首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
In humans, cerebrovascular responses to alterations in arterial Pco(2) and Po(2) are well documented. However, few studies have investigated human coronary vascular responses to alterations in blood gases. This study investigated the extent to which the cerebral and coronary vasculatures differ in their responses to euoxic hypercapnia and isocapnic hypoxia in healthy volunteers. Participants (n = 15) were tested at rest on two occasions. On the first visit, middle cerebral artery blood velocity (V(P)) was assessed using transcranial Doppler ultrasound. On the second visit, coronary sinus blood flow (CSBF) was measured using cardiac MRI. For comparison with V(P), CSBF was normalized to the rate pressure product [an index of myocardial oxygen consumption; normalized (n)CSBF]. Both testing sessions began with 5 min of euoxic [end-tidal Po(2) (Pet(O(2))) = 88 Torr] isocapnia [end-tidal Pco(2) (Pet(CO(2))) = +1 Torr above resting values]. Pet(O(2)) was next held at 88 Torr, and Pet(CO(2)) was increased to 40 and 45 Torr in 5-min increments. Participants were then returned to euoxic isocapnia for 5 min, after which Pet(O(2)) was decreased from 88 to 60, 52 and 45 Torr in 5-min decrements. Changes in V(P) and nCSBF were normalized to isocapnic euoxic conditions and indexed against Pet(CO(2)) and arterial oxyhemoglobin saturation. The V(P) gain for euoxic hypercapnia (%/Torr) was significantly higher than nCSBF (P = 0.030). Conversely, the V(P) gain for isocapnic hypoxia (%/%desaturation) was not different from nCSBF (P = 0.518). These findings demonstrate, compared with coronary circulation, that the cerebral circulation is more sensitive to hypercapnia but similarly sensitive to hypoxia.  相似文献   

2.
Hypoxia-inducible factor (HIF)-1 is stabilized by hypoxia and iron chelation. We hypothesized that HIF-1 might be involved in pulmonary vascular regulation and that infusion of desferrioxamine over 8 h would consequently mimic hypoxia and elevate pulmonary vascular resistance. In study A, we characterized the pulmonary vascular response to 4 h of isocapnic hypoxia; in study B, we measured the pulmonary vascular response to 8 h of desferrioxamine infusion. For study A, 11 volunteers undertook two protocols: 1) 4 h of isocapnic hypoxia (end-tidal PO(2) = 50 Torr), followed by 2 h of recovery with isocapnic euoxia (end-tidal PO(2) = 100 Torr), and 2) 6 h of air breathing (control). For study B, nine volunteers undertook two protocols while breathing air: 1) continuous infusion of desferrioxamine (4 g/70 kg) over 8 h and 2) continuous infusion of saline over 8 h (control). In both studies, pulmonary vascular resistance was assessed at 0.5- to 1-h intervals by Doppler echocardiography via the maximum pressure gradient during systole across the tricuspid valve. Results show a progressive rise in pressure gradient over the first 3-4 h with both isocapnic hypoxia (P < 0.001) and desferrioxamine infusion (P < 0.005) to increases of ~16 and 4 Torr, respectively. These results support a role for HIF-regulated gene activation in human hypoxic pulmonary vasoconstriction.  相似文献   

3.
The relative importance of peripheral vs. central chemoreceptors in causing apnea/unstable breathing during sleep is unresolved. This has never been tested in an unanesthetized preparation with intact carotid bodies. We studied three unanesthetized dogs during normal sleep in a preparation in which intact carotid body chemoreceptors could be reversibly isolated from the systemic circulation and perfused. Apneic thresholds and the CO(2) reserve (end-tidal Pco(2) eupneic - end-tidal Pco(2) apneic threshold) were determined using a pressure support ventilation technique. Dogs were studied when both central and peripheral chemoreceptors sensed transient hypocapnia induced by the pressure support ventilation and again with carotid body isolation such that only the central chemoreceptors sensed the hypocapnia. We observed that the CO(2) reserve was congruent with4.5 Torr when the carotid chemoreceptors sensed the transient hypocapnia but more than doubled (>9 Torr) when only the central chemoreceptors sensed hypocapnia. Furthermore, the expiratory time prolongations observed when only central chemoreceptors were exposed to hypocapnia differed from those obtained when both the central and peripheral chemoreceptors sensed the hypocapnia in that they 1) were substantially shorter for a given reduction in end-tidal Pco(2), 2) showed no stimulus: response relationship with increasing hypocapnia, and 3) often occurred at a time (>45 s) beyond the latency expected for the central chemoreceptors. These findings agree with those previously obtained using an identical pressure support ventilation protocol in carotid body-denervated sleeping dogs (Nakayama H, Smith CA, Rodman JR, Skatrud JB, Dempsey JA. J Appl Physiol 94: 155-164, 2003). We conclude that hypocapnia sensed at the carotid body chemoreceptor is required for the initiation of apnea following a transient ventilatory overshoot in non-rapid eye movement sleep.  相似文献   

