首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of NO donors (sodium nitroprusside, S-nitrosoglutathione, dinitrosyl-iron complexes) on the functional and mechanical properties of human platelets and red blood cells has been investigated. It has been established by atomic force microscopy that NO donor-induced platelet disaggregation is accompanied by changes in the elastic properties of cells. It has been shown that, in the presence of NO donors, the detergent-induced hemolysis of red blood cells is delayed, and the elasticity modulus of these cells decreases. The results obtained indicate that NO donors regulate the structural and functional properties of platelets and red blood cells.  相似文献   

2.
Intraerythrocytic malaria parasites (Plasmodia) degrade enormous amounts of hemoglobin during a short period of their life cycle. The process involves ingestion of red blood cell cytoplasm through the cytostome, delivery to acidic digestive vacuoles and sequential, efficient proteolysis by a set of specific hydrolases. Amino acids are generated for the growth and maturation of the organism; the heme byproduct is sequestered into a crystalline lattice called hemozoin. These specialized functions makes the digestive vacuole a prime target for antimalarial chemotherapy.  相似文献   

3.
Major disparities in reported levels of basal human nitric oxide metabolites have resulted in a recent literature focusing almost exclusively on methods. We chose to analyze triiodide chemiluminescence, drawn by the prospect of identifying why the most commonly employed assay in nitric oxide biology typically yielded lower metabolite values, compared with several other techniques. We found that the sensitivity of triiodide was greatly affected by the auto-capture of nitric oxide by deoxygenated cell-free heme in the reaction chamber. Potential contaminants and signal losses were also associated with standard sample purification procedures and the chemistry involved in nitrite removal. To inhibit heme nitric oxide auto-capture, we added potassium ferricyanide to the triiodide reagent, reasoning this would provide a more complete detection of any liberated nitric oxide. From human venous blood samples, we established nitric oxide levels ranging from 0.000178 to 0.00024 mol nitric oxide/mol hemoglobin. We went on to find significantly elevated nitric oxide levels in venous blood taken from diabetic patients in comparison to healthy controls (p < 0.0001). We concluded that the lack of signals reported of late by several groups using triiodide chemiluminescence for the detection of hemoglobin-bound nitric oxide may not represent levels on the border of assay sensitivity but rather underestimated values because of methodological limitations. We therefore stress the need for assay systems to be developed that differentiate between individual nitric oxide metabolite species and overcome the limitations we outline, allowing accurate conclusions to be drawn regarding physiological nitric oxide metabolite levels.  相似文献   

4.
It has been previously demonstrated that both externally generated and internally synthesized nitric oxide (NO) can affect red blood cell (RBC) deformability. Further studies have shown that the RBC has active NO synthesizing mechanisms and that these mechanisms may play role in maintaining normal RBC mechanical properties. However, hemoglobin within the RBC is known to be a potent scavenger of NO; oxy-hemoglobin scavenges NO faster than deoxy-hemoglobin via the dioxygenation reaction to nitrate. The present study aimed at investigating the role of hemoglobin oxygenation in the modulation of RBC rheologic behavior by NO. Human blood was obtained from healthy volunteers, anticoagulated with sodium heparin (15 IU/mL), and the hematocrit was adjusted to 0.4 L/L by adding or removing autologous plasma. Several two mL aliquots of blood were equilibrated at room temperature (22 ± 2 °C) with moisturized air or 100% nitrogen by a membrane gas exchanger, The NO donor sodium nitroprusside (SNP), at a concentration range of 10?7–10?4 M, was added to the equilibrated aliquots which were maintained under the same conditions for an additional 60 min. The effect of the non-specific NOS inhibitor l-NAME was also tested at a concentration of 10?3 M. RBC deformability was measured using an ektacytometer with an environment corresponding to that used for the prior incubation (i.e., oxygenated or deoxygenated). Our results indicate an improvement of RBC deformability with the NO donor SNP that was much more pronounced in the deoxygenated aliquots. SNP also had a more pronounced effect on RBC aggregation for deoxygenated RBC. Conversely, l-NAME had no effect on deoxygenated blood but resulted in impaired deformability, with no change in aggregation for oxygenated blood. These findings can be explained by a differential behavior of hemoglobin under oxygenated and deoxygenated conditions; the influence of oxygen partial pressure on NOS activity may also play a role. It is therefore critical to consider the oxygenation state of intracellular hemoglobin while studying the role of NO as a regulator of RBC mechanical properties.  相似文献   

