首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blood viscosity (shear rate 100/s) and its major determinants (packed cell volume, plasma fibrinogen concentration, and plasma viscosity) were measured before coronary angiography in 50 men aged 30-55 and related to the extent of coronary artery disease. Twenty-six men had extensive disease (stenosis of two or three major coronary vessels), and 24 had either stenosis of one vessel or no stenosis. The 26 men with extensive disease had significantly higher mean blood viscosity than those with mild or no disease and 25 healthy controls (p less than 0.001). The increased viscosity was due partly to a higher packed cell volume and partly to a higher fibrinogen concentration; plasma viscosity was not significantly increased. These differences could not be explained by smoking history. These results suggest an association between increased blood viscosity and extensive coronary artery disease in men, which merits further investigation.  相似文献   

2.
3.
4.
A reduced coronary flow reserve (CFR) has been demonstrated in diabetes, but the underlying mechanisms are unknown. We assessed thermodilution-derived CFR after 5-min intravenous adenosine infusion through a pressure-temperature sensor-tipped wire in 30 coronary arteries without significant lumen reduction in 30 patients: 13 with and 17 without a history of diabetes. We determined CFR as the ratio of basal and hyperemic mean transit times (T(mn)); fractional flow reserve (FFR) as the ratio of distal and proximal pressures at maximal hyperemia to exclude local macrovascular disease; and an index of microvascular resistance (IMR) as the distal coronary pressure at maximal hyperemia divided by the inverse of the hyperemic T(mn). We also assessed insulin resistance by the homeostasis model assessment (HOMA) index. FFR was normal in all investigated arteries. CFR was significantly lower in diabetic vs. nondiabetic patients [median (interquartile range): 2.2 (1.4-3.2) vs. 4.1 (2.7-4.4); P = 0.02]. Basal T(mn) was lower in diabetic vs. nondiabetic subjects [median (interquartile range): 0.53 (0.25-0.71) vs. 0.64 (0.50-1.17); P = 0.04], while hyperemic T(mn) and IMR were similar. We found significant correlations at linear regression analysis between logCFR and the HOMA index (r(2) = 0.35; P = 0.0005) and between basal T(mn) and the HOMA index (r(2) = 0.44; P < 0.0001). In conclusion, compared with nondiabetic subjects, CFR is lower in patients with diabetes and epicardial coronary arteries free of severe stenosis, because of increased basal coronary flow, while hyperemic coronary flow is similar. Basal coronary flow relates to insulin resistance, suggesting a key role of cellular metabolism in the regulation of coronary blood flow.  相似文献   

5.
We studied the effect of edema on the regional distribution of pulmonary blood flow in 12 anesthetized dogs. Two were controls, six had low-pressure pulmonary edema, and four had high-pressure pulmonary edema. All were ventilated with 100% O2. The physiological shunt fraction (Qs/QT), as an indicator of the degree of venous admixture, was determined by measuring the arterial and venous blood gases and the hemoglobin at different times during the experiment. Cardiac output (QT) was modestly increased by opening the femoral arteriovenous shunts. The initial regional blood flow (Qi) and final regional blood flow (Qf) were marked before and after the shunts were opened, using two differently labeled macroaggregates. The dogs were then killed, and the lungs were removed and sampled completely so that Qi and Qf and the amount of regional extravascular lung water (Wdl) in each regional sample could be measured (sample size: wet wt = 5.9 +/- 2.9 g, n = 833; Wdl ranged from 5.15 +/- 1.18 to 14.42 +/- 2.34 g). The data show that QS/QT increased as QT increased in the three conditions studied. However, there was no correlation between Wdl and Qi, Qf, or the relative change in regional blood flow. The data also show that gravity affects regional blood flow more than it affects regional edema. We conclude that the increased Qs/QT seen with increased pulmonary blood flow cannot be explained by a preferential increase of blood flow to the more edematous regions.  相似文献   

6.
The studies were performed on anesthetized dogs using the model of partial controlled blood flow restriction in the left circumflex coronary artery with intact thorax. 70% of blood flow restriction were compensated by coronary vasodilation reserve, evaluated in hyperemia reaction. No rapid reperfusion hyperemia reaction was observed in reperfusion period, while moderate reduction in heart contractility was maintained. Alterations in coronary vessel reactivity could have a certain depressing effect on reperfusion hyperemia reaction. The observed changes were reversible, as coronary vessels retained their dilatation ability in response to an additional ischemic stimulus.  相似文献   

