首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Fix C  Bingham K  Carver W 《Cytokine》2011,53(1):19-28
Fibroblasts are the primary cell type responsible for synthesis and remodeling of the extracellular matrix in the heart. A number of factors including growth factors, hormones and mechanical forces have been identified that modulate the production of extracellular matrix by cardiac fibroblasts. Inflammatory mediators including pro-inflammatory cytokines and chemokines also impact fibrosis of the heart. Recent studies have illustrated that interleukin-18 promotes a pro-fibrotic response in cardiac fibroblasts; however the effects of this cytokine on other aspects of fibroblast function have not been examined. While fibroblasts have long been known for their role in production and remodeling of the extracellular matrix, other functions of these cells are only now beginning to be appreciated. We hypothesize that exposure to interleukin-18 will stimulate other aspects of fibroblast behavior important in myocardial remodeling including proliferation, migration and collagen reorganization. Fibroblasts were isolated from adult male rat hearts and bioassays performed to determine the effects of interleukin-18 on fibroblast function. Treatment of fibroblasts with interleukin-18 (1-100ng/ml) resulted in increased production of extracellular matrix components and remodeling or contraction of three-dimensional collagen scaffolds by these cells. Furthermore, exposure to interleukin-18 stimulated fibroblast migration and proliferation. Treatment of heart fibroblasts with interleukin-18 resulted in the rapid activation of the c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3-kinase) pathways. Studies with pharmacological inhibitors illustrated that activation of these pathways is critical to interleukin-18 mediated alterations in fibroblast function. These studies illustrate that interleukin-18 plays a role in modulation of cardiac fibroblast function and may be an important component of the inflammation-fibrosis cascade during pathological myocardial remodeling.  相似文献   

2.
Gradual occlusion (O) of the swine left circumflex coronary artery (LCX) with an ameroid occluder results in complete O within 3 weeks, collateral vessel development, and compensatory hypertrophy. The purpose of this investigation was to determine the independent and combined effects of O and exercise training (E) on gene expression in the swine heart. Adult Yucatan miniature swine were assigned to one of the following groups (n = 6–9/group): sedentary control (S), exercise-trained (E), sedentary swine subjected to LCX occlusion (SO), and exercise-trained swine with LCX occlusion (EO). Exercise consisted of progressive treadmill running conducted 5 d/wk for 16 weeks. Gene expression was studied in myocardium isolated from the collateral-dependent left ventricle free wall (LV) and the collateral-independent septum (SEP) by RNA blotting. E and O each stimulated cardiac hypertrophy independently (p < 0.001) with no interaction. O but not E increased atrial natriuretic factor expression in the LV, but not in the SEP. E decreased the expression of β-myosin heavy chain in the LV, but not in the SEP. E retarded the expression of collagen III mRNA in SEP; but not in the LV. Exercise training and coronary artery occlusion each stimulate cardiac hypertrophy independently and induce different patterns of gene expression.  相似文献   

3.
Exercise capacity and training response are limited in chronic obstructive pulmonary disease (COPD), but the extent to which this is related to altered skeletal muscle function is not fully understood. To test the hypothesis that muscle gene expression is altered in COPD, we performed needle biopsies from the vastus lateralis of six COPD patients and five sedentary age-matched healthy men, before and after 3 mo of exercise training. RNA was hybridized to Affymetrix U133A Genechip arrays. In addition, peak O(2) uptake and other functional parameters (e.g., 6-min walk) were measured before and after training. The 6-min walk test increased significantly following training in both groups (53.6 +/- 18.6 m in controls, P = 0.045; 37.1 +/- 6.7 m in COPD, P = 0.002), but peak O(2) uptake increased only in controls (19.4 +/- 4.5%, P = 0.011). Training significantly altered muscle gene expression in both groups, but the number of affected genes was lower in the COPD patients (231) compared with controls (573). Genes related to energy pathways had higher expression in trained controls. In contrast, oxidative stress, ubiquitin proteasome, and COX gene pathways had higher expression in trained COPD patients, and some genes (e.g., COX11, COX15, and MAPK-9) were upregulated by training only in COPD patients. We conclude that both COPD and control subjects demonstrated functional responses to training but with somewhat different patterns in muscle gene expression. The pathways that are uniquely induced by exercise in COPD (e.g., ubiquitin proteasome and COX) might indicate a greater degree of tissue stress (perhaps by altered O(2) and CO(2) dynamics) than in controls.  相似文献   