4.
Anecdotal observations suggest that hypoxia does not elicit dyspnea. An opposing view is that any stimulus to medullary respiratory centers generates dyspnea via "corollary discharge" to higher centers; absence of dyspnea during low inspired Po(2) may result from increased ventilation and hypocapnia. We hypothesized that, with fixed ventilation, hypoxia and hypercapnia generate equal dyspnea when matched by ventilatory drive. Steady-state levels of hypoxic normocapnia (end-tidal Po(2) = 60-40 Torr) and hypercapnic hyperoxia (end-tidal Pco(2) = 40-50 Torr) were induced in naive subjects when they were free breathing and during fixed mechanical ventilation. In a separate experiment, normocapnic hypoxia and normoxic hypercapnia, "matched" by ventilation in free-breathing trials, were presented to experienced subjects breathing with constrained rate and tidal volume. "Air hunger" was rated every 30 s on a visual analog scale. Air hunger-Pet(O(2)) curves rose sharply at Pet(O(2)) <50 Torr. Air hunger was not different between matched stimuli (P > 0.05). Hypercapnia had unpleasant nonrespiratory effects but was otherwise perceptually indistinguishable from hypoxia. We conclude that hypoxia and hypercapnia have equal potency for air hunger when matched by ventilatory drive. Air hunger may, therefore, arise via brain stem respiratory drive.  相似文献   

5.
Although it is known that the vasculatures of the brain and the forearm are sensitive to changes in arterial Pco(2), previous investigations have not made direct comparisons of the sensitivities of cerebral blood flow (CBF) (middle cerebral artery blood velocity associated with maximum frequency of Doppler shift; Vp) and brachial blood flow (BBF) to hypercapnia. We compared the sensitivities of Vp and BBF to hypercapnia in humans. On the basis of the critical importance of the brain for the survival of the organism, we hypothesized that Vp would be more sensitive than BBF to hypercapnia. Nine healthy males (30.1 +/- 5.2 yr, mean +/- SD) participated. Euoxic hypercapnia (end-tidal Po(2) = 88 Torr, end-tidal Pco(2) = 9 Torr above resting) was achieved by using the technique of dynamic end-tidal forcing. Vp was measured by transcranial Doppler ultrasound as an index of CBF, whereas BBF was measured in the brachial artery by echo Doppler. Vp and BBF were measured during two 60-min trials of hypercapnia, each trial separated by 60 min. Since no differences in the responses were found between trials, data from both trials were averaged to make comparisons between Vp and BBF. During hypercapnia, Vp and BBF increased by 34 +/- 8 and 14 +/- 8%, respectively. Vp remained elevated throughout the hypercapnic period, but BBF returned to baseline levels by 60 min. The Vp CO(2) sensitivity was greater than BBF (4 +/- 1 vs. 2 +/- 1%/Torr; P < 0.05). Our findings confirm that Vp has a greater sensitivity than BBF in response to hypercapnia and show an adaptive response of BBF that is not evident in Vp.  相似文献   