7.
Tone regulation in coronary microvessels has largely been studied in isolated vessels in the absence of myocardial tethering. Here, the potential effect of radial tethering and interstitial space connective tissue (ISCT) between coronary microvessels and the surrounding myocardium was studied. We hypothesized that rigid tethering between microvessels and the myocardium would constrain the active contraction of arterioles and is not compatible with the observed tone regulation. The ISCT between coronary microvessels and myocardium in five swine was found to increase exponentially from 0.22 ± 0.02 μm in capillaries (modified Strahler order 0) of the endocardium to 34.9 ± 7.1 μm in epicardial vessels (order 10). Microvessels with both soft tethering and ISCT gap were capable of significant changes in vessel resistance (up to an ~1,600% increase), consistent with experimental measurements of high coronary flow reserve. Additionally, the mechanical energy required for myogenic contraction was estimated. The results indicate that rigid tethering requires up to four times more mechanical energy than soft tethering in the absence of a gap. Hence, the experimental measurements and model predictions suggest that effectiveness and efficiency in tone regulation can be achieved only if the vessel is both softly tethered to and separated from the myocardium in accordance with the experimental findings of ISCT gap. These results have fundamental implications on future simulations of coronary circulation.  相似文献   

8.
9.
To test the hypothesis that coronary flow and coronary flow reserve are developmentally regulated, we used fluorescent microspheres to investigate the effects of acute (6 h) pulmonary artery banding (PAB) on baseline and adenosine-enhanced right (RV) and left ventricular (LV) blood flow in two groups of twin ovine fetuses (100 and 128 days of gestation, term 145 days, n = 6 fetuses/group). Within each group, one fetus underwent PAB to constrict the main pulmonary artery diameter by 50%, and the other twin served as a nonbanded control. Physiological measurements were made 6 h after the surgery was completed; tissues were then harvested for analysis of selected genes that may be involved in the early phase of coronary vascular remodeling. Within each age group, arterial blood gas values, heart rate, and mean arterial blood pressure were similar between control and PAB fetuses. Baseline endocardial blood flow in both ventricles was greater in 100 than 128-day fetuses (RV: 341 +/- 20 vs. 230 +/- 17 ml*min(-1)*100 g(-1); LV: 258 +/- 18 vs. 172 +/- 23 ml*min(-1)*100 g(-1), both P < 0.05). In both age groups, RV and LV endocardial blood flows increased significantly in control animals during adenosine infusion and were greater in PAB compared with control fetuses. After PAB, adenosine further increased RV blood flow in 128-day fetuses (from 416 +/- 30 to 598 +/- 33 ml*min(-1)*g(-1), P < 0.05) but did not enhance blood flow in 100-day animals (490 +/- 59 to 545 +/- 42 ml*min(-1)*100 g(-1), P > 0.2). RV vascular endothelial growth factor and Flk-1 mRNA levels were increased relative to controls (P < 0.05) in 128 but not 100-day PAB fetuses. We conclude that in the ovine fetus, developmentally related differences exist in 1) baseline myocardial blood flows, 2) the adaptive response of myocardial blood flow to acute systolic pressure load, and 3) the responses of selected genes involved in vasculogenesis to increased load in the fetal myocardium.  相似文献   

10.
Hemodynamic analysis was conducted to determine uncertainty in clinical measurements of coronary flow reserve (CFR) and fractional flow reserve (FFR) over pathophysiological conditions in a patient group with coronary artery disease during angioplasty. The vasodilation-distal perfusion pressure (CFR-p(rh)) curve was obtained for 0.35- and 0.46-mm guide wires. Our hypothesis is that a guide wire spanning the lesions elevates the pressure gradient and reduces the flow during hyperemic measurements. Maximal CFR-p(rh) was uniquely determined by the intersection of measured CFR and calculated p(rh) of native and residual epicardial lesions in patients without microvascular disease, during angioplasty. Extrapolation of the linear curve gave a zero-coronary flow mean pressure (p(zf)) of approximately 20 mmHg and a corresponding p(rh) of 55 mmHg in the native lesions, which coincided with the level that causes ischemia in human hearts. On this linear curve, values of CFR and FFRmyo (pathophysiological condition) and CFRg and FFRmyog (in the presence of the guide wire) were obtained in native and residual lesions. A strong linear correlation was found between CFR and CFRg [CFR = CFRg x 0.689 + 1.271 (R2= 0.99) for 0.46 mm and CFR = CFRg x 0.757 + 1.004 (R2= 0.99) for 0.35 mm] and between FFRmyo and FFRmyog [FFRmyo = FFRmyog x 0.737 + 0.263 (R2= 0.99) for 0.46 mm and FFRmyo = FFRmyog x 0.790 + 0.210 (R2= 0.99) for 0.35 mm]. This study establishes a strong correlation between CFR and CFRg and between FFRmyo and FFRmyog, which could be used to obtain the true state of occlusion in the coronary artery during angioplasty.  相似文献   

