首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The [2Fe-2S] ferredoxin (HsFdx) of the halophilic archaeon Halobacterium salinarum exhibits a high degree of sequence conservation with plant-type ferredoxins except for an insertion of 30 amino acids near its N-terminus which is extremely rich in acidic amino acids. Unfolding studies reveal that HsFdx has an unfolding temperature of approximately 85 degrees C in 4.3 M NaCl, but of only 50 degrees C in low salinity, revealing its halophilic character. The three-dimensional structure of HsFdx was determined by NMR spectroscopy, resulting in a backbone rmsd of 0.6 A for the diamagnetic regions of the protein. Whereas the overall structure of HsFdx is very similar to that of the plant-type ferredoxins, two additional alpha-helices are found in the acidic extra domain. (15)N NMR relaxation studies indicate that HsFdx is rigid, and the flexibility of residues is similar throughout the molecule. Monitoring protein denaturation by NMR did not reveal differences between the core fold and the acidic domain, suggesting a cooperative unfolding of both parts of the molecule. A mutant of the HsFdx in which the acidic domain is replaced with a short loop of the nonhalophilic Anabaena ferredoxin shows a considerably changed expression pattern. The halophilic wild-type protein is readily expressed in large amounts in H. salinarum, but not in Escherichia coli, whereas the mutant ferredoxin could only be overexpressed in E. coli. The salt concentration was also found to play a critical role for the efficiency of cluster reconstitution: the cluster of HsFdx could be reconstituted only in a solution containing molar concentrations of NaCl, while the reconstitution of the cluster in the mutant protein proceeds efficiently in low salt. These findings suggest that the acidic domain mediates the halophilic character which is reflected in its thermostability, the exclusive expression in H. salinarum, and the ability to efficiently reconstitute the iron-sulfur cluster only at high salt concentrations.  相似文献   

2.
Halophilic enzymes: proteins with a grain of salt   总被引:9,自引:0,他引:9  
Halophilic enzymes, while performing identical enzymatic functions as their non-halophilic counterparts, have been shown to exhibit substantially different properties, among them the requirement for high salt concentrations, in the 1-4 M range, for activity and stability, and a high excess of acidic over basic amino residues. The following communication reviews the functional and structural properties of two proteins isolated from the extremely halophilic archaeon Haloarcula marismortui: the enzyme malate-dehydrogenase (hMDH) and the 2Fe-2S protein ferredoxin. It is argued that the high negative surface charge of halophilic proteins makes them more soluble and renders them more flexible at high salt concentrations, conditions under which non-halophilic proteins tend to aggregate and become rigid. This high surface charge is neutralized mainly by tightly bound water dipoles. The requirement of high salt concentration for the stabilization of halophilic enzymes, on the other hand, is due to a low affinity binding of the salt to specific sites on the surface of the folded polypeptide, thus stabilizing the active conformation of the protein.  相似文献   

3.
We performed a comparative analysis of the genome sequences of three anaerobic halophilic fermentative bacteria belonging to the order Halanaerobiales: Halanaerobium praevalens, the alkaliphilic "Halanaerobium hydrogeniformans", and the thermophilic Halothermothrix orenii to assess the amino acid composition of their proteins. Members of the Halanaerobiales were earlier shown to accumulate KCl rather than organic compatible solutes for osmotic balance, and therefore the presence of a dominantly acidic proteome was predicted. Past reports indeed showed a large excess of acidic over basic amino acids in whole-cell hydrolysates of selected members of the order. However, the genomic analysis did not show unusually high contents of acidic amino acids or low contents of basic amino acids. The apparent excess of acidic amino acids in these anaerobic halophiles reported earlier is due to the high content in their proteins of glutamine and asparagine, which yield glutamate and aspartate upon acid hydrolysis. It is thus suggested that the proteins of the Halanaerobiales, which are active in the presence of high intracellular KCl concentrations, do not possess the typical acidic signature of the 'halophilic' proteins of the Archaea of the order Halobacteriales or of the extremely halophilic bacterium Salinibacter.  相似文献   