4.
5.
We have investigated the regulation of translation during the period of rapid liver growth that occurs at the end of gestation in the rat. This work was based on our prior observation that fetal hepatocyte proliferation is resistant to the inhibitory effects of rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), a nutrient-sensing kinase that controls ribosome biogenesis and protein translation. We hypothesized that translation control in late-gestation fetal liver differs from that in adult liver. We first examined the ability of rapamycin to inhibit the translation of mRNAs encoding ribosomal proteins. Consistent with the effect of rapamycin on proliferation, the activation of adult liver 5'-terminal oligopyrimidine tracts (5'-TOP) translation that occurred during refeeding after food deprivation was sensitive to rapamycin. Fetal liver 5'-TOP translation was insensitive. We went on to examine the eukaryotic initiation factor (eIF) 4F cap-binding complex that controls global protein synthesis. The molecular weights of the multiple eIF4G1 isoforms present in fetal and adult liver eIF4F complexes differed. In addition, fetal liver expressed the eIF4A1 form of the eIF4A helicase, whereas adult liver contained eIF4A1 and eIF4A2. Rapamycin administration before refeeding in adult rats inhibited formation of the preinitiation complex to a much greater degree than rapamycin administration to fetal rats in situ. We conclude that there are major structural and functional differences in translation control between late-gestation fetal and adult liver. These differences may confer differential sensitivity to the growth inhibitory effects of rapamycin.  相似文献   

6.
Exercise training results in cardiovascular and metabolic adaptations that may be beneficial in menopausal women by reducing blood pressure, insulin resistance, and cholesterol level. The adaptation of the cardiac hormonal systems oxytocin (OT), natriuretic peptides (NPs), and nitric oxide synthase (NOS) in response to exercise training was investigated in intact and ovariectomized (OVX) rats. Ovariectomy significantly augmented body weight (BW), left ventricle (LV) mass, and intra-abdominal fat pad weight and decreased the expression of oxytocin receptor (OTR), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and guanylyl cyclase-A (GC-A), in the right atrium (RA) and LV, indicating estrogenic control of these genes. These effects of ovariectomy were counteracted by 8-wk-long exercise training which decreased fat pad weight (33.4 +/- 2.3 to 23.4 +/- 3.1 g, n = 8, P < 0.05), plasma free fatty acids (0.124 +/- 0.033 to 0.057 +/- 0.010 mM, n = 8, P < 0.01), and plasma triacylglycerol (0.978 +/- 0.174 to 0.588 +/- 0.115 mM, n = 8, P < 0.05). Chronic exercise tended to decrease BW and stimulated ANP (4- to 5-fold) and OTR gene expression in the LV and RA and BNP and inducible NOS (iNOS) mRNA in the LV. In sham-operated rats, exercise augmented ANP expression in the RA, downregulated GC-A mRNA in the LV and RA, but increased its expression threefold in the RA of OVX animals. Endothelial NOS and iNOS expression was enhanced in the left atrium of sham-operated rats. Altogether, these data indicate that in OVX animals, chronic exercise significantly enhances cardiac OT, NPs, and NOS, thus implicating all three hormonal systems in the beneficial effects of exercise training.  相似文献   

7.
This study determined whether the beneficial effects of exercise training on the diabetic heart previously observed are associated with alterations in ventricular myosin heavy chain (MHC) isoform composition. Diabetes was induced in rats by i.v. streptozotocin. Trained rats were run on a treadmill for 60 min/day, 27 m/min, 10% grade. After 10 wks, ventricular MHC isoenzyme protein composition was analyzed for MHC composition using gel electrophoresis. -MHC and -MHC mRNA were determined by Northern and slot blot hybridization techniques. Both protein and mRNA analyses indicated that sedentary control rats exhibited a predominance of -MHC. Sedentary diabetics exhibited a shift to -MHC. Exercise trained diabetic rats showed a predominance of -MHC. The results indicate that treadmill exercise training of diabetic rat does not prevent the diabetes-induced shift in MHC composition towards the -MHC isoform, thus it is unlikely that the beneficial effects of exercise training on the diabetic heart, previously shown, are due to a normalization of the myosin isoform composition.  相似文献   