11.
M E Upsher  H R Weiss 《Life sciences》1989,44(17):1173-1184
The purpose of this study was to investigate the hypothesis that the heterogeneous distribution of beta adrenoceptors contributes to the control of flow heterogeneity in the canine myocardium. beta adrenoceptor density and affinity were measured simultaneously with coronary blood flow in multiple sections of the left ventricle of 14 anesthetized open chest dogs. Radioactive microspheres were used for the measurement of blood flow. The left ventricle was cut into 15 subepicardial (EPI) and 15 subendocardial (ENDO) sections. Receptor density (Bmax) and dissociation constant (Kd) were measured using [125I]-iodopindolol. The average control myocardial blood flow (MBF) was 86 +/- 15 ml/min/100 g. Isoproterenol (0.5 micrograms/kg/min) increased MBF by 82%, whereas propranolol (2 mg/kg) reduced MBF by 13%. The mean value for Bmax was unaltered by either treatment. Under control conditions, a significant positive correlation (r = 0.26, p less than 0.0001) was observed between Bmax and blood flow. In the isoproterenol treatment group, this correlation was enhanced (r = 0.49, p less than 0.0001). Beta adrenoceptor blockade led to a negative correlation. Kd showed no overall correlation with blood flow. Kd but not Bmax was significantly higher in the EPI than in the ENDO and in the base compared to the apex. There appears to be a direct linear relationship between the distribution of beta adrenoceptors and MBF distribution which is enhanced under conditions of high beta adrenergic activity. There is a correlation between beta adrenoceptor activity and blood flow distribution in the canine myocardium.  相似文献   

12.
13.
It has been shown that the resistance of flow and the wall shear increase with the size of the stenosis but these increases are comparatively small due to non-Newtonian behaviour of the blood indicating the usefulness of its rheological character in the functioning of the diseased arterial circulation.  相似文献   

14.
Coronary flow reserve (CFR) is an important index of coronary microcirculatory function. The objective of this study was to validate the reproducibility and accuracy of intravascular conductance catheter-based method for measurements of baseline and hyperemic coronary flow velocity (and hence CFR). The absolute coronary blood velocity was determined by measuring the time of transit of a saline injection between two pairs of electrodes (known distance) on a conductance catheter during a routine saline injection without the need for reference flow. In vitro validation was made in the velocity range of 5 to 70 cm/s in reference to the volume collection method. In 10 swine, velocity measurements were compared with those from a flow probe in coronary arteries at different CFR attained by microsphere embolization. In vitro, the mean difference between the proposed method and volume collection was 0.7 ± 1.34 cm/s for steady flow and -0.77 ± 2.22 cm/s for pulsatile flow. The mean difference between duplicate measurements was 0 ± 1.4 cm/s. In in vivo experiments, the flow (product of velocity and lumen cross-sectional area that is also measured by the conductance catheter) was determined in both normal and stenotic vessels and the mean difference between the proposed method and flow probe was -1 ± 12 ml/min (flow ranged from 10 to 130 ml/min). For CFR, the mean difference between the two methods was 0.06 ± 0.28 (range of 1 to 3). Our results demonstrate the reproducibility and accuracy of velocity and CFR measurements with a conductance catheter by use of a standard saline injection. The ability of the combined measurement of coronary lumen area (as previously validated) and current velocity and CFR measurements provides an integrative diagnostic tool for interventional cardiology.  相似文献   

15.
Purpose

Invasive fractional flow reserve (FFR), the reference standard for identifying significant coronary artery disease (CAD), can be estimated non-invasively by computed tomography-derived fractional flow reserve (CT-FFR). Commercially available off-site CT-FFR showed improved diagnostic accuracy compared to coronary computed tomography angiography (CCTA) alone. However, the diagnostic performance of this lumped-parameter on-site method is unknown. The aim of this cross-sectional study was to determine the diagnostic accuracy of on-site CT-FFR in patients with suspected CAD.