6.
We examined the cardiovascular and cerebrovascular responses to acute isocapnic (IH) and poikilocapnic hypoxia (PH) in 10 men (25.7 +/- 4.2 yr, mean +/- SD). Heart rate (HR), mean arterial pressure (MAP), and mean peak middle cerebral artery blood flow velocity (Vp) were measured continuously during two randomized protocols of 20 min of step IH and PH (45 Torr). HR was elevated during both IH (P < 0.01) and PH (P < 0.01), with no differences observed between conditions. MAP was modestly elevated across all time points during IH but only became elevated after 5 min during PH. During IH, Vp was elevated from baseline throughout the exposure with a consistent hypoxic sensitivity of approximately 0.34 cm x s(-1).%desaturation(-1) (P < 0.05). The Vp response to PH was biphasic with an initial decrease from baseline occurring at 79 +/- 23 s, followed by a subsequent elevation, becoming equivalent to the IH response by 10 min. The nadir of the PH response exhibited a hypoxic sensitivity of -0.24 cm x s(-1) x % desaturation(-1). When expressed in relation to end-tidal Pco2, a sensitivity of -1.08 cm x s(-1).Torr(-1) was calculated, similar to previously reported sensitivities to euoxic hypocapnia. Cerebrovascular resistance (CVR) was not changed during IH. During PH, an initial increase in CVR was observed. However, CVR returned to baseline by 20 min of PH. These data show the cerebrovascular response to PH consists of an early hypocapnia-mediated response, followed by a secondary increase, mediated predominantly by hypoxia.  相似文献   

7.
Current evidence suggests that the persistent sympathetic nerve activity (SNA), commonly observed after exposure to hypoxia (HX), is mediated by chemoreceptor sensitization and or baroreflex resetting. Evidence in humans and animals suggests that these reflexes may independently regulate the frequency (gating) and amplitude (neuronal recruitment) of SNA bursts. In humans (n = 7), we examined the regulation of SNA following acute isocapnic HX (5 min; end-tidal Po(2) = 45 Torr) and euoxic hypercapnia (HC; 5 min; end-tidal Pco(2) = +10 from baseline). HX increased SNA burst frequency (21 ± 7 to 28 ± 8 bursts/min, P < 0.05) and amplitude (99 ± 10 to 125 ± 19 au, P < 0.05) as did HC (14 ± 6 to 22 ± 10 bursts/min, P < 0.05 and 100 ± 12 to 133 ± 29 au, P < 0.05, respectively). Burst frequency (26 ± 7 bursts/min, P < 0.05), but not amplitude (97 ± 12 au), remained elevated 10 min post-HX. The change in burst amplitude (but not frequency) was significantly related to the measured change in ventilation (r(2) = 0.527, P < 0.001). Both frequency and amplitude decreased during recovery following HC. These data indicate the differential regulation of pattern and magnitude of sympathetic outflow in humans with sympathetic persistence following HX being specific to burst frequency and not amplitude.  相似文献   

8.
We determined the effects on breathing of transient ventilatory overshoots and concomitant hypocapnia, as produced by pressure support mechanical ventilation (PSV), in intact and carotid body chemoreceptor denervated (CBX) sleeping dogs. In the intact dog, PSV-induced transient increases in tidal volume and hypocapnia caused apnea within 10-11 s, followed by repetitive two-breath clusters separated by apneas, i.e., periodic breathing (PB). After CBX, significant expiratory time prolongation did not occur until after 30 s of PSV-induced hypocapnia, and PB never occurred. Average apneas of 8.4 +/- 1-s duration after a ventilatory overshoot required a decrease below eupnea of end-tidal Pco(2) 5.1 +/- 0.4 Torr below eupnea in the intact animal and 10.1 +/- 2 Torr in the CBX dog, where the former reflected peripheral and the latter central dynamic CO(2) chemoresponsiveness, as tested in the absence of peripheral chemoreceptor input. Hyperoxia when the dogs were intact shortened PSV-induced apneas and reduced PB but did not mimic the effects of CBX. We conclude that, during non-rapid eye movement sleep, carotid chemoreceptors are required to produce apneas that normally occur after a transient ventilatory overshoot and for PB.  相似文献   

9.
Human ventilatory response to 8h of euoxic hypercapnia   总被引:1,自引:0,他引:1  
Tansley, John G., Michala E. F. Pedersen, Christine Clar,and Peter A. Robbins. Human ventilatory response to 8 h of euoxic hypercapnia. J. Appl.Physiol. 84(2): 431-434, 1998.Ventilation (E) risesthroughout 40 min of constant elevated end-tidalPCO2 without reaching steady state(S. Khamnei and P. A. Robbins. Respir. Physiol. 81: 117-134, 1990). The present studyinvestigates 8 h of euoxic hypercapnia to determine whetherE reachessteady state within this time. Two protocols were employed:1) 8-h euoxic hypercapnia (end-tidalPCO2 = 6.5 Torr above prestudy value,end-tidal PO2 = 100 Torr) followed by 8-h poikilocapnic euoxia; and2) control, where the inspired gaswas air. Ewas measured over a 5-min period before the experiment and then hourly over a 16-h period. In the hypercapnia protocol,E had notreached a steady state by the first hour(P < 0.001, analysis of variance), but there were no further significant differences inEover hours 2-8 (analysis ofvariance). Efell promptly on return to eucapnic conditions. We conclude that,whereas there is a component of theE responseto hypercapnia that is slow, there is no progressive rise inE throughoutthe 8-h period.

