首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of mono- and divalent metal ions on the DNA gyrase B subunit, on its 43 kDa and 47 kDa domains, and on two mutants in the Toprim domain (D498A and D500C) were investigated by means of circular dichroism and protein melting experiments. Both types of metal ion, with the notable exception of Mn2+, did not affect the conformational properties of the enzyme subunit at room temperature, but were able to produce selective and differential effects on protein stability. In particular, monovalent (K+) ions increased the stability of the gyrase B structure, whereas destabilising effects were most prominent using Mn2+ as the metal ion. Ca2+ and Mg2+ produced comparable changes in the gyrase B melting profile. Additionally, we found that monovalent (K+) ions were more effective in the 43 kDa N-terminal domain where ATP binding occurs, whereas divalent ions caused large modifications in the conformational stability of the 47 kDa C-terminal domain. Our results on gyrase B mutants indicate that D498 interacts with Mn2+, whereas it has little effect on the binding of the other ions tested. A D500C mutation, in contrast, effectively impairs Mg2+ affinity, suggesting effective contacts between this ion and D500 in the wild-type enzyme. Hence, the sites of metal ion complexation within the Toprim domain are modulated by the nature of the ion species. These results suggest a double role played by metal ions in the catalytic steps involving DNA gyrase B. One has to do with direct involvement of cations complexed to the Toprim domain in the DNA cutting-rejoining process, the other, until now overlooked, is connected to the dramatic changes in protein flexibility produced by ion binding, which reduces the energy required for the huge conformational changes essential for the catalytic cycle to occur.  相似文献   

2.
Thermodynamics of binding of divalent metal ions including Ca(2+) , Mg(2+) , Ba(2+) , and Cd(2+) to Ca-free horseradish peroxidase (HRP) enzyme was investigated using UV/VIS spectrophotometry and molecular-mechanic (MM) calculations. According to the obtained binding and thermodynamic parameters, trend of the relative binding affinities of these divalent metal cations was found to be: Ca(2+) >Cd(2+) >Mg(2+) >Ba(2+) . Binding analysis based on Scatchard and Hill models showed positive cooperativity effect between the two distal and proximal binding sites. Furthermore, kinetics of binding and reconstitution process was examined (using relaxation-time method) for binding of Ca(2+) (as the typical metal ion) to Ca-free HRP, which was found a second-order type having a two-step mechanism involving fast formation of Ca-free HRP/1?Ca(2+) as the kinetic intermediate in step 1. Finally, by means of MM calculations, the comparative stability energies were evaluated for binding of M(2+) metal cations to Ca-free HRP. Based on MM calculations, preferential binding of Ca(2+) ion was occurred on distal and proximal binding sites of Ca-free HRP associated with higher stability energies (E(total) ). Indeed, among the divalent metal ions, Ca(2+) with the highest binding affinity (maximum value of K(bin) and minimum value of ΔG$\rm{{_{bin}^{0}}}$), maximum value of exothermic binding enthalpy, and stability energies stabilizes the HRP structure along with an optimized catalytic activity.  相似文献   

3.
Mn(II) EPR binding studies with reduced acyl-carrier protein (ACP-SH) strongly suggest the presence of two relatively high-affinity manganese-binding sites (average Kd/site approximately 80 microM) at physiological pH. Lowering the pH or titrating with sodium chloride reduces the average number of bound divalent cations and decreases the binding affinity. This is consistent with the idea that anionic ligand(s), e.g. the carboxylate of glutamic or aspartic acid, on the protein are involved in manganese ion coordination. At pH values above 8.0, binding affinity is also reduced, whereas the average number of bound metal ions increases to about five at pH 8.5. By interacting weakly with divalent cations (average Kd/site approximately 1 mM), octanoyl acyl-carrier protein (OcoACP) exhibits dramatically different metal-ion-binding properties compared to ACP-SH. Calcium and magnesium can compete in either ACP species for manganese binding. Photochemically-induced dynamic nuclear polarisation 1H-NMR experiments strongly suggest that ACP-SH and OcoACP undergo at pH-induced conformational change between pH 5.5 and pH 7.0, and that divalent cations stabilize the protein against such pH-induced structural perturbations.  相似文献   

