首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess the hypothesis that gap junctions (GJs) participate on leukocyte-endothelium interactions in the inflammatory response, we compared leukocyte adhesion and transmigration elicited by cytokine stimulation in the presence or absence of GJ blockers in the hamster cheek pouch and also in the cremaster muscle of wild-type (WT) and endothelium-specific connexin 43 (Cx43) null mice (Cx43e(-/-)). In the cheek pouch, topical tumor necrosis factor-alpha (TNF-alpha; 150 ng/ml, 15 min) caused a sustained increment in the number of leukocytes adhered to venular endothelium (LAV) and located at perivenular regions (LPV). Superfusion with the GJ blockers 18-alpha-glycyrrhetinic acid (AGA; 75 microM) or 18-beta-glycyrrhetinic acid (50 microM) abolished the TNF-alpha-induced increase in LAV and LPV; carbenoxolone (75 microM) or oleamide (100 microM) reduced LAV by 50 and 75%, respectively, and LPV to a lesser extent. None of these GJ blockers modified venular diameter, blood flow, or leukocyte rolling. In contrast, glycyrrhizin (75 microM), a non-GJ blocker analog of AGA, was devoid of effect. Interestingly, when AGA was removed 90 min after TNF-alpha stimulation, LAV started to rise at a similar rate as in control. Conversely, application of AGA 90 min after TNF-alpha reduced the number of previously adhered cells. In WT mice, intrascrotal injection of TNF-alpha (0.5 microg/0.3 ml) increased LAV (fourfold) and LPV (threefold) compared with saline-injected controls. In contrast to the observations in WT animals, TNF-alpha stimulation did not increase LAV or LPV in Cx43e(-/-) mice. These results demonstrate an important role for GJ communication in leukocyte adhesion and transmigration during acute inflammation in vivo and further suggest that endothelial Cx43 is key in these processes.  相似文献   

2.
Systemic hypoxia, produced by lowering inspired Po2, induces a rapid inflammation in several microcirculations, including cremaster muscle. Mast cell activation is a necessary element of this response. Selective reduction of cremaster microvascular Po2 (PmO2) with normal systemic arterial Po2 (PaO2; cremaster hypoxia/systemic normoxia), however, does not elicit increased leukocyte-endothelial adherence (LEA) in cremaster venules. This could be due to a short time of leukocyte exposure to the hypoxic cremaster environment. Conversely, LEA increases when PaO2 is lowered, while cremaster PmO2 remains high (cremaster normoxia/systemic hypoxia). An alternative explanation of these results is that a mediator released from a central site during systemic hypoxia initiates the inflammatory cascade. We hypothesized that if this is the case, cremaster mast cells would be activated during cremaster normoxia/systemic hypoxia, but not during cremaster hypoxia/systemic normoxia. The microcirculation of rat cremaster muscles was visualized by using intravital microscopy. Cremaster PmO2 was measured with a phosphorescence quenching method. Cremaster hypoxia/systemic normoxia (PmO2 7 +/- 1 Torr, PaO2 87 +/- 2 Torr) did not increase LEA; however, topical application of the mast cell activator compound 48/80 under these conditions did increase LEA. The effect of compound 48/80 on LEA was blocked by topical cromolyn, a mast cell stabilizer. LEA increased during cremaster normoxia/systemic hypoxia, (PmO2 64 +/- 5 Torr, PaO2 33 +/- 2 Torr); this increase was blocked by topical cromolyn. The results suggest that mast cell stimulation occurs only when PaO2 is reduced, independent of cremaster PmO2, and support the idea of a mediator that is released during systemic hypoxia and initiates the inflammatory cascade.  相似文献   

