin. Maximal NO-hemoglobin-responsive guanylate cyclase was not further increased by subsequent addition of NO, MNNG, nitrite, or nitroprusside. Activation by each agent resulted in analogous alterations in the Mn2+ and Mg2+ requirements of enzyme activity, and responses were inhibited by the thiol-blocking agents N-ethylmaleimide, arsenite, or iodoacetamide. The results suggest that NO-hemoglobin, MNNG, NO, nitrite, and nitroprusside activate guanylate cyclase through similar mechanisms. The stimulatory effects of preformed NO-hemoglobin combined with the clear requirements for heme plus a reducing agent in the optimal expression of the actions of MNNG, NO, and related agents are consistent with a role for the paramagnetic nitrosyl . heme complex in the activation of guanylate cyclase.  相似文献   

20.
Particulate guanylate cyclase from rat lung was stimulated less than 2-fold by agents capable of activating the soluble guanylate cyclase, including sodium nitroprusside, MNNG, azide and hydroxylamine. The action of the first two agents was potentiated by 10 mM 2-mercaptoethanol, and that of the last two by catalase. Pretreatment of the particulate enzyme with the polyene antibiotic, filipin, potentiated the stimulatory effects of the activators, activity with 1 mM nitroprusside in the presence of 2-mercaptoethanol being increased 10.4-fold over basal. The enzyme treated with filipin and nitroprusside showed less specificity for Mn2+, as it was able to use Mg2+ as sole cation more efficiently than the untreated enzyme. Since filipin is known to alter membrane fluidity by interacting with membrane cholesterol, it is proposed that the activity of membrane bound guanylate cylase may be regulated in part by the fluid state of the phospholipid matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号