4.
Eighteen strains of extremely halophilic bacteria and three strains of moderately halophilic bacteria were isolated from four different solar salt environments. Growth tests on carbohydrates, low-molecular-weight carboxylic acids, and complex medium demonstrated that the moderate halophiles and strains of the extreme halophiles Haloarcula and Halococcus grew on most of the substrates tested. Among the Halobacterium isolates were several metabolic groups: strains that grew on a broad range of substrates and strains that were essentially confined to either amino acid (peptone) or carbohydrate oxidation. One strain (WS-4) only grew well on pyruvate and acetate. Most strains of extreme halophiles grew by anaerobic fermentation and possibly by nitrate reduction. Tests of growth potential in natural saltern brines demonstrated that none of the halobacteria grew well in brines which harbor the densest populations of these bacteria in solar salterns. All grew best in brines which were unsaturated with NaCl. The high concentrations of Na+ and Mg2+ found in saltern crystallizer brines limited bacterial growth, but the concentrations of K+ found in these brines had little effect. MgSO4 was relatively more inhibitory to the extreme halophiles than was MgCl2, but the reverse was true for the moderate halophiles.  相似文献   

5.
Summary Comparative studies have been carried out on the amino acid composition of the bulk protein of the two main types of extremely halophilic bacteria and their non-halophilic, bacteriological counterparts. The protein of all the extreme halophiles tested was relatively high in aspartic and glutamic acids and low in lysine and alanine. The results have furnished a basis for a discussion of the molecular mechanisms which might be involved in the evolution of an extremely halophilic organism from a non-halophilic organism.Research Fellow of The Norwegian Research Council for Science and the Humanities.  相似文献   

6.
Halotolerant and halophilic microorganisms can grow in (hyper)saline environments, but only halophiles specifically require salt. Genotypic and phenotypic adaptations are displayed by halophiles; the halotolerants adapt phenotypically, but it is not established whether they show genotypic adaptation. This paper reviews the various strategies of haloadaptation of membrane proteins and lipids by halotolerant and halophilic microorganisms. Moderate halophiles and halotolerants adapt their membrane lipid composition by increasing the proportion of anionic lipids, often phosphatidylglycerol and/or glycolipids, which in the moderately halophilic bacteriumVibrio costicola appears to be part of an osmoregulatory response to minimize membrane stress at high salinities. Extreme halophiles possess typical archaebacterial ether lipids, which are genotypically adapted by having additional substitutions with negatively-charged residues such as sulfate. In contrast to the lipids, it is less clear whether membrane proteins are haloadapted, although they may be more acidic; very few depend on salt for their activity.  相似文献   

7.
The amino acid compositions of proteins from halophilic archaea were compared with those from non-halophilic mesophiles and thermophiles, in terms of the protein surface and interior, on a genome-wide scale. As we previously reported for proteins from thermophiles, a biased amino acid composition also exists in halophiles, in which an abundance of acidic residues was found on the protein surface as compared to the interior. This general feature did not seem to depend on the individual protein structures, but was applicable to all proteins encoded within the entire genome. Unique protein surface compositions are common in both halophiles and thermophiles. Statistical tests have shown that significant surface compositional differences exist among halophiles, non-halophiles, and thermophiles, while the interior composition within each of the three types of organisms does not significantly differ. Although thermophilic proteins have an almost equal abundance of both acidic and basic residues, a large excess of acidic residues in halophilic proteins seems to be compensated by fewer basic residues. Aspartic acid, lysine, asparagine, alanine, and threonine significantly contributed to the compositional differences of halophiles from meso- and thermophiles. Among them, however, only aspartic acid deviated largely from the expected amount estimated from the dinucleotide composition of the genomic DNA sequence of the halophile, which has an extremely high G+C content (68%). Thus, the other residues with large deviations (Lys, Ala, etc.) from their non-halophilic frequencies could have arisen merely as "dragging effects" caused by the compositional shift of the DNA, which would have changed to increase principally the fraction of aspartic acid alone.  相似文献   