8.
The present study was designed to investigate the effects of estrogen withdrawal and exercise training on hepatic very low density lipoprotein-triglyceride (VLDL-TG) production and on expression of genes involved in hepatic VLDL synthesis in response to lipid infusion. Female Sprague-Dawley rats underwent ovariectomy (Ovx), sham surgery (Sham), and Ovx with 17β-estradiol supplementation (OvxE2) before being subdivided into sedentary (Sed) and trained (Tr) groups for 8 weeks. Exercise training consisted of continuous running on a rodent treadmill 5 times/wk. At the end of the 8-week period, all rats in the fasted state were intravenously infused with a 20% solution of Intralipid for 3-h followed by an injection of Triton WR-1339 to block lipoprotein lipase activity. Plasma TG accumulation was subsequently measured during 90 min to estimate VLDL-TG production. An additional control group consisting of Sham-Sed rats was infused with saline (0.9% NaCl). Estrogen withdrawal resulted in higher (p<0.01) liver fat accumulation concomitantly with lower (p<0.01) VLDL-TG production and lower mRNA and protein content of hepatic microsomal triglyceride transfer protein (MTP). All of these effects in Ovx rats were corrected with estrogen supplementation. Training in Ovx rats reduced (p<0.01) liver fat accumulation and further reduced (p<0.01) hepatic VLDL-TG production along with gene expression of MTP and diacylglycerol acyltransferase-2 (DGAT-2). It is concluded that VLDL-TG synthesis and/or secretion is decreased in Ovx rats probably via MTP regulation and that this decrease may constitute one of the factors involved in hepatic fat accumulation. The training effect on reducing VLDL production was independent of the estrogenic status.  相似文献   

9.
目的:观察一次性力竭运动后大鼠脑、心、骨骼肌组织和线粒体中PHB1含量的变化及对大鼠线粒体功能的影响,探寻PHB1与线粒体功能和能量代谢的关系。方法:健康雄性SD大鼠40只,随机分为2组(n=20):对照组和一次性力竭运动组,大鼠进行一次性急性跑台运动建立力竭运动模型。收集各组大鼠的心、脑和骨骼肌组织样品并提取线粒体,检测其呼吸功能和ROS的变化。用Western blot方法检测组织和线粒体中PHB1蛋白表达水平;用分光光度计检测各器官中ATP含量以及线粒体中复合体V活性(ATP合酶活性)。结果:①一次性力竭运动后脑、心肌、骨骼肌中ATP含量显著性降低;②一次性力竭运动后脑、心肌、骨骼肌线粒体中复合体V活性、RCR、ROS显著性降低,ST4均显著性升高,ST3无显著性差异。③一次性力竭运动后心、脑、骨骼肌线粒体中PHB1的表达显著性减少。④通过相关性分析得出:一次性力竭运动后心、脑、骨骼肌中ATP含量与心、脑、骨骼肌中复合体V活性呈正相关;心、脑、骨骼肌中ATP含量和心、脑骨骼肌中PHB1的表达呈正相关。结论:一次性力竭运动后,降低线粒体氧化磷酸化功能,使大鼠脑、骨骼肌线粒体内ROS生成增加,PHB1的表达、ATP含量和复合体V活性均下降。一次性力竭运动使得大鼠线粒体内PHB1表达降低,线粒体功能减弱,机体能量代谢降低。  相似文献   

10.
In order to determine the effect of short-term training on central adaptations, gas exchange and cardiac function were measured during a prolonged submaximal exercise challenge prior to and following 10-12 consecutive days of exercise. In addition, vascular volumes and selected haematological properties were also examined. The subjects, healthy males between the ages of 19 and 30 years of age, cycled for 2 h per day at approximately 59% of pre-training peak oxygen consumption (VO2) i.e., maximal oxygen consumption (VO2max). Following the training, VO2max (l.min-1) increased (P less than 0.05) by 4.3% (3.94, 0.11 vs 4.11, 0.11; mean, SE) whereas maximal exercise ventilation (VE,max) and maximal heart rate (fc,max) were unchanged. During submaximal exercise, VO2 was unaltered by the training whereas carbon dioxide production (VE) and respiratory exchange ratio were all reduced (P less than 0.05). The altered activity pattern failed to elicit adaptations in either submaximal exercise cardiac output or arteriovenous O2 difference. fc was reduced (P less than 0.05). Plasma volume (PV) as measured by 125I human serum albumin increased by 365 ml or 11.8%, while red cell volume (RCV) as measured by 51chromium-labelled red blood cells (RBC) was unaltered. The increase in PV was accompanied by reductions (P less than 0.05) in haematocrit, haemoglobin concentration (g.100 ml-1), and RBCs (10(6) mm-3). Collectively these changes suggest only minimal adaptations in maximal oxygen transport during the early period of prolonged exercise training. However, as evidenced by the changes during submaximal exercise, both the ventilatory and the cardiodynamic response were altered.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
This study investigates how rearing under conditions of hypergravity affects amphibian development, Xotx2 and Xag1 gene expression and apoptosis. Uncleaved Xenopus laevis eggs 20 min after insemination, 2 cell stage embryos, and gastrula stage embryos were raised at 2G and 5G, while controls were raised in normal gravity. Apoptosis in brain and eye inner structures of hatching embryos was scored using the TUNEL staining method, and gene expression in tail-bud embryos was analyzed by whole-mount in situ hybridization. Results showed that: (1) 5G retarded the development of eggs and embryos and induced microcephaly and microphthalmia. (2) 5G suppressed the expression of the two genes, Xotx2 (involved in fore- and midbrain and eye development) and Xag1 (regulating cement gland formation). (3) Eggs and 2 cell stage embryos raised at 5G showed a greater extent of brain and eye apoptosis compared with controls, while those raised at 2G showed no significant difference. These findings suggest that high gravity suppresses certain gene functions and induces abnormal apoptosis in brain and eyes, resulting in developmental retardation and various morphological abnormalities.  相似文献   