4.
The effects of the divalent alkaline-earth metal ions (Ca2+ and Mg2+) on the substrate binding affinity, spin-state transition at the heme active site, conformational properties as well as the stability of the active form of cytochrome P450cam (CYP 101) have been investigated using various spectroscopic and kinetic methods. The divalent cations were found to have two types of effects on the enzyme. At the initial stage the alkaline-earth metal ion facilitated enhanced binding of the substrate and formation of the high-spin form of the heme active center of the enzyme compared to that in absence of any metal ion. However, analogous to many other mono-valent metal ions, the alkaline-earth metal ions were also less efficient than K+ in promoting the substrate binding and spin-transition properties of the enzyme. The auxiliary metal ions were shown to cause small but distinct change in the circular dichroism spectra of the substrate-free enzyme in the visible region, indicating that the tertiary structure around the heme was perturbed on binding of the auxiliary metal ion to the enzyme. The effect of the auxiliary metal ion was found to be more prominent in the WT enzyme compared to the Y96F mutant of P450cam suggesting that the Tyr 96 residue plays an important role in mediating the effects of the auxiliary metal ions to the active site of the enzyme. At the second stage of interaction, the alkaline-earth metal ions were found to slowly convert the enzyme into an inactive P420 form, which could be reversibly re-activated by addition of KCl. The results have been discussed in the light of understanding the mechanism of inactivation of certain mammalian P450 enzymes by these alkaline-earth metal ions.  相似文献   

5.
Batey RT  Doudna JA 《Biochemistry》2002,41(39):11703-11710
The signal recognition particle (SRP) targets proteins to the endoplasmic reticulum in eukaryotes or to the inner membrane in prokaryotes by binding to hydrophobic signal sequences. Signal peptide recognition occurs within the highly conserved RNA-protein core of the SRP, underscoring the importance of this complex in SRP function. Structural analysis of the RNA and protein components of the prokaryotic SRP in the free and bound states revealed that the RNA undergoes a significant conformational change upon protein binding involving the uptake of several monovalent and divalent cations. To investigate the role of these metal ions in formation of the functional SRP complex, we used binding affinity assays and X-ray crystallography to analyze the specificity and energetic contributions of mono- and divalent metal ions bound in the RNA. Our results demonstrate that several metal ion binding sites important for RNA conformation can accommodate chemically distinct ions, often without affecting the structure of the complex. Thus, while these metal ions are highly ordered and essential for the formation and stability of the SRP complex, they behave like nonspecific metal ions.  相似文献   

6.
Danel F  Paetzel M  Strynadka NC  Page MG 《Biochemistry》2001,40(31):9412-9420
The factors influencing the oligomerization state of OXA-10 and OXA-14 class D beta-lactamases in solution have been investigated. Both enzymes were found to exist as an equilibrium mixture of a monomer and dimer, with a K(d) close to 40 microM. The dimeric form was stabilized by divalent metal cations. The ability of different metal ions to stabilize the dimer was in the following order: Cd(2+) > Cu(2+) > Zn(2+) > Co(2+) > Ni(2+) > Mn(2+) > Ca(2+) > Mg(2+). The apparent K(d)s describing the binding of Zn(2+) and Cd(2+) cations to the OXA-10 dimer were 7.8 and 5.7 microM, respectively. The metal ions had a profound effect on the thermal stability of the protein complex observed by differential scanning calorimetry. The enzyme showed a sharp transition with a T(m) of 58.7 degrees C in the absence of divalent cations, and an equally sharp transition with a T(m) of 78.4 degrees C in the presence of a saturating concentration of the divalent cation. The thermal transition observed at intermediate concentrations of divalent metal ions was rather broad and lies between these two extremes of temperature. The equilibrium between the monomer and dimer is dependent on pH, and the optimum for the formation of the dimer shifted from pH 6.0 in the absence of divalent cations to pH 7.5 at saturating concentrations. The beta-lactamase activity increased approximately 2-fold in the presence of saturating concentrations of zinc and cadmium ions. Reaction with beta-lactams caused a shift in the equilibrium toward monomer formation, and thus an apparent inactivation, but the divalent cations protected against this effect.  相似文献   

7.
8.
Summary The divalent metal ion binding site and binding constant of ribonuclease HI fromEscherichia coli were investigated by observing chemical shift changes using1H–15N heteronuclear NMR. Chemical shift changes were monitored during the titration of the enzyme with salts of the divalent cations. The enzyme was uniformly labeled by15N, which facilitated the monitoring of the chemical shift change of each cross peak between the backbone amide proton and the amide15N. The chemical shifts of several amide groups were affected upon the addition of a divalent metal ion: Mg2+, Ca2+, or Ba2+. These amide groups resided close to the active site, consistent with the previous X-ray crystallographic studies. From the titration analysis, a single divalent ion binding site was observed with a weak binding constant (KD=2–4 mM for the current divalent ions).  相似文献   