  相似文献   

10.
In 16 experiments male subjects, age 22.4 +/- 0.5 (SE) yr, inspired CO2 for 15 min (8% end-tidal CO2) or hyperventilated for 30 min (2.5% end-tidal CO2). Osmolality (Osm) and acid-base status of arterialized venous blood were determined at short intervals until 30 min after hypo- and hypercapnia, respectively. During hypocapnia [CO2 partial pressure (PCO2) -2.31 +/- 0.32 kPa (-17.4 Torr), pH + 0.19 units], Osm decreased by 3.9 +/- 0.3 mosmol/kg H2O; during hypercapnia [PCO2 + 2.10 +/- 0.28 kPa (+15.8 Torr), pH -0.12 units], Osm increased by 5.8 +/- 0.7 mosmol/kg H2O. Presentation of the data in Osm-PCO2 or Osm-pH diagrams yields hysteresis loops probably caused by exchange between blood and tissues. The dependence of Osm on PCO2 must result mainly from CO2 buffering and therefore from the formation of bicarbonate. In spite of the different buffer capacities in various body compartments, water exchange allows rapid restoration of osmotic equilibrium throughout the organism. Thus delta Osm/delta pH during a PCO2 jump largely depends on the mean buffer capacity of the whole body. The high estimated buffer value during hypercapnia (38 mmol/kg H2O) compared with hypocapnia (19 mmol/kg H2O) seems to result from very strong muscle buffering during moderate acidosis.  相似文献   

11.
We assessed the time course of changes in eupneic arterial PCO(2) (Pa(CO(2))) and the ventilatory response to hyperoxic rebreathing after removal of the carotid bodies (CBX) in awake female dogs. Elimination of the ventilatory response to bolus intravenous injections of NaCN was used to confirm CBX status on each day of data collection. Relative to eupneic control (Pa(CO(2)) = 40 +/- 3 Torr), all seven dogs hypoventilated after CBX, reaching a maximum Pa(CO(2)) of 53 +/- 6 Torr by day 3 post-CBX. There was no significant recovery of eupneic Pa(CO(2)) over the ensuing 18 days. Relative to control, the hyperoxic CO(2) ventilatory (change in inspired minute ventilation/change in end-tidal PCO(2)) and tidal volume (change in tidal volume/ change in end-tidal PCO(2)) response slopes were decreased 40 +/- 15 and 35 +/- 20% by day 2 post-CBX. There was no recovery in the ventilatory or tidal volume response slopes to hyperoxic hypercapnia over the ensuing 19 days. We conclude that 1) the carotid bodies contribute approximately 40% of the eupneic drive to breathe and the ventilatory response to hyperoxic hypercapnia and 2) there is no recovery in the eupneic drive to breathe or the ventilatory response to hyperoxic hypercapnia after removal of the carotid chemoreceptors, indicating a lack of central or aortic chemoreceptor plasticity in the adult dog after CBX.  相似文献   