12.
This study examined the interactive effects of pregnancy and aerobic conditioning on maternal cardiac structure and function. Effects of closely monitored cycle ergometer conditioning were studied during the second (TM2) and third trimesters (TM3) in 22 previously sedentary pregnant women (exercised group, EG) and a nonexercising pregnant control group with similar characteristics (CG, n = 19). Subjects were studied in the resting state by two-dimensional echocardiography and during cycle ergometer exercise at three steady-state power outputs at the start of TM2 (ENTRY), at the end of TM2 and TM3 (postconditioning), and 3-4 months postpartum (NPR, nonpregnant reference, CG only). Aerobic conditioning did not increase left ventricular dimensions beyond those attributable to pregnancy itself. In addition, in contrast with previous studies of nonpregnant women, physical conditioning during pregnancy did not reduce heart rate (HR) in the resting state. During exercise, the slope of the HR versus oxygen uptake (VO2) regression decreased significantly between preconditioning and the end of TM3 in the EG, suggesting that training-induced reductions in HR become more evident with increasing exercise intensity. Also, significant reductions in oxygen pulse (VO2/HR) were observed at all three work rates in the CG, but not in the EG. These findings support the hypothesis that the cardiovascular effects of aerobic conditioning are obscured by more powerful effects of pregnancy in the resting state but become "unmasked" during strenuous exercise.  相似文献   

13.
Cardiac contractile function is dependent on the integrity and function of the sarcolemmal membrane. Swimming exercise training is known to increase cardiac contractile performance. The purpose of the present study was to examine whether a swimming exercise program would alter sarcolemmal enzyme activity, ion flux, and composition in rat hearts. After approximately 11 wk of exercise training, cardiac myosin and actomyosin Ca2+-adenosinetriphosphatase (ATPase) activity was significantly higher in exercised rat hearts than in sedentary control rat hearts. Glycogen content was increased in plantaris and gastrocnemius muscles from exercised animals as was succinic dehydrogenase activity in gastrocnemius muscle of exercised rats in comparison to sedentary rat preparations. Sarcolemmal vesicles were isolated from hearts of exercise-trained and control rats. Sarcolemmal Na+-K+-ATPase and K+-p-nitrophenylphosphatase activities, Na+-Ca2+ exchange, and passive Ca2+ binding did not differ between the two groups. ATP-dependent Ca2+ uptake and 5'-nucleotidase activity were elevated in the cardiac sarcolemmal vesicles isolated from exercised animals compared with sedentary control rats. Sarcolemmal phospholipid composition was not altered by the exercise training. Our results demonstrate that swimming training in rats does not affect most parameters of cardiac sarcolemmal function or composition. However, the elevated sarcolemmal Ca2+ pump activity in exercised rats may help to reduce intracellular Ca2+ and augment cardiac relaxation rates. The enhanced 5'-nucleotidase activity may stimulate adenosine production, which could affect myocardial blood flow. The present results further our knowledge on the subcellular response of the heart to swimming training in the rat.  相似文献   