9.
The plant metallothionein 2 from Cicer arietinum (chickpea; cicMT2) is a typical member of this subfamily and features two cysteine-rich regions containing eight and six cysteine residues, respectively, separated by a linker region 41 amino acids in length. This metallothionein thus differs significantly from the well-studied vertebrate forms. A synthetic gene encoding cicMT2 was designed, cloned into a suitable vector, and the protein was over-expressed in Escherichia coli. For the first time, an in-depth spectroscopic characterization of cicMT2 in the presence of divalent metal ions is performed showing a binding capacity for five Zn(II), Cd(II), or Co(II) ions and the typical features of metal-thiolate clusters. Based on proteolytic digestion experiments, the cluster arrangement formed by the divalent metal ions and the cysteine thiolate groups connects the amino-terminal with the carboxy-terminal cysteine-rich region. The cluster formation process, put into effect with the addition of the fourth metal ion to the apo protein, was investigated using the characteristic shift of absorption bands observed in the UV/Vis spectra upon titration with Co(II). The pH-dependent Zn(II)- and Cd(II)-thiolate cluster stability is one of the highest observed for plant MTs so far, but lower than that usually found in vertebrate metallothioneins. The dependence of the pH stability on the ionic strength of the solution is more pronounced for the Cd(II)- than for the Zn(II)-form of the protein.  相似文献   

10.
The alpha1beta1 integrin is a major cell surface receptor for collagen. Ligand binding is mediated, in part, through a 200 amino acid inserted 'I'-domain contained in the extracellular part of the integrin alpha chain. Integrin I-domains contain a divalent cation binding (MIDAS) site and require cations to interact with integrin ligands. We have determined the crystal structure of recombinant I-domain from the rat alpha1beta1 integrin at 2.2 A resolution in the absence of divalent cations. The alpha1 I-domain adopts the dinucleotide binding fold that is characteristic of all I-domain structures that have been solved to date and has a structure very similar to that of the closely related alpha2beta1 I-domain which also mediates collagen binding. A unique feature of the alpha1 I-domain crystal structure is that the MIDAS site is occupied by an arginine side chain from another I-domain molecule in the crystal, in place of a metal ion. This interaction supports a proposed model for ligand-induced displacement of metal ions. Circular dichroism spectra determined in the presence of Ca2+, Mg2+ and Mn2+ indicate that no changes in the structure of the I-domain occur upon metal ion binding in solution. Metal ion binding induces small changes in UV absorption spectra, indicating a change in the polarity of the MIDAS site environment.  相似文献   

11.
The influence of Ca2+, Mg2+, Mn2+, Sr2+, La3+, Nd3+, Sm3+, Eu3+, and Gd3+ ions on the binding of labeled, stable enkephalin analogue, [3H-Tyr1, D-Ala2, D-Leu5]enkephalin, to opiate receptors of the rat brain membrane preparations has been investigated. The formation of the complex can be described by a scheme involving at least two independent binding sites. The high affinity site does not discriminate the divalent and trivalent metal ions: all examined cations enhanced the enkephalin affinity for this site. The ligand binding to the low affinity site is potentiated only by Mn2+, Mg2+, and lathanoides. The maximal concentration of the binding sites of the above two types is not affected by the cations. The increase in the ionic strength of the solution entails a decrease in the affinity of the ligand for the high affinity binding site. It is shown that the effect of both di- and trivalent metal cations on the [3H-Tyr1, D-Ala2, D-Leu3] enkephalin binding is mediated through one cation attachment site on the respective enkephalin receptor.  相似文献   

12.
Ion dependence of the discoidin I lectin from Dictyostelium discoideum   总被引:1,自引:0,他引:1  
The lectin discoidin I from Dictyostelium discoideum requires divalent cations for binding activity. The data indicate that calcium is the preferred ion in vitro. In contrast, the lectin activity of discoidin II is independent of divalent ions.  相似文献   

13.
Ion dependence of the discoidin I lectin from Dictyostelium discoideum   总被引:1,自引:0,他引:1  
Abstract. The lectin discoidin I from Dictyostelium discoideum requires divalent cations for binding activity. The data indicate that calcium is the preferred ion in vitro. In contrast, the lectin activity of discoidin II is independent of divalent ions.  相似文献   

