首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myocardial function is enhanced by endurance exercise training, but the cellular mechanisms underlying this improved function remain unclear. Exercise training increases the sensitivity of rat cardiac myocytes to activation by Ca(2+), and this Ca(2+) sensitivity has been shown to be highly dependent on sarcomere length. We tested the hypothesis that exercise training increases this length dependence in cardiac myocytes. Female Sprague-Dawley rats were divided into sedentary control (C) and exercise-trained (T) groups. The T rats underwent 11 wk of progressive treadmill exercise. Heart weight increased by 14% in T compared with C rats, and plantaris muscle citrate synthase activity showed a 39% increase with training. Steady-state tension was determined in permeabilized myocytes by using solutions of various Ca(2+) concentration (pCa), and tension-pCa curves were generated at two different sarcomere lengths for each myocyte (1.9 and 2.3 microm). We found an increased sarcomere length dependence of both maximal tension and pCa(50) (the Ca(2+) concentration giving 50% of maximal tension) in T compared with C myocytes. The DeltapCa(50) between the long and short sarcomere length was 0.084 +/- 0.023 (mean +/- SD) in myocytes from C hearts compared with 0.132 +/- 0.014 in myocytes from T hearts (n = 50 myocytes per group). The Deltamaximal tension was 5.11 +/- 1.42 kN/m(2) in C myocytes and 9.01 +/- 1.28 in T myocytes. We conclude that exercise training increases the length dependence of maximal and submaximal tension in cardiac myocytes, and this change may underlie, at least in part, training-induced enhancement of myocardial function.  相似文献   

2.
Passive intracoronary perfusion of therapeutic agents has been used in the clinical setting to attenuate the effects of brief episodes of myocardial ischemia. The objective of this study was to assess the effects of low-flow coronary infusion with or without Mg2+ on tissue necrosis and cardiac hemodynamics after prolonged regional ischemia. In 33 anesthetized dogs (5 excluded during study), the left anterior descending coronary artery was occluded for 6 h. Dogs were assigned to three groups: the first group (n = 8) was subjected to 6 h coronary occlusion without low-flow perfusion (controls), the second group (n = 10) received a low-flow coronary infusion of Ringer's lactate (Mg(2+)-free), and the third group (n = 10) received a low-flow coronary infusion of Ringer's lactate plus Mg2+ sulfate (15 mM). Tissue necrosis was evaluated using tetrazolium staining and was normalized to the principal baseline predictors of infarct size including anatomic risk zone (microsphere autoradiography) and coronary collateral flow. In control hearts, infarct size comprised 51.1 +/- 4.1% of the risk zone (40.8 +/- 5.1% left ventricular cross-sectional area (LV)). In the Mg(2+)-free and Mg2+ groups, risk zone size was 17.3 +/- 2.2 and 16.8 +/- 1.8% LV (p < 0.05 vs. controls), while infarct size was 23.1 +/- 3.1 and 24.9 +/- 8.1% (p < 0.05 vs. controls), respectively. Coronary collateral flow in the endocardium was similar for all of the experimental groups; however, hearts subjected to ischemia with low-flow perfusion of Ringer's lactate demonstrated significantly higher epicardial coronary collateral flow levels compared with controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Previous studies have shown that myocytes isolated from sedentary (Sed) rat hearts 3 wk after myocardial infarction (MI) undergo hypertrophy, exhibit altered intracellular Ca(2+) concentration ([Ca(2+)](i)) dynamics and abnormal contraction, and impaired sarcoplasmic reticulum (SR) function manifested as prolonged half-time of [Ca(2+)](i) decline. Because exercise training elicits positive adaptations in cardiac contractile function and myocardial Ca(2+) regulation, the present study examined whether 6-8 wk of high-intensity sprint training (HIST) would restore [Ca(2+)](i) dynamics and SR function in MI myocytes toward normal. In MI rats, HIST ameliorated myocyte hypertrophy as indicated by significant (P 相似文献   