8.
The nirA gene of Mycobacterium tuberculosis is up-regulated in the persistent state of the bacteria, suggesting that it is a potential target for the development of antituberculosis agents particularly active against the pathogen in its dormant phase. This gene encodes a ferredoxin-dependent sulfite reductase, and the structure of the enzyme has been determined using x-ray crystallography. The enzyme is a monomer comprising 555 amino acids and contains a [Fe4-S4] cluster and a siroheme cofactor. The molecule is built up of three domains with an alpha/beta fold. The first domain consists of two ferredoxin-like subdomains, related by a pseudo-2-fold symmetry axis passing through the whole molecule. The other two domains, which provide much of the binding interactions with the cofactors, have a common fold that is unique to the sulfite/nitrite reductase family. The domains form a trilobal structure, with the cofactors and the active site located at the interface of all three domains in the center of the molecule. NirA contains an unusual covalent bond between the side chains of Tyr69 and Cys161 in the active site, in close proximity to the siroheme cofactor. Removal of this covalent bond by site-directed mutagenesis impairs catalytic activity, suggesting that it is important for the enzymatic reaction. These residues are part of a sequence fingerprint, able to distinguish between ferredoxin-dependent sulfite and nitrite reductases. Comparison of NirA with the structure of the truncated NADPH-dependent sulfite reductase from Escherichia coli suggests a binding site for the external electron donor ferredoxin close to the [Fe4-S4] cluster.  相似文献   

9.
The two tryptophan residues of ferredoxin from Halobacterium of the Dead Sea differ in their fluorescence characteristics. One of these tryptophan residues (class 1) absorbs more to the red and is thus probably in a more apolar environment than the other (class 2). Upon removal of the ferric ions, i.e., in the apoferredoxin, a 2.2-fold increase in the quantum yield of fluorescence is observed. A double exponential decay of the fluorescence is found for ferredoxin, reduced ferredoxin, as well as for the apoferredoxin. The longer decay time assumes a constant value of 6.9 ns in all three cases, indicating that it originates in a tryptophan residue which is not affected by changes in the Fe3+ binding site (class 2 tryptophan). The shorter decay component increases gradually from 0.55 ns in oxidized ferredoxin, through 0.80 ns in the reduced ferredoxin to 1.24 ns in the apoprotein. This decay component is thus assumed to be largely due to the second tryptophan residue of the protein (class 1) located close to the Fe3+ binding site. On the other hand, the relative decay amplitude of the class 2 tryptophan is doubled upon formation of apoferredoxin. It is concluded that the class 1 tryptophan is quenched by the active site ferric ions and that the class 2 tryptophan is partially exposed to a polar environment. Whereas class 1 tryptophan may be similar to the single nonfluorescent tryptophan of spinach ferredoxin, class 2 tryptophan is found in a peptide which is present only in halophilic ferredoxins. Conformational changes occur in the molecule upon removal—but not reduction—of the ferric ions, causing the environment of the class 2 tryptophan to become more hydrophobic. It is possible that the class 1 tryptophan is associated with the occurrence of a higher redox potential in this ferredoxin, when compared with chloroplast-type ferredoxins.  相似文献   

10.
Elementary particle effects (beta-decay) provide at best only a weakly handed radiation in the biologically effective energy ranges. Global magnetic effects coupled to sunlight are randomized by paleomagnetic reversals. Hence a persistent terrestrial handed bias at possible local biopoetic sites offers a more promising explanation for the origin of the "handedness" of the molecules found among living systems on earth. Magnetite in lava flows maintains a handed bias for surface catalysis through many magnetic reversals. Magnetite contaminated with sulfur has already been proposed by Granick as a biopoetic site because it provides a weak source of chemical energy derived by photochemical conversion. Indirect evidence for this hypothesis has been provided by the molecular structure of ferredoxin - a single strand of the 14 primordial amino acids wrapped around an FeS core. Lava flows have been suggested as biopoetic sites by Fox, since their temperature and chemical composition might allow for the rapid synthesis of prebiotic compounds at the surface of the primitive earth. The additional fact that magnetite in lave flows also provides a persistent handed site for surface catalysis offers a further argument for the experimental investigation of this specific biopoetic environment.  相似文献   