3.
Although L-selectin mediates lymphocyte attachment to endothelial venules of peripheral lymph nodes, its role in leukocyte recruitment into tissues following Ag challenge is less well established. The objective of this study was to systematically examine the role of L-selectin in leukocyte rolling in the peripheral microvasculature during the first 24 h of an immune response. A type I hypersensitivity response was elicited in wild-type (C57BL/6) and L-selectin-deficient mice by systemic (i.p.) sensitization and intrascrotal challenge with chicken egg OVA. The cremaster microcirculation was observed in untreated and sensitized mice 4, 8, and 24 h post-Ag challenge by intravital microscopy. Leukocyte recruitment in L-selectin-deficient mice and wild-type mice treated with an L-selectin function-blocking mAb was examined at each time point. Ag challenge induced a significant increase in leukocyte rolling (60 cells/min/venule to approximately 300 cells/min/venule) in wild-type mice at 4-24 h. This response was reduced by approximately 60-70% in L-selectin-deficient mice and in wild-type mice treated with an L-selectin-blocking mAb. P-selectin blockade by Ab completely inhibited leukocyte rolling at 4-24 h in wild-type animals and also blocked the residual rolling seen in L-selectin-deficient mice. Blocking E-selectin function had no effect on leukocyte rolling flux at any time point in wild-type or L-selectin-deficient mice. Despite reduced rolling, leukocyte adhesion and emigration were not measurably reduced in the L-selectin-deficient mice in this vascular bed. In conclusion, leukocyte rolling is L-selectin-dependent post-Ag challenge with L-selectin and P-selectin sharing overlapping functions.  相似文献   

4.
The endothelial glycocalyx is a gel-like layer which covers the luminal side of blood vessels. The glomerular endothelial cell (GEnC) glycocalyx is composed of proteoglycan core proteins, glycosaminoglycan (GAG) chains, and sialoglycoproteins and has been shown to contribute to the selective sieving action of the glomerular capillary wall. Damage to the systemic endothelial glycocalyx has recently been associated with the onset of albuminuria in diabetics. In this study, we analyze the effects of high glucose on the biochemical structure of the GEnC glycocalyx and quantify functional changes in its protein-restrictive action. We used conditionally immortalized human GEnC. Proteoglycans were analyzed by Western blotting and indirect immunofluorescence. Biosynthesis of GAG was analyzed by radiolabeling and quantified by anion exchange chromatography. FITC-albumin was used to analyze macromolecular passage across GEnC monolayers using an established in vitro model. We observed a marked reduction in the biosynthesis of GAG by the GEnC under high-glucose conditions. Further analysis confirmed specific reduction in heparan sulfate GAG. Expression of proteoglycan core proteins remained unchanged. There was also a significant increase in the passage of albumin across GEnC monolayers under high-glucose conditions without affecting interendothelial junctions. These results reproduce changes in GEnC barrier properties caused by enzymatic removal of heparan sulfate from the GEnC glycocalyx. They provide direct evidence of high glucose-induced alterations in the GEnC glycocalyx and demonstrate changes to its function as a protein-restrictive layer, thus implicating glycocalyx damage in the pathogenesis of proteinuria in diabetes.  相似文献   

5.
We previously reported that a 0.4- to 0.5-microm-thick endothelial surface layer confines Dextran 70 (70 kDa) to the central core of hamster cremaster muscle capillaries. In the present study we used a variety of plasma tracers to probe the barrier properties of the endothelial surface layer using combined fluorescence and brightfield intravital microscopy. No permeation of the endothelial surface layer was observed for either neutral or anionic dextrans >/=70 kDa, but a neutral Dextran 40 (40 kDa) and neutral free dye (rhodamine, 0.4 kDa) equilibrated with the endothelial surface layer within 1 min. In contrast, small anionic tracers of similar size (0. 4-40 kDa) permeated the endothelial surface layer relatively slowly with half-times (tau(50)) between 11 and 60 min, depending on tracer size. Furthermore, two plasma proteins, fibrinogen (340 kDa) and albumin (67 kDa), moved slowly into the endothelial surface layer at the same rates, despite greatly differing sizes (tau(50) approximately 40 min). Dextran 70, which did not enter the glycocalyx over the course of these experiments, entered at the same rate as free albumin when it was conjugated to albumin. These findings demonstrate that for anionic molecules size and charge have a profound effect on the penetration rate into the glycocalyx. The equal rates of penetration of the glycocalyx demonstrated by the different protein molecules suggests that multiple factors may influence the penetration of the barrier, including molecular size, charge, and structure.  相似文献   