4.
The heart is known to respond to a program of chronic exercise in ways that enhance cardiac function. However, the cellular mechanisms involved in training-induced improvements in the contractile function of the myocardium are not known. In this study we tested the hypothesis that increased contractility of the myocardium associated with exercise training is due, in part, to increases in the Ca(2+) sensitivity of steady-state tension. Female Sprague-Dawley rats were randomly divided into sedentary control (C) and exercise-trained (T) groups. The T rats underwent 11 wk of progressive treadmill exercise (1 h/day, 5 days/wk, 26 m/min, 20% grade). Evidence of training effect included a 5.9% increase in heart mass, increases in heart weight-to-body weight ratio, and a 60% increase in skeletal muscle citrate synthase activity in T rats compared with C rats. After the training program, cardiac myocytes were isolated from T and C hearts. Myocytes were chemically skinned (i.e., the sarcolemma was removed) and attached to a force transducer, and steady-state tension was determined in solutions of various Ca(2+) concentrations ([Ca(2+)]). Myocytes isolated from the hearts of T rats showed a significantly (P < 0.01) increased sensitivity of tension to [Ca(2+)]. The [Ca(2+)] giving 50% of maximal tension (pCa(50)) was 5.90 +/- 0.033 and 5.82 +/- 0.023 (SD) in T and C myocytes, respectively (n = 70 myocytes/group). This result suggests that exercise training affects the myofibrillar proteins, such that Ca(2+) sensitivity is increased, and that this may be the mechanism that underlies, at least in part, the effect of training to increase myocardial contractility.  相似文献   

5.
We administered ghrelin, a novel growth hormone-releasing hormone, to isolated perfused rat hearts, coronary arterioles, and cultured neonatal cardiomyocytes to determine its effects on coronary vascular tone, contractility, and natriuretic peptide secretion and gene expression. We also determined cardiac levels of ghrelin and whether the heart is a source of the circulating peptide. Ghrelin dose dependently increased coronary perfusion pressure (44 +/- 9%, P < 0.01), constricted isolated coronary arterioles (12 +/- 2%, P < 0.05), and significantly enhanced the pressure-induced myogenic tone of arterioles. These effects were blocked by diltiazem, an L-type Ca(2+) channel blocker, and bisindolylmaleimide (Bis), a protein kinase C (PKC) inhibitor. Interestingly, coinfusion of ghrelin with diltiazem completely restored myocardial contractile function that was decreased 30 +/- 3% (P < 0.01) by diltiazem alone. In contrast, combination of ghrelin with diltiazem or Bis did not significantly alter atrial natriuretic peptide (ANP) secretion, which was decreased 40% (P < 0.01) and 50% (P < 0.05) by these agents alone, respectively. Administration of ghrelin to cultured cardiomyocytes had no effect on ANP or B-type natriuretic peptide secretion or gene expression. Detectable amounts of low-molecular-weight ghrelin were present in cardiac tissue extracts but not in isolated heart perfusate. Thus we provide the first evidence that ghrelin has a coronary vasoconstrictor action that is dependent on Ca(2+) and PKC. Furthermore, the data obtained from diltiazem infusion suggest that ghrelin has a role in regulation of contractility when L-type Ca(2+) channels are blocked. Finally, the observation that immunoreactive ghrelin is found in cardiac tissue suggests the presence of a local cardiac ghrelin system.  相似文献   

6.
In avian and mammalian embryos, surgical ablation or severely reduced migration of the cardiac neural crest leads to a failure of outflow tract septation known as persistent truncus arteriosus (PTA) and leads to embryo lethality due partly to impaired excitation-contraction coupling stemming primarily from a reduction in the L-type Ca(2+) current (I(Ca),(L)). Decreased I(Ca,L) occurs without a corresponding reduction in the alpha(1)-subunit of the Ca(2+) channel. We hypothesize that decreased I(Ca),(L) is due to reduced function at the single channel level. The cell-attached patch clamp with Na(+) as the charge carrier was used to examine single Ca(2+) channel activity in myocytes from normal hearts from sham-operated embryos and from hearts diagnosed with PTA at embryonic days (ED) 11 and 15 after laser ablation of the cardiac neural crest. In normal hearts, the number of single channel events per 200-ms depolarization and the mean open channel probability (P(o)) was 1.89 +/- 0.17 and 0.067 +/- 0.008 for ED11 and 1.14 +/- 0.17 and 0.044 +/- 0.005 for ED15, respectively. These values represent a normal reduction in channel function and I(Ca),(L) observed with development. However, the number of single channel events was significantly reduced in hearts with PTA at both ED11 and ED15 (71% and 47%, respectively) with a corresponding reduction in P(o) (75% and 43%). The open time frequency histograms were best fitted by single exponentials with similar decay constants (tau approximately or equal 4.5 ms) except for the sham operated at ED15 (tau = 3.4 ms). These results indicate that the cardiac neural crest influences the development of myocardial Ca(2+) channels.  相似文献   