12.
We hypothesized that chronic intermittent hypoxia (CIH) would induce a predisposition to apnea in response to induced hypocapnia. To test this, we used pressure support ventilation to quantify the difference in end-tidal partial pressure of CO(2) (Pet(CO(2))) between eupnea and the apneic threshold ("CO(2) reserve") as an index of the propensity for apnea and unstable breathing during sleep, both before and following up to 3-wk exposure to chronic intermittent hypoxia in dogs. CIH consisted of 25 s of Pet(O(2)) = 35-40 Torr followed by 35 s of normoxia, and this pattern was repeated 60 times/h, 7-8 h/day for 3 wk. The CO(2) reserve was determined during non-rapid eye movement sleep in normoxia 14-16 h after the most recent hypoxic exposure. Contrary to our hypothesis, the slope of the ventilatory response to CO(2) below eupnea progressively decreased during CIH (control, 1.36 +/- 0.18; week 2, 0.94 +/- 0.12; week 3, 0.73 +/- 0.05 l.min(-1).Torr(-1), P < 0.05). This resulted in a significant increase in the CO(2) reserve relative to control (P < 0.05) following both 2 and 3 wk of CIH (control, 2.6 +/- 0.6; week 2, 3.7 +/- 0.8; week 3, 4.5 +/- 0.9 Torr). CIH also 1) caused no change in eupneic, air breathing Pa(CO(2)); 2) increased the slope of the ventilatory response to hypercapnia after 2 wk but not after 3 wk compared with control; and 3) had no effect on the ventilatory response to hypoxia. We conclude that 3-wk CIH reduced the sensitivity of the ventilatory response to transient hypocapnia and thereby increased the CO(2) reserve, i.e., the propensity for apnea was reduced.  相似文献   

13.
Nine men completed a 24-h exercise trial, with physiological testing sessions before (T1, approximately 0630), during (T2, approximately 1640; T3, approximately 0045; T4, approximately 0630), and 48-h afterwards (T5, approximately 0650). Participants cycled and ran/trekked continuously between test sessions. A 24-h sedentary control trial was undertaken in crossover order. Within testing sessions, participants lay supine and then stood for 6 min, while heart rate variability (spectral analysis of ECG), middle cerebral artery perfusion velocity (MCAv), mean arterial pressure (MAP; Finometer), and end-tidal Pco(2) (Pet(CO(2))) were measured, and venous blood was sampled for cardiac troponin I. During the exercise trial: 1) two, six, and four participants were orthostatically intolerant at T2, T3, and T4, respectively; 2) changes in heart rate variability were only observed at T2; 3) supine MAP (baseline = 81 +/- 6 mmHg) was lower (P < 0.05) by 14% at T3 and 8% at T4, whereas standing MAP (75 +/- 7 mmHg) was lower by 16% at T2, 37% at T3, and 15% at T4; 4) Pet(CO(2)) was reduced (P < 0.05) at all times while supine (-3-4 Torr) and standing (-4-5 Torr) during exercise trial; 5) standing MCAv was reduced (P < 0.05) by 23% at T3 and 30% at T4 during the exercise trial; 6) changes in MCAv with standing always correlated (P < 0.01) with changes in Pet(CO(2)) (r = 0.78-0.93), but only with changes in MAP at T1, T2, and T3 (P < 0.05; r = 0.62-0.84); and 7) only two individuals showed minor elevations in cardiac troponin I. Recovery was complete within 48 h. During prolonged exercise, postural-induced hypotension and hypocapnia exacerbate cerebral hypoperfusion and facilitate syncope.  相似文献   

14.
In humans, 8 h of isocapnic hypoxia causes a progressive rise in ventilation associated with increases in the acute ventilatory responses to hypoxia (AHVR) and hypercapnia (AHCVR). To determine whether 8 h of hyperoxia causes the converse of these effects, three 8-h protocols were compared in 14 subjects: 1) poikilocapnic hyperoxia, with end-tidal PO(2) (PET(O(2))) = 300 Torr and end-tidal PCO(2) (PET(CO(2))) uncontrolled; 2) isocapnic hyperoxia, with PET(O(2)) = 300 Torr and PET(CO(2)) maintained at the subject's normal air-breathing level; and 3) control. Ventilation was measured hourly. AHVR and AHCVR were determined before and 0.5 h after each exposure. During isocapnic hyperoxia, after an initial increase, ventilation progressively declined (P < 0.01, ANOVA). After exposure to hyperoxia, 1) AHVR declined (P < 0.05); 2) ventilation at fixed PET(CO(2)) decreased (P < 0.05); and 3) air-breathing PET(CO(2)) increased (P < 0.05); but 4) no significant changes in AHCVR or intercept were demonstrated. In conclusion, 8 h of hyperoxia have some effects opposite to those found with 8 h of hypoxia, indicating that there may be some "acclimatization to hypoxia" at normal sea-level values of PO(2).  相似文献   