14.
The effect of divalent cations on the self-association of high molecular weight subfragment-2 (long S-2) and low molecular weight subfragment-2 (short S-2) of rabbit skeletal muscle myosin has been investigated. In the presence of millimolar concentrations of Ca2+ or Mg2+ long S-2 associates at neutral pH to form ordered, high molecular weight aggregates whereas short S-2 does not associate. The association process is co-operative and results from binding two to four divalent cations within the light meromyosin-heavy meromyosin (LMM-HMM) hinge region of long S-2. Optical diffraction of electron micrographs of the long S-2 aggregates revealed several periodicities including reflections near 143 A. High molecular weight HMM showed a similar divalent metal induced self-association. Chymotryptic digestion studies of rod filaments reveal that cleavage within the LMM-HMM hinge is also strongly dependent on the presence of divalent cations. At pH 8, in the absence of divalent cations, the S-2 region appears to be displaced away from the filament backbone resulting in rapid proteolysis in the hinge domain. At high cation concentrations (greater than 10 mM) proteolytic cleavage is suppressed. A similar depression of the (substantially lower) hinge cleavage rate was also observed at neutral pH following addition of these divalent metal ions. Results suggest that binding of Mg2+ within the hinge domain under physiological conditions may act to lock the cross-bridge onto the thick filament surface in its resting-state orientation.  相似文献   

15.
The binding of divalent cations and nucleotide to bovine brain glutamine synthetase and their effects on the activity of the enzyme were investigated. In ADP-supported gamma-glutamyl transfer at pH 7.2, kinetic analyses of saturation functions gave [S]0.5 values of approximately 1 microM for Mn2+, approximately 2 mM for Mg2+, 19 nM for ADP.Mn, and 7.2 microM for ADP.Mg. The method of continuous variation applied to the Mn2+-supported reaction indicated that all subunits of the purified enzyme express activity when 1.0 equiv of ADP is bound per subunit. Measurements of equilibrium binding of Mn2+ to the enzyme in the absence and presence of ADP were consistent with each subunit binding free Mn2+ (KA approximately equal to 1.5 X 10(5) M-1) before binding the Mn.ADP complex (KA' approximately equal to 1.1 X 10(6) M-1). The binding of the first Mn2+ or Mg2+ to each subunit produces structural perturbations in the octameric enzyme, as evidenced by UV spectral and tryptophanyl residue fluorescence changes. The enzyme, therefore, has one structural site per subunit for Mn2+ or Mg2+ and a second site per subunit for the metal ion-nucleotide complex, both of which must be filled for activity expression. Chloride binding (KA' approximately equal to 10(4) M-1) to the enzyme was found to have a specific effect on the protein conformation, producing a substantial (30%) quench of tryptophanyl fluorescence and increasing the affinity of the enzyme 2-4-fold for Mg2+ or Mn2+. Arsenate, which activates the gamma-glutamyl transfer activity by binding to an allosteric site, and L-glutamate also cause conformational changes similar to those produced by Cl- binding. Anion binding to allosteric sites and divalent metal ion binding at active sites both produce tryptophanyl residue exposure and tyrosyl residue burial without changing the quaternary enzyme structure.  相似文献   

16.
Divalent cations can provide an effective means of modulating the behavior of nucleic acid binding proteins. As a result, there is strong interest in understanding the role of metal ions in the function of both nucleic acid binding proteins and their enzymes. We have applied complementary fluorescence spectroscopic and nitrocellulose filter binding assays to quantitate the role of metal ions in mediating DNA binding and sequence specificity by the representative PvuII endonuclease. At pH 7.5 in the presence of the catalytically nonsupportive Ca(II), this enzyme binds the PvuII target sequence with a K(d) of 50 pM. Under strict metal-free conditions, the enzyme exhibits a K(d) of only 300 nM for the cognate sequence, an affinity which is weak relative to those measured for other systems in the absence of metal ions. This represents a 6000-fold increase in PvuII affinity for cognate DNA upon the addition of Ca(II). The pH dependences of both metal ion-dependent and metal ion-independent DNA binding are remarkably shallow throughout the physiological range; other characterized restriction enzymes exhibit more pronounced pH dependences of DNA binding even in the absence of metal ions. Similar measurements with noncognate sequences indicate that divalent metal ions are not important to nonspecific DNA binding; K(d) values are approximately equal to 200 nM throughout the physiological pH range, a behavior shared with other endonucleases. While some of these results extend somewhat the range of expected behavior for restriction enzymes, these results indicate that PvuII endonuclease shares with other characterized systems a mechanism by which cognate affinity and sequence discrimination are most effectively achieved in the presence of divalent metal ions.  相似文献   