7.
We hypothesized that low-pressure reperfusion may limit myocardial necrosis and attenuate postischemic contractile dysfunction by inhibiting mitochondrial permeability transition pore (mPTP) opening. Male Wistar rat hearts (n = 36) were perfused according to the Langendorff technique, exposed to 40 min of ischemia, and assigned to one of the following groups: 1) reperfusion with normal pressure (NP = 100 cmH(2)O) or 2) reperfusion with low pressure (LP = 70 cmH(2)O). Creatine kinase release and tetraphenyltetrazolium chloride staining were used to evaluate infarct size. Modifications of cardiac function were assessed by changes in coronary flow, heart rate (HR), left ventricular developed pressure (LVDP), the first derivate of the pressure curve (dP/dt), and the rate-pressure product (RPP = LVDP x HR). Mitochondria were isolated from the reperfused myocardium, and the Ca(2+)-induced mPTP opening was measured using a potentiometric approach. Lipid peroxidation was assessed by measuring malondialdehyde production. Infarct size was significantly reduced in the LP group, averaging 17 +/- 3 vs. 33 +/- 3% of the left ventricular weight in NP hearts. At the end of reperfusion, functional recovery was significantly improved in LP hearts, with RPP averaging 10,392 +/- 876 vs. 3,969 +/- 534 mmHg/min in NP hearts (P < 0.001). The Ca(2+) load required to induce mPTP opening averaged 232 +/- 10 and 128 +/- 16 microM in LP and NP hearts, respectively (P < 0.001). Myocardial malondialdehyde was significantly lower in LP than in NP hearts (P < 0.05). These results suggest that the protection afforded by low-pressure reperfusion involves an inhibition of the opening of the mPTP, possibly via reduction of reactive oxygen species production.  相似文献   

8.
A number of studies have reported that oxidant stress reduces the activity of isolated Na(+)-K(+) ATPase and Ca(2+) ATPase which are known to affect the cell membrane integrity. The aim of the study is to determine whether the administration of lisinopril is able to protect the membrane-bound enzyme levels in isolated guinea pig hearts and also ascertain whether or not a relationship exists between oxygen free radicals and membrane bound Na(+)-K(+) ATPase and Ca(2+) ATPase. Forty guinea pig hearts were studied in an isolated Krebs-Henseleit solution-perfused Langendorff cardiac model. In all groups cardioplegic arrest was achieved by administering St. Thomas' Hospital cardioplegic solution (STHCS). Group 1 (control, n=10) received only STHCS. Group 2 (n=10) were arrested with lisinopril (l micromol l(-1)) added STHCS. Group 3 (n=10) were pretreated with oral lisinopril (0.2 mg kg(-1) twice a day) for 10 days and then arrested with STHCS. Group 4 were also pretreated with oral lisinopril (0.2 mg kg(-1) twice a day for 10 days), arrested with STHCS and reperfused with lisinopril added to Krebs-Henseleit solution (l micromol l(-1)). Hearts were subjected to normothermic global ischaemia for 90 min and then reperfused at 37 degrees C. Pretreatment and addition of lisinopril in the reperfusion buffer improved the levels of membrane-bound enzymes. When the treated groups were compared with control hearts, the best results were achieved in group 4. The Na(+)-K(+) and Ca(2+) ATPase levels increased from 466.38+/-5.99 to 560.12+/-18.02 and 884.69+/-9.13 to 1287.71+/-13.01 nmolPi mg(-1) protein h(-1) respectively (p<0.05). These results suggest that lisinopril protects the cell membrane integrity and lessens free radical-induced oxidant stress.  相似文献   

9.
The role of cardiac ATP-sensitive K(+) (K(ATP)) channels in ischemia-induced electrophysiological alterations has not been thoroughly established. Using mice with homozygous knockout (KO) of Kir6.2 (a pore-forming subunit of cardiac K(ATP) channel) gene, we investigated the potential contribution of K(ATP) channels to electrophysiological alterations and extracellular K(+) accumulation during myocardial ischemia. Coronary-perfused mouse left ventricular muscles were stimulated at 5 Hz and subjected to no-flow ischemia. Transmembrane potential and extracellular K(+) concentration ([K(+)](o)) were measured by using conventional and K(+)-selective microelectrodes, respectively. In wild-type (WT) hearts, action potential duration (APD) at 90% repolarization (APD(90)) was significantly decreased by 70.1 +/- 5.2% after 10 min of ischemia (n = 6, P < 0.05). Such ischemia-induced shortening of APD(90) did not occur in Kir6.2-deficient (Kir6.2 KO) hearts. Resting membrane potential in WT and Kir6.2 KO hearts similarly decreased by 16.8 +/- 5.6 (n = 7, P < 0.05) and 15.0 +/- 1.7 (n = 6, P < 0.05) mV, respectively. The [K(+)](o) in WT hearts increased within the first 5 min of ischemia by 6.9 +/- 2.5 mM (n = 6, P < 0.05) and then reached a plateau. However, the extracellular K(+) accumulation similarly occurred in Kir6.2 KO hearts and the degree of [K(+)](o) increase was comparable to that in WT hearts (by 7.0 +/- 1.7 mM, n = 6, P < 0.05). In Kir6.2 KO hearts, time-dependent slowing of conduction was more pronounced compared with WT hearts. In conclusion, the present study using Kir6.2 KO hearts provides evidence that the activation of K(ATP) channels contributes to the shortening of APD, whereas it is not the primary cause of extracellular K(+) accumulation during early myocardial ischemia.  相似文献   