15.
Elevated arterial Pco(2) (hypercapnia) has a major effect on central nervous system oxygen toxicity in diving with a closed-circuit breathing apparatus. The purpose of the present study was to follow up the ability of divers to detect CO(2) and to determine the CO(2) retention trait after 1 year of active oxygen diving with closed-circuit apparatus. Ventilatory and perceptual responses to variations in inspired CO(2) (range: 0-5.6 kPa, 0-42 Torr) during moderate exercise were assessed in Israeli Navy combat divers on active duty. Tests were carried out on 40 divers during the novice oxygen diving phase (ND) and the experienced oxygen diving phase. No significant changes were found between the two phases for the minimal mean inspired Pco(2) that could be detected. The mean (with SD in parentheses) end-tidal Pco(2) during exposure to an inspired Pco(2) of 5.6 kPa (42 Torr) was significantly higher in the novice diving phase than in the experienced diving phase [8.1 kPa (SD 0.7), 62 Torr (SD 5) and 7.8 kPa (SD 0.6), 59 Torr (SD 4), respectively; P < or = 0.001]. One year of shallow oxygen diving activity with a closed-circuit apparatus does not affect the ability to detect CO(2) nor does it lead to increased CO(2) retention; rather, it may even bring about a decrease in this trait. This finding suggests that acquiring experience in oxygen diving with a closed-circuit apparatus at shallow depths does not place the diver at a greater risk of central nervous system oxygen toxicity due to CO(2) retention.  相似文献   

16.
The time course of the pulmonary vascular response to hypoxia in humans has not been fully defined. In this investigation, study A was designed to assess the form of the increase in pulmonary vascular tone at the onset of hypoxia and to determine whether a steady plateau ensues over the following approximately 20 min. Twelve volunteers were exposed twice to 5 min of isocapnic euoxia (end-tidal Po(2) = 100 Torr), 25 min of isocapnic hypoxia (end-tidal Po(2) = 50 Torr), and finally 5 min of isocapnic euoxia. Study B was designed to look for the onset of a slower pulmonary vascular response, and, if possible, to determine a latency for this process. Seven volunteers were exposed to 5 min of isocapnic euoxia, 105 min of isocapnic hypoxia, and finally 10 min of isocapnic euoxia. For both studies, control protocols consisting of isocapnic euoxia were undertaken. Doppler echocardiography was used to measure cardiac output and the maximum tricuspid pressure gradient during systole, and estimates of pulmonary vascular resistance were calculated. For study A, the initial response was well described by a monoexponential process with a time constant of 2.4 +/- 0.7 min (mean +/- SE). After this, there was a plateau phase lasting at least 20 min. In study B, a second slower phase was identified, with vascular tone beginning to rise again after a latency of 43 +/- 5 min. These findings demonstrate the presence of two distinct phases of hypoxic pulmonary vasoconstriction, which may result from two distinct underlying processes.  相似文献   

17.
During wakefulness, increases in the partial pressure of arterial CO(2) result in marked rises in cortical blood flow. However, during stage III-IV, non-rapid eye movement (NREM) sleep, and despite a relative state of hypercapnia, cortical blood flow is reduced compared with wakefulness. In the present study, we tested the hypothesis that, in normal subjects, hypercapnic cerebral vascular reactivity is decreased during stage III-IV NREM sleep compared with wakefulness. A 2-MHz pulsed Doppler ultrasound system was used to measure the left middle cerebral artery velocity (MCAV; cm/s) in 12 healthy individuals while awake and during stage III-IV NREM sleep. The end-tidal Pco(2) (Pet(CO(2))) was elevated during the awake and sleep states by regulating the inspired CO(2) load. The cerebral vascular reactivity to CO(2) was calculated from the relationship between Pet(CO(2)) and MCAV by using linear regression. From wakefulness to sleep, the Pet(CO(2)) increased by 3.4 Torr (P < 0.001) and the MCAV fell by 11.7% (P < 0.001). A marked decrease in cerebral vascular reactivity was noted in all subjects, with an average fall of 70.1% (P = 0.001). This decrease in hypercapnic cerebral vascular reactivity may, at least in part, explain the stage III-IV NREM sleep-related reduction in cortical blood flow.  相似文献   