17.
Circular dichroism spectroscopy, absorption spectroscopy, measurements of Tm values, sedimentation analysis and electron microscopy were used to study properties of calf thymus DNA in methanol-water mixtures as a function of monovalent cation (Na+ or Cs+) concentration and also in the presence of divalent cations Ca2+, Mg2+, and Mn2+. In the absence of divalent cations only slight conformational changes occurred and no condensation and/or aggregation could be detected. The Tm values depend on the amount of methanol and on the nature and concentration of cations. In methanol-water mixtures higher thermal stability was observed in solutions containing Cs+ ions. Up to 40% (v/v) methanol the addition of divalent ions leads to DNA stabilization. At methanol concentration higher than 50% the presence of divalent cations causes DNA condensation and denaturation even at room temperature. The denaturation is reversible with respect to EDTA addition indicating that no separation of complementary strands occurred and the resulting form of DNA is probably similar to the P form. DNA destacking appears to be a direct consequence of stronger cation binding by the condensed DNA in methanol-water mixtures.  相似文献   

18.
Hosoi  T; Imai  Y; Irimura  T 《Glycobiology》1998,8(8):791-798
Mouse macrophage galactose/N-acetylgalactosamine-specific C-type lectin (MMGL) is a type II transmembrane glycoprotein belonging to the C-type lectin family. Our development of monoclonal antibodies led us to discover that a calcium-dependent conformational change is detected by an antibody (termed mAb LOM-11) and that the antibody's binding to the respective site locks the lectin in an active conformation. These findings correspond to the divalent cation-mediated regulatory mechanisms in a family of cell adhesion molecule integrins that have gained much attention. We now provide direct evidence that mAb LOM-11 increases the affinity of the lectin for calcium ions as a mechanism for the conformational lock using a soluble recombinant form of MMGL (rML) produced in bacteria. Furthermore, we discovered by using an enzyme-linked immunosorbent assay that specific monosaccharides induced a binding site for mAb LOM-11 on the immobilized rML under low calcium environments. We also demonstrated that cell surface MMGL on a transfectant cell line underwent a conformational change upon addition of calcium or ligands, as detected by the binding of mAb LOM-11. These properties are reminiscent of ligand-induced binding sites defined for integrins. The present results suggest a possibility that the mAb LOM- 11 binding site on the lectin may be a site at which protein-protein interaction helps to fine tune the specificity of the C-type lectins by means of coordinated recognition mechanisms.   相似文献   

19.
Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg(2+), Mn(2+), Ca(2+), Sr(2+) and Ba(2+), while it is changed compared to the Mg(2+)-induced conformation in the presence of other divalent metal ions, Cd(2+) for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb(2+), while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb(2+) cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin-loop substrate and yeast tRNA(Phe). We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn(2+) is generally among the strongest RNA binders.  相似文献   

20.
Free ion concentration of some divalent heavy metal ions such as Mn2+, Co2+, Ni2+, Cd2+ and Zn2+ in the synaptosomal suspension was measured to determine binding with synaptosomes isolated from rat brain cortex. A dual wavelength spectrophotometer was utilized to monitor the absorbance changes of murexide raised by stepwise addition of these ions (as chloride salts). Such titration experiments of the synaptosomal suspension revealed that a part of the added divalent cation such as Mn2+, Co2+ or Ni2+ was almost instantaneously bound to synaptosomes in isotonic NaCl media. Our previous study (Kamino, Uyesaka & Inouye, J. Membrane Biol. 17:13, 1974) demonstrated that raised external K+ resulted in a specific noncompetitive inhibition of synaptosomal Ca-binding. Just like the Ca-binding, Mn-, Co- or Ni-binding was almost completely depressed by high external K+ or ruthenium red when the free concentration of the cations was 10 mum or less, while at higher concentrations the binding was not affected. The present results indicate that tested divalent cations bind with both "Ca-binding sites" and "non-Ca-binding sites" of synaptosomal membrane, the nature of the binding sites of both being quite different: the former is sensitive to high external K+ and to ruthenium red but the latter is not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号