5.
Nitric oxide (NO) acts as a smooth muscle relaxation factor and plays a crucial role in maintaining vascular homeostasis. NO is scavenged rapidly by hemoglobin (Hb). However, under normal physiological conditions, the encapsulation of Hb inside red blood cells (RBCs) significantly retards NO scavenging, permitting NO to reach the smooth muscle. The rate-limiting factors (diffusion of NO to the RBC surface, through the RBC membrane or inside of the RBC) responsible for this retardation have been the subject of much debate. Knowing the relative contribution of each of these factors is important for several reasons including optimization of the development of blood substitutes where Hb is contained within phospholipid vesicles. We have thus performed experiments of NO uptake by erythrocytes and microparticles derived from erythrocytes and conducted simulations of these data as well as that of others. We have included extracellular diffusion (that is, diffusion of the NO to the membrane) and membrane permeability, in addition to intracellular diffusion of NO, in our computational models. We find that all these mechanisms may modulate NO uptake by membrane-encapsulated Hb and that extracellular diffusion is the main rate-limiting factor for phospholipid vesicles and erythrocytes. In the case of red cell microparticles, we find a major role for membrane permeability. These results are consistent with prior studies indicating that extracellular diffusion of several gas ligands is also rate-limiting for erythrocytes, with some contribution of a low membrane permeability.  相似文献   

6.
A transition in hemoglobin behavior at close to body temperature has been discovered recently by micropipette aspiration experiments on single red blood cells (RBCs) and circular dichroism spectroscopy on hemoglobin solutions. The transition temperature was directly correlated to the body temperatures of a variety of species. In an exploration of the molecular basis for the transition, we present neutron scattering measurements of the temperature dependence of hemoglobin dynamics in whole human RBCs in vivo. The data reveal a change in the geometry of internal protein motions at 36.9°C, at human body temperature. Above that temperature, amino acid side-chain motions occupy larger volumes than expected from normal temperature dependence, indicating partial unfolding of the protein. Global protein diffusion in RBCs was also measured and the findings compared favorably with theoretical predictions for short-time self-diffusion of noncharged hard-sphere colloids. The results demonstrated that changes in molecular dynamics in the picosecond time range and angstrom length scale might well be connected to a macroscopic effect on whole RBCs that occurs at body temperature.  相似文献   

7.
In addition to its known action on vascular smooth muscle, nitric oxide (NO) has been suggested to have cardiovascular effects via regulation of red blood cell (RBC) deformability. The present study was designed to further explore this possibility. Human RBCs in autologous plasma were incubated for 1 h with NO synthase (NOS) inhibitors [N(omega)-nitro-l-arginine methyl ester (l-NAME) and S-methylisothiourea], NO donors [sodium nitroprusside (SNP) and diethylenetriamine (DETA)-NONOate], an NO precursor (l-arginine), soluble guanylate cyclase inhibitors (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and methylene blue), and a potassium channel blocker [triethylammonium (TEA)]. After incubation, RBC deformability at various shear stresses was determined by ektacytometry. Both NOS inhibitors significantly reduced RBC deformability above a threshold concentration, whereas the NO donors increased deformability at optimal concentrations. NO donors, as well as the NO precursor l-arginine and the potassium blocker TEA, were able to reverse the effects of NOS inhibitors. Guanylate cyclase inhibition reduced RBC deformation, with both SNP and DETA-NONOate able to reverse this effect. These results thus indicate the importance of NO as a determinant of RBC mechanical behavior and suggest its regulatory role for normal RBC deformability.  相似文献   