11.
The ST6Gal I is a sialyltransferase that modifies N-linked oligosaccharides of glycoproteins. Previous results suggested a role for luminal stem and active domain sequences in the efficiency of ST6Gal I Golgi retention. Characterization of a series of STtyr isoform deletion mutants demonstrated that the stem is sensitive to proteases and that preventing cleavage in this region leads to increased cell surface expression. A mutant lacking amino acids 32-104 (STDelta4) is not active or cleaved and secreted like the wild type STtyr, but does exhibit increased cell surface expression. It is probable that the STDelta4 mutant lacks the stem region and some amino acids of the active domain because the STDelta5 mutant lacking amino acids 86-104 is also not active but is cleaved and secreted. In contrast, deletion of stem amino acids between residues 32 and 86 in the STDelta1, STDelta2, and STDelta3 mutants does not inactive these enzyme forms, eliminate their cleavage and secretion, or increase their cell surface expression. Surprisingly, cleavage occurs even though the previously identified Asn63-Ser 64 cleavage site is missing. Further evaluation demonstrated that a cleavage site between Lys 40 and Glu 41 is used in COS cells. Mutagenesis of Lys 40 significantly decreased, but did not eliminate cleavage, suggesting that there are additional secondary sites of cleavage in the ST6Gal I stem.  相似文献   

12.
Proteins from halophilic organisms, which live in extreme saline conditions, have evolved to remain folded at very high ionic strengths. The surfaces of halophilic proteins show a biased amino acid composition with a high prevalence of aspartic and glutamic acids, a low frequency of lysine, and a high occurrence of amino acids with a low hydrophobic character. Using extensive mutational studies on the protein surfaces, we show that it is possible to decrease the salt dependence of a typical halophilic protein to the level of a mesophilic form and engineer a protein from a mesophilic organism into an obligate halophilic form. NMR studies demonstrate complete preservation of the three-dimensional structure of extreme mutants and confirm that salt dependency is conferred exclusively by surface residues. In spite of the statistically established fact that most halophilic proteins are strongly acidic, analysis of a very large number of mutants showed that the effect of salt on protein stability is largely independent of the total protein charge. Conversely, we quantitatively demonstrate that halophilicity is directly related to a decrease in the accessible surface area.  相似文献   

13.
Madern D  Ebel C 《Biochimie》2007,89(8):981-987
Halophilic proteins have evolved to be soluble, stable and active in high salt concentration. Crystallographic studies have shown that surface enrichment by acidic amino acids is a common structural feature of halophilic proteins. In addition, ion-binding sites have also been observed in most of the cases. The role of chloride-binding sites in halophilic adaptation was addressed in a site-directed mutagenesis study of tetrameric malate dehydrogenase from Haloarcula marismortui. The mutation of K 205, which is involved in an inter-subunit chloride-binding site, drastically modified the enzyme stability in the presence of KCl, but not in the presence of KF. The oligomeric state of the [K205A] mutant changes with the nature of the anion. At high salt concentration, the [K205A] mutant is a dimer when the anion is a chloride ion, whereas it is a tetramer when the fluoride ion is used. The results highlight the role of anion-binding sites in protein adaptation to high salt conditions.  相似文献   

14.
The active component(s) in yeast extract required by Thermoplasma acidophilum for growth is polypeptide in nature. A fraction from yeast extract was isolated and partially characterized as one or more peptides of molecular weight about 1,000 containing 8 to 10 amino acids. Although it was composed largely of basic and dicarboxylic amino acids, only one amino group per molecule was free. The polypeptide(s) appeared to bind avidly to cations. No other organic compounds except glucose were needed by Thermoplasma. Among several hundred known compounds tested, only glutathione plus Fe2+ or Fe3+, clostridial ferredoxin, and spinach ferredoxin elicited any growth response.  相似文献   

15.
In plants, cysteine biosynthesis plays a central role in fixing inorganic sulfur from the environment and provides the only metabolic sulfide donor for the generation of methionine, glutathione, phytochelatins, iron-sulfur clusters, vitamin cofactors, and multiple secondary metabolites. O-Acetylserine sulfhydrylase (OASS) catalyzes the final step of cysteine biosynthesis, the pyridoxal 5'-phosphate (PLP)-dependent conversion of O-acetylserine into cysteine. Here we describe the 2.2 A resolution crystal structure of OASS from Arabidopsis thaliana (AtOASS) and the 2.7 A resolution structure of the AtOASS K46A mutant with PLP and methionine covalently linked as an external aldimine in the active site. Although the plant and bacterial OASS share a conserved set of amino acids for PLP binding, the structure of AtOASS reveals a difference from the bacterial enzyme in the positioning of an active site loop formed by residues 74-78 when methionine is bound. Site-directed mutagenesis, kinetic analysis, and ligand binding titrations probed the functional roles of active site residues. These experiments indicate that Asn(77) and Gln(147) are key amino acids for O-acetylserine binding and that Thr(74) and Ser(75) are involved in sulfur incorporation into cysteine. In addition, examination of the AtOASS structure and nearly 300 plant and bacterial OASS sequences suggest that the highly conserved beta8A-beta9A surface loop may be important for interaction with serine acetyltransferase, the other enzyme in cysteine biosynthesis. Initial protein-protein interaction experiments using AtOASS mutants targeted to this loop support this hypothesis.  相似文献   