6.
The observation that leukocyte-endothelial cell (EC) interactions are localized to specific regions on the microvessel wall suggests that adhesion molecule distribution is not uniform. We investigated ICAM-1 distribution and leukocyte-EC interactions in blood-perfused microvessels (<80 mum) in cremaster muscle of anesthetized mice, using intravital confocal microscopy and immunofluorescent labeling. Variability of ICAM-1 expression directly determines leukocyte adhesion distribution within the venular microcirculation and contributes to leukocyte rolling in arterioles during inflammation. The number of rolling interactions increased with ICAM-1 intensity (r(2) = 0.69, P < 0.05), and rolling velocity was lower in regions of higher ICAM-1 intensity. In controls, venular ICAM-1 expression was approximately twofold higher than in arterioles. After TNF-alpha treatment, ICAM-1 expression was significantly increased, 2.8 +/- 0.2-fold in arterioles and 1.7 +/- 0.2-fold in venules (P < 0.05). ICAM-1 expression on activated arteriolar ECs only reached the level of control venular ICAM-1. Arteriolar but not venular ECs underwent redistribution of ICAM-1 among cells; some cells increased and some decreased ICAM-1 expression, magnifying the variability of ICAM-1. TNF-alpha treatment increased the length of bright fluorescent regions per unit vessel length (42%, control; 70%, TNF-alpha) along the arteriolar wall, whereas no significant change was observed in venules (60%, control; 63%, TNF-alpha). The spatial distribution and expression levels of adhesion molecules in the microcirculation determine the timing and placement of leukocyte interactions and hence significantly impact the inflammatory response. That arteriolar ECs respond to TNF-alpha by upregulation of ICAM-1, although in a different way compared with venules, suggests an explicit role for arterioles in inflammatory responses.  相似文献   

7.
Stromal cell-derived factor-1 (SDF-1; CXCL12), a CXC chemokine, has been found to be involved in inflammation models in vivo and in cell adhesion, migration, and chemotaxis in vitro. This study aimed to determine whether exogenous SDF-1 induces leukocyte recruitment in mice. After systemic administration of SDF-1alpha, expression of the adhesion molecules P-selectin and VCAM-1 in mice was measured using a quantitative dual-radiolabeled Ab assay and leukocyte recruitment in various tissues was evaluated using intravital microscopy. The effect of local SDF-1alpha on leukocyte recruitment was also determined in cremaster muscle and compared with the effect of the cytokine TNFalpha and the CXC chemokine keratinocyte-derived chemokine (KC; CXCL1). Systemic administration of SDF-1alpha (10 microg, 4-5 h) induced upregulation of P-selectin, but not VCAM-1, in most tissues in mice. It caused modest leukocyte recruitment responses in microvasculature of cremaster muscle, intestine, and brain, i.e., an increase in flux of rolling leukocytes in cremaster muscle and intestines, leukocyte adhesion in all three tissues, and emigration in cremaster muscle. Local treatment with SDF-1alpha (1 microg, 4-5 h) reduced leukocyte rolling velocity and increased leukocyte adhesion and emigration in cremasteric venules, but the responses were much less profound than those elicited by KC or TNFalpha. SDF-1alpha-induced recruitment was dependent on endothelial P-selectin, but not P-selectin on platelets. We conclude that the exogenous SDF-1alpha enhances leukocyte-endothelial cell interactions and induces modest and endothelial P-selectin-dependent leukocyte recruitment.  相似文献   

8.
In contrast to acute preparations such as the exteriorized mesentery or the cremaster muscle, chronically instrumented chamber models allow one to study the microcirculation under "physiological" conditions, i.e., in the absence of trauma-induced leukocyte rolling along the venular endothelium. To underscore the importance of studying the naive microcirculation, we implanted titanium dorsal skinfold chambers in hamsters and used intravital fluorescence microscopy to study venular leukocyte rolling in response to ischemia-reperfusion injury or extracorporeal blood circulation. The experiments were performed in chambers that fulfilled all well-established criteria for a physiological microcirculation as well as in chambers that showed various extents of leukocyte rolling due to trauma, hemorrhage, or inflammation. In ideal chambers with a physiological microcirculation (<30 rolling leukocytes/mm vessel circumference in 30 s), ischemia-reperfusion injury and extracorporeal blood circulation significantly stimulated leukocyte rolling along the venular endothelium and, subsequently, firm leukocyte adhesion. In contrast, both stimuli failed to elicit leukocyte rolling in borderline chambers (30-100 leukocytes/mm), and in blatantly inflamed chambers with yet higher numbers of rolling leukocytes at baseline (>100 leukocytes/mm), we observed a paradoxical reduction of leukocyte rolling after ischemia-reperfusion injury or extracorporeal blood circulation. A similar effect was observed when we superfused leukotriene B4 (LTB4) onto the chamber tissue. The initial increase in leukocyte rolling in response to an LTB4 challenge was reversed by a second superfusion 90 min later. These observations underscore 1) the benefit of studying leukocyte-endothelial cell interaction in chronically instrumented chamber models and 2) the necessity to strictly adhere to well-established criteria of a physiological microcirculation.  相似文献   