14.
We examined the effects of high-fat diet (HFD) and exercise training on insulin-stimulated whole body glucose fluxes and several key steps of glucose metabolism in skeletal muscle. Rats were maintained for 3 wk on either low-fat (LFD) or high-fat diet with or without exercise training (swimming for 3 h per day). After the 3-wk diet/exercise treatments, animals underwent hyperinsulinemic euglycemic clamp experiments for measurements of insulin-stimulated whole body glucose fluxes. In addition, muscle samples were taken at the end of the clamps for measurements of glucose 6-phosphate (G-6-P) and GLUT-4 protein contents, hexokinase, and glycogen synthase (GS) activities. Insulin-stimulated glucose uptake was decreased by HFD and increased by exercise training (P < 0.01 for both). The opposite effects of HFD and exercise training on insulin-stimulated glucose uptake were associated with similar increases in muscle G-6-P levels (P < 0.05 for both). However, the increase in G-6-P level was accompanied by decreased GS activity without changes in GLUT-4 protein content and hexokinase activities in the HFD group. In contrast, the increase in G-6-P level in the exercise-trained group was accompanied by increased GLUT-4 protein content and hexokinase II (cytosolic) and GS activities. These results suggest that HFD and exercise training affect insulin sensitivity by acting predominantly on different steps of intracellular glucose metabolism. High-fat feeding appears to induce insulin resistance by affecting predominantly steps distal to G-6-P (e.g., glycolysis and glycogen synthesis). Exercise training affected multiple steps of glucose metabolism both proximal and distal to G-6-P. However, increased muscle G-6-P levels in the face of increased glucose metabolic fluxes suggest that the effect of exercise training is quantitatively more prominent on the steps proximal to G-6-P (i.e., glucose transport and phosphorylation).  相似文献   

15.
This study examined the effects of a dual treatment combining insulin treatment and exercise training on basal cardiac function and signaling pathways involving β3-AR, NOS1, and RyR2 in type 1 diabetic rats. Male Wistar rats were assigned into a diabetic group receiving no treatment (D), an insulin-treated diabetic (Ins), a trained diabetic (TD), and a trained insulin-treated diabetic (TIns) group. Control group (C) was included in order to confirm the deleterious effects of diabetes. Insulin treatment and/or treadmill exercise training were conducted for 8 weeks. Basal cardiac function was evaluated by Langendorff technique. Cardiac protein expression of β3-AR, NOS1, and RyR2 was assessed using Western blots. Diabetes induced a decrease of both basal diastolic and systolic (±dP/dt) cardiac function (P < 0.05). Moreover, diabetes was associated with an increase of β3-AR and NOS1 and a decrease of RyR2 expression (P < 0.05). Although combined treatment was not able to normalize -dP/dt, it succeeded to normalize +dP/dt of diabetic rats. Combined treatment led to an overexpression of RyR2. Effects of this combined treatment on +dP/dt and RyR2 were greater than the effects of insulin and exercise training, applied solely. Treatments, applied solely or in combination, resulted in a complete normalization of β3-AR and in a down-regulation of NOS1 because this protein expression in all treated diabetic rats became lower than control values (P < 0.01). Our study shows that unlike single treatments, dual treatment combining insulin treatment and exercise training was able to normalize basal systolic function of diabetic rats by a specific regulation of β3-AR-NOS1-RyR2 signaling pathways.  相似文献   

16.
The purpose of the present study was to evaluate the role of exercise training on the development of papain-induced emphysema in rats. Our hypothesis was that the increase in pulmonary tissue stretching associated with exercise could increase the severity of a protease-induced emphysema. Wistar rats were randomly assigned to four groups (n = 10 for each group) that received, respectively, intratracheal infusion of papain (6 mg in 1 ml of 0.9% NaCl) or vehicle and were submitted or not to a protocol of exercise on a treadmill. Rats exercised at 13.3 m/min, 6 days/wk, for 9 wk (increasing exercise time, from 10 to 35 min). We measured respiratory system elastance and resistance, the size and weight of the heart, and pulmonary mean linear intercept (Lm). After 9 wk of exercise training, there were no differences in respiratory system resistance and elastance values among the four experimental groups. Volume of the heart was significantly greater in rats submitted to exercise training (P = 0.007) compared with sedentary rats due to increases in volumes of both right and left cardiac chambers. Lm was significantly greater in rats that received papain compared with saline-infused rats (P = 0.025). Surprisingly, this was true, even though there was no significant decrease in elastance, possibly due to connective tissue remodeling. However, Lm was significantly greater in papain + exercise rats compared with rats that received papain and were not submitted to exercise. We conclude that exercise training can increase alveolar damage induced by papain infusion.  相似文献   