16.
17.
The PsaD subunit of photosystem I is one of the central polypeptides for the interaction with ferredoxin, its acidic electron acceptor. In the cyanobacterium Synechocystis 6803, this role is partly performed by a sequence extending approximately from histidine 97 to arginine 119, close to the C-terminus. In the present work, acidic amino acids D100, E105, and E109 are shown to moderate the affinity of Photosystem I for ferredoxin. Most single replacements of these residues by neutral amino acids increased the affinity for ferredoxin, resulting in a dissociation constant as low as 0.015 microM for the E105Q mutant (wild-type K(D) = 0.4 microM). This is the first report on the limitation of photosystem I affinity for ferredoxin due to acidic amino acids from PsaD subunit. It highlights the occurrence of a negative control on the binding during the formation of transient complexes between electron carriers.  相似文献   

18.
Phannachet K  Elias Y  Huang RH 《Biochemistry》2005,44(47):15488-15494
Sequence alignment of the TruA, TruB, RsuA, and RluA families of pseudouridine synthases (PsiS) identifies a strictly conserved aspartic acid, which has been shown to be the critical nucleophile for the PsiS-catalyzed formation of pseudouridine (Psi). However, superposition of the representative structures from these four families of enzymes identifies two additional amino acids, a lysine or an arginine (K/R) and a tyrosine (Y), from a K/RxY motif that are structurally conserved in the active site. We have created a series of Thermotoga maritima and Escherichia coli pseudouridine 55 synthase (Psi55S) mutants in which the conserved Y is mutated to other amino acids. A new crystal structure of the T. maritima Psi55S Y67F mutant in complex with a 5FU-RNA at 2.4 A resolution revealed formation of 5-fluoro-6-hydroxypseudouridine (5FhPsi), the same product previously seen in wild-type Psi55S-5FU-RNA complex structures. HPLC analysis confirmed efficient formation of 5FhPsi by both Psi55S Y67F and Y67L mutants but to a much lesser extent by the Y67A mutant when 5FU-RNA substrate was used. However, both HPLC analysis and a tritium release assay indicated that these mutants had no detectable enzymatic activity when the natural RNA substrate was used. The combined structural and mutational studies lead us to propose that the side chain of the conserved tyrosine in these four families of PsiS plays a dual role within the active site, maintaining the structural integrity of the active site through its hydrophobic phenyl ring and acting as a general base through its OH group for the proton abstraction required in the last step of PsiS-catalyzed formation of Psi.  相似文献   

19.
Influence of salt concentration on membrane lipids of halophilic bacteria   总被引:1,自引:0,他引:1  
Abstract A review of salt-dependent changes in membrane lipid composition of halotolerant, moderately halophilic, and extremely halophilic bacteria is presented. The biosynthetic and regulatory mechanisms underlying the observed changes are discussed. Possible implications for the evolution of extreme halophiles and other Archaebacteria are also discussed.  相似文献   

20.
We report mapping of active replication origins in thaum‐ and euryarchaeal replicons using high‐throughput sequencing‐based marker frequency analysis. The chromosome of the thaumarchaeon Nitrosopumilus maritimus is shown to contain a single origin of replication, whereas the main chromosome in the halophilic euryarchaea Haloferax mediterranei and Haloferax volcanii each contains two origins. All replication origins specified bidirectional replication, and the two origins in the halophiles were initiated in synchrony. The pHM500 plasmid of H. mediterranei is shown to contain a single origin, and the copy numbers of five plasmid replicons in the two halophiles were inferred to be close to that of the main chromosome. Origin recognition boxes (ORBs) that provide binding sites for Orc1/Cdc6 replication initiator proteins are identified at all chromosomal origins, as well as in a range of additional thaumarchaeal species. An annotation update is provided for all three species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号