9.
The physiology of leukocyte recruitment: an in vivo perspective   总被引:2,自引:0,他引:2  
The mechanisms of leukocyte recruitment have been studied extensively in vitro and have shed light on the basic molecular structure-function relationship of adhesion and signaling molecules involved in this essential immune response. This review will summarize how these in vitro observations extend to leukocyte behavior in inflamed blood vessels in the microcirculation. We highlight physiological results that might not have been predicted from in vitro systems. Special attention is placed on the physiology of rolling, adhesion, and intralumenal crawling in blood vessels. The importance of the glycocalyx, secondary tethers, shear, and the microenvironment are discussed. Docking structures forming rings of adhesion molecules together with a novel endothelial dome-like structure in vivo during transmigration are highlighted. Transcellular and paracellular emigration out of inflamed blood vessels is also discussed. The last section highlights leukocyte recruitment in some organs that do not always follow the accepted paradigm of leukocyte recruitment.  相似文献   

10.
《Biophysical journal》2020,118(7):1564-1575
The endothelial glycocalyx layer (EGL), which consists of long proteoglycans protruding from the endothelium, acts as a regulator of inflammation by preventing leukocyte engagement with adhesion molecules on the endothelial surface. The amount of resistance to adhesive events the EGL provides is the result of two properties: EGL thickness and stiffness. To determine these, we used an atomic force microscope to indent the surfaces of cultured endothelial cells with a glass bead and evaluated two different approaches for interpreting the resulting force-indentation curves. In one, we treat the EGL as a molecular brush, and in the other, we treat it as a thin elastic layer on an elastic half-space. The latter approach proved more robust in our hands and yielded a thickness of 110 nm and a modulus of 0.025 kPa. Neither value showed significant dependence on indentation rate. The brush model indicated a larger layer thickness (∼350 nm) but tended to result in larger uncertainties in the fitted parameters. The modulus of the endothelial cell was determined to be 3.0–6.5 kPa (1.5–2.5 kPa for the brush model), with a significant increase in modulus with increasing indentation rates. For forces and leukocyte properties in the physiological range, a model of a leukocyte interacting with the endothelium predicts that the number of molecules within bonding range should decrease by an order of magnitude because of the presence of a 110-nm-thick layer and even further for a glycocalyx with larger thickness. Consistent with these predictions, neutrophil adhesion increased for endothelial cells with reduced EGL thickness because they were grown in the absence of fluid shear stress. These studies establish a framework for understanding how glycocalyx layers with different thickness and stiffness limit adhesive events under homeostatic conditions and how glycocalyx damage or removal will increase leukocyte adhesion potential during inflammation.  相似文献   

11.
Changes in endothelial glycocalyx are one of the earliest changes in development of cardiovascular disease. The endothelial glycocalyx is both an important biological modifier of interactions between flowing blood and the vessel wall, and a determinant of organ perfusion. We hypothesize that deeper penetration of erythrocytes into the glycocalyx is associated with reduced microvascular perfusion. The population-based prospective cohort study (the Netherlands Epidemiology of Obesity [NEO] study) includes 6,673 middle-aged individuals (oversampling of overweight and obese individuals). Within this cohort, we have imaged the sublingual microvasculature of 915 participants using sidestream darkfield (SDF) imaging together with a recently developed automated acquisition and analysis approach. Presence of RBC (as a marker of microvascular perfusion) and perfused boundary region (PBR), a marker for endothelial glycocalyx barrier properties for RBC accessibility, were assessed in vessels between 5 and 25 µm RBC column width. A wide range of variability in PBR measurements, with a mean PBR of 2.14 µm (range: 1.43–2.86 µm), was observed. Linear regression analysis showed a marked association between PBR and microvascular perfusion, reflected by RBC filling percentage (regression coefficient β: −0.034; 95% confidence interval: −0.037 to −0.031). We conclude that microvascular beds with a thick (“healthy”) glycocalyx (low PBR), reflects efficient perfusion of the microvascular bed. In contrast, a thin (“risk”) glycocalyx (high PBR) is associated with a less efficient and defective microvascular perfusion.  相似文献   