8.
We measure the dynamical mechanical properties of human red blood cells. A single cell response is measured with optical tweezers. We investigate both the stress relaxation following a fast deformation and the effect of varying the strain rate. We find a power-law decay of the stress as a function of time, down to a plateau stress, and a power-law increase of the cell's elasticity as a function of the strain rate. Interestingly, the exponents of these quantities violate the linear superposition principle, indicating a nonlinear response. We propose that this is due to the breaking of a fraction of the crosslinks during the deformation process. The soft glassy rheology model accounts for the relation between the exponents we observe experimentally. This picture is consistent with recent models of bond remodeling in the red blood cell's molecular structure. Our results imply that the blood cell's mechanical behavior depends critically on the deformation process.  相似文献   

9.
10.
11.
Thymocytes maturing in the thymus undergo clonal deletion/apoptosis when they encounter self- or allo-Ags presented by dendritic cells (DCs). How this occurs is a matter of debate, but NO may play a role given its ability of inducing apoptosis of these cells. APC (a mixed population of macrophages (Mphi) and DCs) from rat thymus expressed high levels of inducible NO synthase (iNOS) and produced large amounts of NO in basal conditions whereas iNOS expression and NO production were very low in thymocytes. Analysis by FACS and by double labeling of cytocentrifuged preparations showed that DCs and MPhi both express iNOS within APC. Analysis of a purified preparation of DCs confirmed that these cells express high levels of iNOS and produce large amounts of NO in basal conditions. The capacity of DCs to generate NO was enhanced by exposure to rat albumin, a self-protein, and required a fully expressed process of Ag internalization, processing, and presentation. Peptides derived from portions of class II MHC molecules up-regulate iNOS expression and NO production by DCs as well, both in self and allogeneic combinations, suggesting a role of NO in both self and acquired tolerance. We also found that NO induced apoptosis of rat double-positive thymocytes, the effect being more evident in anti-CD3-stimulated cells. Altogether, the present findings might suggest that DC-derived NO is at least one of the soluble factors regulating events, in the thymus, that follow recognition of self- and allo-Ags.  相似文献   

12.
13.
Nitric oxide is a diffusible messenger that plays a multitude of roles within the nervous system including modulation of cell viability. However, its role in regulating neuronal survival during a defined period of neurodevelopment has never been investigated. We discovered that expression of the messenger RNA for both neuronal and endothelial nitric oxide synthase increased in the early postnatal period in the cerebellum in vivo, whilst the expression of inducible nitric oxide synthase remained constant throughout this time in development. Whilst scavenging of nitric oxide was deleterious to the survival of early postnatal cerebellar granule neurons in vitro, this effect was lost in cultures derived at increasing postnatal ages. Conversely, sensitivity to exogenous nitric oxide increased with advancing postnatal age. Thus, we have shown that as postnatal development proceeds, cerebellar granule cells alter their in vitro survival responses to both nitric oxide inhibition and donation, revealing that the nitric oxide's effects on developing neurons vary with the stage of development studied. These findings have important consequences for our understanding of the role of nitric oxide during neuronal development.  相似文献   

14.
Suspensions of rainbow trout erythrocytes in different physiological salines were compared with respect to their haematological and filtration properties.
A method is described for the suspension of erythrocytes in Cortland saline which has proved suitable for studies of their mechanical properties over periods of several hours.
Significant differences were found between whole blood samples taken during cannulation and after several days recovery, particularly mean cell volume, frequency distribution of red cell volumes and the pore passage time through nucleopore filters. These differences were also found using red cell suspensions of the same bloods. The pore passage time of whole blood sampled during cannulation or its suspensions is less than that of recovery blood although its mean cell volume is greater.  相似文献   