17.
目的:探讨下丘脑促甲状腺激素释放激素(TRH)对心功能活动的调节作用及其作用机制。方法:在SD大鼠下丘脑促垂体区埋管,微量注射TRH或预先注射一氧化氮合酶抑制剂L—NAME及M型乙酰胆碱受体阻断剂阿托品,记录给药前后左心室内压峰值(LVSP)、心率(HR)、室内压瞬时上升速率峰值(dp/dtmax)和瞬时下降速率峰值(-dp/dtmax)。结果:①与对照组相比,下丘脑促垂体区注射TRH可引起LVSP、HR、dp/dtmax及-dp/dtmax显著升高(P〈0.05或P〈0.01)。②单独注射L—NAME后只引起LVSP显著升高(P〈0.05或P〈0.01),L-NAME预处理可抑制TRH引起的正向调节效应。③单独注射阿托品引起LVSP及dp/dtmax的显著升高(P〈0.05),HR显著下降(P〈0.05),阿托品预处理减弱了TRH加快心率和提高-dp/dtmax的效应。结论:①下丘脑TRH对心脏有正性变时、变力作用。②下丘脑内源性NO能降低LVSP,但对HR、dp/dtmax及-dp/dtmax明显影响,TRH的作用是经NO依赖通路的。③下丘脑内源性胆碱能递质对心脏有正性变时但负性变力的作用,下丘脑TRH调节心功能可能部分通过胆碱能M受体通路。  相似文献   

18.
The purpose of this study was to investigate the effect of swimming training on systolic blood pressure (BPs), plasma and brain vasopressin (AVP), and plasma renin activity (PRA) in spontaneously hypertensive rats (SHR) during rest and after exercise. Resting and postexercise heart rate, as well as blood parameters such as packed cell volume (PCV), haemoglobin concentration (Hb), plasma sodium and potassium concentrations ([Na+], [K+]) osmolality and proteins were also studied. Hypophyseal AVP had reduced significantly after exercise in the SHR, whereas PRA had increased significantly in the Wistar-Kyoto (WKY) strain used as normotensive controls. Plasma AVP concentration increased in both strains. By the end of the experiment, training had reduced body mass and BPs by only 10% and 6%, respectively. Maximal oxygen uptake was increased 10% and plasma osmolality 2% by training. The postexercise elevation of heart rate was not significantly attenuated by training. A statistically significant reduction in postexercise plasma osmolality (10%) and [Na+] (4%) was observed. These results suggested that swimming training reduced BPs. Plasma and brain AVP played a small role in the hypertensive process of SHR in basal conditions because changes in AVP contents did not correlate with those of BPs. Moreover, there were no differences between SHR and WKY in plasma, hypophyseal and hypothalamic AVP content in these basal conditions. Finally, during moderate exercise a haemodilution probably occurred with an increase of plasma protein content. This was confirmed by the exercise-induced increase of plasma AVP and the reduction of hypophyseal AVP content, suggesting a release of this hormone, which probably contributed to the water retention and haemodilution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Blood and lymphatic vessels together form the circulatory system, allowing the passage of fluids and molecules within the body. Recently we showed that lymphatic capillaries are also found in the capillary bed of skeletal muscle. Exercise is known to induce angiogenesis in skeletal muscle, but it is not known whether exercise has effects on lymphangiogenesis or lymphangiogenic growth factors. We studied lymphatic vessel density and expression of the main lymphangiogenic growth factors VEGF-C and VEGF-D and their receptor VEGFR-3 in response to acute running exercise and endurance exercise training in the skeletal muscle of healthy and diabetic mice. VEGF-C mRNA expression increased after the acute exercise bout (P < 0.05) in healthy muscles, but there was no change in diabetic muscles. VEGF-C levels were not changed either in healthy or in diabetic muscle after the exercise training. Neither acute exercise nor exercise training had an effect on the mRNA expression of VEGF-D or VEGFR-3 in healthy or diabetic muscles. Lymphatic vessel density was similar in sedentary and trained mice and was >10-fold smaller than blood capillary density. Diabetes increased the mRNA expression of VEGF-D (P < 0.01). Increased immunohistochemical staining of VEGF-D was found in degenerative muscle fibers in the diabetic mice. In conclusion, the results suggest that acute exercise or exercise training does not significantly affect lymphangiogenesis in skeletal muscle. Diabetes increased the expression of VEGF-D in skeletal muscle, and this increase may be related to muscle fiber damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号