12.
L-selectin is a calcium-dependent lectin on leukocytes mediating leukocyte rolling in high endothelial venules and inflamed microvessels. Many selectin ligands require modification of glycoproteins by leukocyte core2 beta1,6-N-acetylglucosaminyltransferase (Core2GlcNAcT-I). To test the role of Core2GlcNAcT-I for L-selectin ligand biosynthesis, we investigated leukocyte rolling in venules of untreated and TNF-alpha-treated cremaster muscles and in Peyer's patch high endothelial venules (HEV) of Core2GlcNAcT-I null (core2(-/-)) mice. In the presence of blocking mAbs against P- and E-selectin, L-selectin-mediated leukocyte rolling was almost completely abolished in cremaster muscle venules of core2(-/-) mice, but not littermate control mice. By contrast, leukocyte rolling in Peyer's patch HEV was not significantly different between core2(-/-) and control mice. To probe L-selectin ligands more directly, we injected L-selectin-coated beads. These beads showed no rolling in cremaster muscle venules of core2(-/-) mice, but significant rolling in controls. In Peyer's patch HEV, beads coated with a low concentration of L-selectin showed reduced rolling in core2(-/-) mice. Beads coated with a 10-fold higher concentration of L-selectin rolled equivalently in core2(-/-) and control mice. Our data show that endothelial L-selectin ligands relevant for rolling in inflamed microvessels of the cremaster muscle are completely Core2GlcNAcT-I dependent. In contrast, L-selectin ligands in Peyer's patch HEV are only marginally affected by the absence of Core2GlcNAcT-I, but are sufficiently functional to support L-selectin-dependent leukocyte rolling in Core2GlcNAcT-I-deficient mice.  相似文献   

13.
The binding of fluorescently labeled microspheres (FLMs, 0.1-microm diameter) coated with antibody (1a29) to ICAM-1 was studied in postcapillary venules during topical application of the chemoattractant N-formylmethionyl-leucyl-phenylalanine (fMLP). FLM adhesion to endothelial cells (ECs) increased dramatically from 50 to 150 spheres per 100-microm length of venule after superfusion of the mesentery with fMLP and equaled or exceeded levels of leukocyte (WBC) adhesion. Removal of the EC glycocalyx by micropipette infusion of the venule with heparinase increased FLM-EC adhesion to levels attained with fMLP. Subsequent application of fMLP did not increase FLM adhesion further, suggesting that the FLMs saturated all ICAM-1 binding sites. Perfusion with heparinase after suffusion with fMLP significantly increased FLM-EC adhesion above levels attained with fMLP. However, WBC adhesion fell because of possible removal of selectins necessary to maintain WBC rolling at the wall. It is concluded that the glycocalyx serves as a barrier to adhesion and that its shedding during natural activation of ECs may be an essential part of the inflammatory response.  相似文献   

14.
At sites of inflammation, endothelial adhesion molecules bind leukocytes and transmit signals required for transendothelial migration (TEM). We previously reported that adhesive interactions between endothelial cell CD47 and leukocyte signal regulatory protein γ (SIRPγ) regulate human T cell TEM. The role of endothelial CD47 in T cell TEM in vivo, however, has not been explored. In this study, CD47(-/-) mice showed reduced recruitment of blood T cells as well as neutrophils and monocytes in a dermal air pouch model of TNF-α-induced inflammation. Reconstitution of CD47(-/-) mice with wild-type bone marrow cells did not restore leukocyte recruitment to the air pouch, indicating a role for endothelial CD47. The defect in leukocyte TEM in the CD47(-/-) endothelium was corroborated by intravital microscopy of inflamed cremaster muscle microcirculation in bone marrow chimera mice. In an in vitro human system, CD47 on both HUVEC and T cells was required for TEM. Although previous studies showed CD47-dependent signaling required G(αi)-coupled pathways, this was not the case for endothelial CD47 because pertussis toxin, which inactivates G(αi), had no inhibitory effect, whereas G(αi) was required by the T cell for TEM. We next investigated the endothelial CD47-dependent signaling events that accompany leukocyte TEM. Ab-induced cross-linking of CD47 revealed robust actin cytoskeleton reorganization and Src- and Pyk-2-kinase dependent tyrosine phosphorylation of the vascular endothelial-cadherin cytoplasmic tail. This signaling was pertussis toxin insensitive, suggesting that endothelial CD47 signaling is independent of G(αi). These findings suggest that engagement of endothelial CD47 by its ligands triggers outside-in signals in endothelium that facilitate leukocyte TEM.  相似文献   