15.
AimHigh glycerol cryopreservation of red blood cells (RBCs) reduces metabolic processes at ultralow temperatures but less is known regarding the effect of cryopreservation on RBC nitric oxide (NO) metabolism, haemorheological properties, structural behaviour and membrane fragility.MethodsBlood from ten healthy participants was sampled, glycerolized and stored at −80 °C (SB). Aliquots were thawed and further processed after 4, 8 and 12 weeks, respectively. At these time points, fresh blood (FB) was additionally sampled from each participant. FB/SB mixtures were prepared corresponding to transfusion of 1–3 blood bags. Additionally, mixtures were exposed to shear stress similar to that found in the circulation and deformability was measured to estimate possible behaviour of cryopreserved RBC in vivo.ResultsAgeing of RBC was reduced during cryopreservation. Markers for RBC metabolism (ATP, 2,3-DPG) were not altered but RBC sodium levels increased and potassium and calcium decreased, respectively. Mean cellular volume was higher and accordingly, mean cellular haemoglobin concentration was lower in SB. Deformability was altered during storage with less shear stress necessary to deform RBCs. Changes were also detectable in blood mixtures. Deformability remained unaltered in shear stress settings in FB and SB. RBC viscosity was reduced in SB. RBC-NOS content and phosphorylation sites as well as nitrite and RxNO levels seem not to be affected by the intervention.ConclusionCryopreservation maintains RBC metabolic function in vitro, but structure and function of cryopreserved RBC seems to be altered. Impact of these alterations in vivo seems to be less but needs further investigation.  相似文献   

16.
There is limited information regarding the kinetics of antibody responses exhibited by the platypus and the echidna in response to a T cell dependent antigen. In this preliminary study a platypus, an echidna and a rabbit were inoculated with sheep red blood cells to compare their antibody responses and kinetics. The antibody titres, produced by the platypus and echidna, were less than those elicited in the rabbit. Furthermore, the echidna and platypus exhibited a weak secondary response. This was most likely due to a failure of the platypus and echidna to undergo the characteristic IgM to IgG isotype switch following second antigen exposure. The conformational structure of these antibodies may differ from eutherian antibodies. This was further supported by a heat sensitivity experiment that indicated that these antibodies are more labile than rabbit immunoglobulins and therefore structurally less stable.  相似文献   

17.
Vascular functions are regulated not only by chemical mediators, such as hormones, cytokines, and neurotransmitters, but by mechanical hemodynamic forces generated by blood flow and blood pressure. The mechanical force-mediated regulation is based on the ability of vascular cells, including endothelial cells and smooth muscle cells, to recognize fluid mechanical forces, i.e., the shear stress produced by flowing blood and the cyclic strain generated by blood pressure, and to transmit the signals into the cell interior, where they trigger cell responses that involve changes in cell morphology, cell function, and gene expression. Recent studies have revealed that immature cells, such as endothelial progenitor cells (EPCs) and embryonic stem (ES) cells, as well as adult vascular cells, respond to fluid mechanical forces. Shear stress and cyclic strain promote the proliferation and differentiation of EPCs and ES cells into vascular cells and enhance their ability to form new vessels. Even more recently, attempts have been made to apply fluid mechanical forces to EPCs and ES cells cultured on polymer tubes and develop tissue-engineered blood vessel grafts that have a structure and function similar to that of blood vessels in vivo. This review summarizes the current state of knowledge concerning the mechanobiological responses of stem/progenitor cells and its potential applications to tissue engineering.  相似文献   