18.
We studied blood gases in ponies to assess the relationship of alveolar ventilation (VA) to pulmonary CO2 delivery during moderate treadmill exercise. In normal ponies for 1.8, 3, or 6 mph, respectively, partial pressure of CO2 in arterial blood (PaCO2) decreased maximally by 3.1, 4.4, and 5.7 Torr at 30-90 s of exercise and remained below rest by 1.4, 2.3, and 4.5 Torr during steady-state (4-8 min) exercise (P less than 0.01). Partial pressure of O2 in arterial blood (PaO2) and arterial pH, (pHa) also reflected hyperventilation. Mixed venus CO2 partial pressure (PVCO2) decreased 2.3 and 2.9 Torr by 30 s for 3 and 6 mph, respectively (P less than 0.05). In work transitions either from 1.8 to 6 mph or from 6 mph to 1.8 mph, respectively, PaCO2 either decreased 3.8 Torr or increased 3.3 Torr by 45 s of the second work load (P less than 0.01). During exercise in acute (2-4 wk) carotid body denervated (CBD) ponies at 1.8, 3, or 6 mph, respectively, PaCO2 decreased maximally below rest by 9.0, 7.6, and 13.2 Torr at 30-45 s of exercise and remained below rest by 1.3, 2.3, and 7.8 Torr during steady-state (4-8 min) exercise (P less than 0.1). In the chronic (1-2 yr) CBD ponies, the hypocapnia was generally greater than normal but less than in the acute CBD ponies. We conclude that in the pony 1) VA is not tightly matched to pulmonary CO2 delivery during exercise, particularly during transitional states, 2) the exercise hyperpnea is not mediated by PaCO2 or PVCO2, and 3) during transitional states in the normal pony, the carotid bodies attenuate VA drive thereby reducing arterial hypocapnia.  相似文献   

19.
The H2 clearance technique was used to determine the blood flow of the postulated respiratory chemosensitive areas near the ventrolateral surface of the medulla. In 12 pentobarbital sodium-anesthetized cats, flow (mean +/- SD) was measured from 25-micron Teflon-coated platinum wire electrodes implanted to a depth of 0.3-0.7 mm. Flow (in ml X min-1 X 100 g-1, n = 35) was 52.8 +/- 28.5 in hypocapnia [arterial CO2 partial pressure (PaCO2) = 21.8 +/- 1.6 Torr], 57.8 +/- 27.5 in normocapnia (PaCO2 = 31.9 +/- 2.2 Torr), and 75.0 +/- 31.7 in hypercapnia (PaCO2 = 44.5 +/- 3.0 Torr). Flow determined from 15 electrodes in adjacent pyramidal tracts (white matter) was less at all levels of CO2; 22.9 +/- 12.3 in hypocapnia, 29.1 +/- 15.9 in normocapnia, and 33.9 +/- 13.9 in hypercapnia. In hypoxia [arterial O2 partial pressure (PaO2) = 39.9 +/- 6.3 Torr] ventrolateral surface flow rose to 87.9 +/- 47.6, and adjacent white matter flow was 35.8 +/- 15.6. These results indicate that flow in the postulated central chemoreceptor areas exceeds that of white matter and is sensitive to variations in PaCO2 and PaO2.  相似文献   

20.
Interaction of fatigue and hypercapnia in the canine diaphragm   总被引:1,自引:0,他引:1  
We studied 10 open-chest dogs and measured the pressure across the diaphragm (Pdi) in each period of the protocol during stimulation at frequencies of 1, 20, 50, and 80 Hz. Three ranges of arterial PCO2 (PaCO2) were examined: less than or equal to 26, 36-50, and greater than or equal to 89 Torr. The diaphragm was fatigued with repetitive phrenic stimulation (30 Hz). During the fatiguing activity, five of the animals were subjected to hypercapnia and the other five to hypocapnia. A frequency-Pdi curve was generated for each period in the protocol. The data show that 1) fatiguing to 50% of the initial Pdi value during hypercapnia was significantly more rapid than during hypocapnia; 2) both the prefatigue and postfatigue mean Pdi values over all interactions of frequency, fatigue, and PaCO2 were unaffected by the fatiguing environment (hypercapnia vs. hypocapnia); 3) the percent reduction of Pdi by hypercapnia was the same at all four frequencies; 4) hypocapnia did not alter either the pre- or postfatigue frequency-Pdi curve; and 5) one-half relaxation time, unaffected by PaCO2, was prolonged by fatigue. We conclude that the hypercapnic diaphragm has less endurance than the hypocapnic diaphragm and that although both fatigue and hypercapnia decrease Pdi, they appear to be separate entities working through different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号