15.
《Biophysical journal》2021,120(15):3180-3191
Vascular endothelial cells and circulating red blood cell (RBC) surfaces are both covered by a layer of bushy glycocalyx. The interplay between these glycocalyx layers is hardly measurable and insufficiently understood. This study aims to investigate and qualify the possible interactions between the glycocalyces of RBCs and endothelial cells using mathematical modeling and numerical simulation. Dissipative particle dynamics (DPD) simulations are conducted to investigate the response of the endothelial glycocalyx (EG) to varying ambient conditions. A two-compartment model including EG and flow and a three-compartment model comprising EG, RBC glycocalyx, and flow are established. The two-compartment analysis shows that a relatively fast flow is associated with a predominantly bending motion of the EG, whereas oscillatory motions are predominant in a relatively slow flow. Results show that circulating RBCs cause the contactless deformation of EG. Its deformation is dependent on the chain layout, chain length, bending stiffness, RBC-to-EG distance, and RBC velocities. Specifically, shorter EG chains or RBC-to-EG distance leads to greater relative deflections of EG. Deformation of EG is enhanced when the EG chains are rarefied or RBCs move faster. The bending stiffness maintains stretching conformation of EG. Moreover, a compact EG chain layout and shedding EG chains disturb the neighboring flow field, causing disordered flow velocity distributions. In contrast, the movement of EG chains on RBC surfaces exerts a marginal driving force on RBCs. The DPD method is used for the first time, to our knowledge, in the three-compartment system to explore the cross talk between EG and RBC glycocalyx. This study suggests that RBCs drive the EG deformation via the near-field flow, whereas marginal propulsion of RBCs by the EG is observed. These new, to our knowledge, findings provide a new angle to understand the roles of glycocalyx in mechanotransduction and microvascular permeability and their perturbations under idealized pathophysiologic conditions associated with EG degradation.  相似文献   

16.
The endothelial glycocalyx is increasingly considered as an intravascular compartment that protects the vessel wall against pathogenic insults. The purpose of this study was to translate an established experimental method of estimating capillary glycocalyx dimension into a clinically useful tool and to assess its reproducibility in humans. We first evaluated by intravital microscopy the relation between the distance between the endothelium and erythrocytes, as a measure of glycocalyx thickness, and the transient widening of the erythrocyte column on glycocalyx compression by passing leukocytes in hamster cremaster muscle capillaries. We subsequently assessed sublingual microvascular glycocalyx thickness in 24 healthy men using orthogonal polarization spectral imaging. In parallel, systemic glycocalyx volume (using a previously published tracer dilution technique) as well as cardiovascular risk profiles were assessed. Estimates of microvascular glycocalyx dimension from the transient erythrocyte widening correlated well with the size of the erythrocyte-endothelium gap (r = 0.63). Measurements in humans were reproducible (0.58 +/- 0.16 and 0.53 +/- 0.15 microm, coefficient of variance 15 +/- 5%). In univariate analysis, microvascular glycocalyx thickness significantly correlated with systemic glycocalyx volume (r = 0.45), fasting plasma glucose (r = 0.43), and high-density lipoprotein-cholesterol (r = 0.40) and correlated negatively with low-density lipoprotein-cholesterol (r = -0.41) as well as body mass index (r = -0.45) (all P < 0.05). In conclusion, the dimension of the endothelial glycocalyx can be measured reproducibly in humans and is related to cardiovascular risk factors. It remains to be tested whether glycocalyx dimension can be used as an early marker of vascular damage and whether therapies aimed at glycocalyx repair can protect the vasculature against pathogenic challenges.  相似文献   