18.
In this study, we examined the hypothesis that stretch-induced (nitric oxide) NO modulates the mechanical properties of skeletal muscles by increasing accumulation of protein levels of talin and vinculin and by inhibiting calpain-induced proteolysis, thereby stabilizing the focal contacts and the cytoskeleton. Differentiating C2C12 myotubes were subjected to a single 10% step stretch for 0–4 days. The apparent elastic modulus of the cells, Eapp, was subsequently determined by atomic force microscopy. Static stretch led to significant increases (P < 0.01) in Eapp beginning at 2 days. These increases were correlated with increases in NO activity and neuronal NO synthase (nNOS) protein expression. Expression of talin was upregulated throughout, whereas expression of vinculin was significantly increased only on days 3 and 4. Addition of the NO donor L-arginine onto stretched cells further enhanced Eapp, NOS activity, and nNOS expression, whereas the presence of the NO inhibitor N-nitro-L-arginine methyl ester (L-NAME) reversed the effects of mechanical stimulation and of L-arginine. Overall, viscous dissipation, as determined by the value of hysteresis, was not significantly altered. For assessment of the role of vinculin and talin stability, cells treated with L-NAME showed a significant decrease in Eapp, whereas addition of a calpain inhibitor abolished the effect. Thus our results show that NO inhibition of calpain-initiated cleavage of cytoskeleton proteins was correlated with the changes in Eapp. Together, our data suggest that NO modulates the mechanical behavior of skeletal muscle cells through the combined action of increased talin and vinculin levels and a decrease in calpain-mediated talin proteolysis. mechanical stimulation; apparent elastic modulus; skeletal muscle cells; nitric oxide; stretch  相似文献   

19.
Nitric oxide (NO) is an important regulator of angiogenesis and neovascularization. The nature of endothelial cell motility responses to NO was examined using a Boyden chamber method. NO generated via decomposition of either DEA/NO or DETA/NO produced increases in human umbilical vein endothelial cell (HUVEC) chemotaxis, which were completely abrogated by ODQ, a soluble guanylyl cyclase inhibitor. Measurements of NO either directly by chemiluminescence or its chemistry with diaminofluorescein revealed that chemotaxis was driven by subtle NO gradients between the lower and the upper wells in this system. In addition to diffusion and volatilization from the upper chambers, the data showed that HUVEC consumption of NO contributed to these sustained gradients. Comparison of DEA/NO- and DETA/NO-mediated responses suggested that the persistence of spatial NO gradients is as significant as the absolute magnitude of NO exposure per unit time. The findings suggest that subnanomolar NO gradients are sufficient to mobilize endothelial cell migration into hypoxic tissue during neovascularization events, such as in wound healing and cancer.  相似文献   

20.
The effects of enhanced red blood cell (RBC) aggregation on nitric oxide (NO)-dependent vascular control mechanisms have been investigated in a rat exchange transfusion model. RBC aggregation for cells in native plasma was increased via a novel method using RBCs covalently coated with a 13-kDa poloxamer copolymer (Pluronic F-98); control experiments used RBCs coated with a nonaggregating 8.4-kDa poloxamer (Pluronic F-68). Rats exchange transfused with aggregating RBC suspensions demonstrated significantly enhanced RBC aggregation throughout the 5-day follow-up period, with mean arterial blood pressure increasing gradually over this period. Arterial segments ( approximately 300 microm in diameter) were isolated from gracilis muscle on the fifth day and mounted between two glass micropipettes in a special chamber equipped with pressure servo-control system. Dose-dependent dilation by ACh and flow-mediated dilation of arterial segments pressurized to 30 mmHg and preconstricted to 45-55% of the original diameter by phenylephrine were significantly blunted in rats with enhanced RBC aggregation. Both responses were totally abolished by nonspecific NO synthase (NOS) inhibitor (Nomega-nitro-l-arginine methyl ester) treatment of arterial segments, indicating that the responses were NO related. Additionally, expression of endothelial NOS protein was found to be decreased in muscle samples obtained from rats exchanged with aggregating cell suspensions. These results imply that enhanced RBC aggregation results in suppressed expression of NO synthesizing mechanisms, thereby leading to altered vasomotor tonus; the mechanisms involved most likely relate to decreased wall shear stresses due to decreased blood flow and/or increased axial accumulation of RBCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号