Methods

A total of 61 patients underwent CCTA and invasive coronary angiography with FFR measured in 88 vessels. Significant CAD was defined as FFR and CT-FFR below 0.80. CCTA with stenosis above 50% was regarded as significant CAD. The diagnostic performance of both CT-FFR and CCTA was assessed using invasive FFR as the reference standard.

Results

Of the 88 vessels included in the analysis, 34 had an FFR of ≤?0.80. On a per-vessel basis, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy were 91.2%, 81.4%, 93.6%, 75.6% and 85.2% for CT-FFR and were 94.1%, 68.5%, 94.9%, 65.3% and 78.4% for CCTA. The area under the receiver operating characteristic curve was 0.91 and 0.85 for CT-FFR and CCTA, respectively, on a per-vessel basis.

Conclusion

On-site non-invasive FFR derived from CCTA improves diagnostic accuracy compared to CCTA without additional testing and has the potential to be integrated in the current clinical work-up for diagnosing stable CAD.

  相似文献   

16.
Kleen, Martin, Martin Welte, Peter Lackermeier, OliverHabler, Gregor Kemming, and Konrad Messmer. Myocardial blood flowheterogeneity in shock and small-volume resuscitation in pigs withcoronary stenosis. J. Appl. Physiol.83(6): 1832-1841, 1997.We analyzed the effects of shock andsmall-volume resuscitation in the presence of coronary stenosis onfractal dimension (D) and spatialcorrelation (SC) of regional myocardial perfusion. Hemorrhagic shockwas induced and maintained for 1 h. Pigs were resuscitated withhypertonic saline-dextran 60 [HSDex, 10% of shed blood volume(SBV)] or normal saline (NS; 80% of SBV). Therapy was continuedafter 30 min with dextran (10% SBV). At baseline, D was 1.39 ± 0.06 (mean ± SE;HSDex group) and 1.34 ± 0.04 (NS group). SC was 0.26 ± 0.07 (HSDex) and 0.26 ± 0.04 (NS). Left anterior descending coronaryartery stenosis changed neither D norSC. Shock significantly reduced D(i.e., homogenized perfusion): 1.26 ± 0.06 (HSDex) and 1.23 ± 0.05 (NS). SC was increased: 0.41 ± 0.1 (HSDex) and 0.48 ± 0.07 (NS). Fluid therapy with HSDex further decreasedD to 1.22 ± 0.05, whereas NS didnot change D. SC was increased by bothHSDex (0.56 ± 0.1) and NS (0.53 ± 0.06). At 1 h afterresuscitation, SC was constant in both groups, andD was reduced only in the NS group(1.18 ± 0.02). We conclude that hemorrhagic shock homogenizedregional myocardial perfusion in coronary stenosis and that fluidtherapy failed to restore this.

  相似文献   

17.
18.
The biomechanical model of human coronary arteries was modified for improving the quality of diagnosis and surgical treatment for coronary heart disease. The problem of hemodynamics in the left coronary artery with multivessel bed disease – 45% stenosis of the anterior descending branch and 75% stenosis of the circumflex branch – was particularly considered. Numerical simulation of the coronary arterial bypass of the main trunk was carried out to estimate the functional condition of the coronary arteries after restoring myocardial blood supply by surgery.  相似文献   

19.
《Médecine Nucléaire》2020,44(3):172-180
The coronary flow reserve is a quantitative parameter defined by the ratio maximal myocardial blood flow to rest myocardial blood flow, which allows to give functional information on the whole coronary arterial tree, integrating both epicardial arteries and microcirculatory. The coronary flow reserve is a powerful tool to guide therapy and to assess prognosis. Exploratory tools, initially limited to experimental invasive techniques, have evolved over the last 10 years, allowing to envisage its use in daily clinical practice. This article reviews the pathophysiology of the coronary flow reserve and the various invasive and non-invasive exploration tools available to practitioners, integrating them into clinical practice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号