17.
The group IV cytoplasmic protein-tyrosine kinase Fer has been linked to cellular signaling responses to many different stimuli, including growth factors and cytokines. However, the biological relevance of Fer activation in vivo has not been demonstrated to date. Recently, we generated a transgenic mouse line in which Fer protein is expressed but lacks catalytic activity. Homozygous mutant mice were viable and fertile, and showed no overt defects. In this study, we used intravital microscopy to examine the role of Fer kinase in leukocyte recruitment (rolling adhesion and emigration) in response to LPS challenge in skeletal muscle microcirculation. In addition, we measured vascular permeability changes (FITC-albumin leakage, venular-to-interstitial space) in response to Ag to examine general endothelial cell function. Local administration of LPS induced decreased leukocyte rolling velocity and increased leukocyte adhesion and emigration in wild-type mice. LPS-induced changes in leukocyte rolling velocity and rolling flux were not significantly different in Fer mutants. However, LPS-induced leukocyte adhesion (23 +/- 3 vs 11 +/- 3 cells/100 microm) and emigration (100 +/- 5 vs 28 +/- 7 cells/field) were significantly elevated in Fer-mutant mice relative to wild-type mice, respectively, suggesting an essential role for the Fer kinase in regulating inflammation-induced leukocyte emigration. Vascular permeability increases in response to Ag were similar between the two groups, indicating that the ability of endothelial cells to retract is intact in the absence of Fer kinase. These data provide the first evidence for a biological role for Fer in regulation of leukocyte recruitment during the innate immune response.  相似文献   

18.
A healthy vascular endothelium is coated by the endothelial glycocalyx. Its main constituents are transmembrane syndecans and bound heparan sulphates. This structure maintains the physiological endothelial permeability barrier and prevents leukocyte and platelet adhesion, thereby mitigating inflammation and tissue oedema. Heparinase, a bacterial analogue to heparanase, is known to attack the glycocalyx. However, the exact extent and specificity of degradation is unresolved. We show by electron microscopy, immunohistological staining and quantitative measurements of the constituent parts, that heparinase selectively sheds heparan sulphate from the glycocalyx, but not the syndecans.  相似文献   

19.
Glycocalyx is a complex of membrane-bound molecules at the interface between circulating blood and the endothelium of the vessel wall; it performs a number of specific biological functions maintaining vascular homeostasis. It contains sulfated glycosaminoglycans (proteoglycans) bound to membrane proteins, hyaluronan, glycoproteins, and plasma proteins. Today, endothelial glycocalyx is considered not only a simple inert barrier and molecular sieve, but a self-renewable three-dimensional network of various polysaccharides and protein derivatives, a reservoir of biologically active compounds, and the mechanical transducer of circulation sheer stress onto the endothelium. Under conditions of pathological vascular damages, endothelial glycocalyx is destroyed, which impairs the integrity of the vascular wall at the level of macro- and microcirculation and leads to development of the cardiovascular disorders and other diseases. Destruction of glycocalyx seems to be one of the first stages of vascular damage. This explains the diagnostic value of detection and therapeutic importance of correction of glycocalyx damage. Biomedical application of endothelial glycocalyx and its individual components in molecular and cellular engineering seems promising.  相似文献   

20.
The endothelial glycocalyx is a layer of proteoglycans and associated glycosaminoglycans lining the vascular lumen. In vivo, the glycocalyx is highly hydrated, forming a substantial endothelial surface layer (ESL) that contributes to the maintenance of endothelial function. As the endothelial glycocalyx is often aberrant in vitro and is lost during standard tissue fixation techniques, study of the ESL requires use of intravital microscopy. To best approximate the complex physiology of the alveolar microvasculature, pulmonary intravital imaging is ideally performed on a freely-moving lung. These preparations, however, typically suffer from extensive motion artifact. We demonstrate how closed-chest intravital microscopy of a freely-moving mouse lung can be used to measure glycocalyx integrity via ESL exclusion of fluorescently-labeled high molecular weight dextrans from the endothelial surface. This non-recovery surgical technique, which requires simultaneous brightfield and fluorescent imaging of the mouse lung, allows for longitudinal observation of the subpleural microvasculature without evidence of inducing confounding lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号