10.
Ca(+) loading during reperfusion after myocardial ischemia is linked to reduced cardiac function. Like ischemic preconditioning (IPC), a volatile anesthetic given briefly before ischemia can reduce reperfusion injury. We determined whether IPC and sevoflurane preconditioning (SPC) before ischemia equivalently improve mechanical and metabolic function, reduce cytosolic Ca(2+) loading, and improve myocardial Ca(2+) responsiveness. Four groups of guinea pig isolated hearts were perfused: no ischemia, no treatment before 30-min global ischemia and 60-min reperfusion (control), IPC (two 2-min occlusions) before ischemia, and SPC (3.5 vol%, two 2-min exposures) before ischemia. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured at the left ventricular (LV) free wall with the fluorescent probe indo 1. Ca(2+) responsiveness was assessed by changing extracellular [Ca(2+)]. In control hearts, initial reperfusion increased diastolic [Ca(2+)] and diastolic LV pressure (LVP), and the maximal and minimal derivatives of LVP (dLVP/dt(max) and dLVP/dt(min), respectively), O(2) consumption, and cardiac efficiency (CE). Throughout reperfusion, IPC and SPC similarly reduced ischemic contracture, ventricular fibrillation, and enzyme release, attenuated rises in systolic and diastolic [Ca(2+)], improved contractile and relaxation indexes, O(2) consumption, and CE, and reduced infarct size. Diastolic [Ca(2+)] at 50% dLVP/dt(min) was right shifted by 32-53 +/- 8 nM after 30-min reperfusion for all groups. Phasic [Ca(2+)] at 50% dLVP/dt(max) was not altered in control but was left shifted by -235 +/- 40 nM [Ca(2+)] after IPC and by -135 +/- 20 nM [Ca(2+)] after SPC. Both SPC and IPC similarly reduce Ca(2+) loading, while augmenting contractile responsiveness to Ca(2+), improving postischemia cardiac function and attenuating permanent damage.  相似文献   

11.
Acute effects of triiodothyronine (T3) on postischemic myocardial stunning and intracellular Ca2+ contents were studied in the isolated working hearts of streptozotocin-induced diabetic rats and age-matched controls. After two weeks of diabetes, serum T3 and T4 levels were decreased to 62.5% and 33.9% of control values. Basal preischemic cardiac performance did not differ between diabetic and control rats. In contrast, during reperfusion after 20-min ischemia, diabetic rats exhibited an impaired recovery of heart rate (at 30-min reperfusion 57.5% of baseline vs. control 88.5%), left ventricular (LV) systolic pressure (44.1% vs. 89.5%), and cardiac work (23.1% vs. 66.0%). When 1 and 100 nM T3 was added before ischemia, heart rate was recovered to 77.2% and 81.8% of baseline, LV systolic pressure to 68.3% and 81.9%, and cardiac work to 50.8% and 59.0%, respectively. Diabetic rat hearts showed a higher Ca2+ content in the basal state and a further increase after reperfusion (4.96+/-1.17 vs. control 3.78+/-0.48 micromol/g, p<0.01). In diabetic hearts, H+ release was decreased after reperfusion (5.24+/-2.21 vs. 8.70+/-1.41 mmol/min/g, p<0.05). T3 administration caused a decrease in the postischemic Ca2+ accumulation (lnM T3 4.66+/-0.41 and 100 nM T3 3.58+/-0.36) and recovered the H+ release (lnM T3 16.2+/-3.9 and 100 nM T3 11.6+/-0.9). T3 did not alter myocardial O2 consumption. Results suggest that diabetic rat hearts are vulnerable to postischemic stunning, and T3 protects the myocardial stunning possibly via inhibiting Ca2+ overload.  相似文献   

12.
Although an axoplasmic Ca(2+) increase is associated with an exocytotic acetylcholine (ACh) release from the parasympathetic postganglionic nerve endings, the role of voltage-dependent Ca(2+) channels in ACh release in the mammalian cardiac parasympathetic nerve is not clearly understood. Using a cardiac microdialysis technique, we examined the effects of Ca(2+) channel antagonists on vagal nerve stimulation- and ischemia-induced myocardial interstitial ACh releases in anesthetized cats. The vagal stimulation-induced ACh release [22.4 nM (SD 10.6), n = 7] was significantly attenuated by local administration of an N-type Ca(2+) channel antagonist omega-conotoxin GVIA [11.7 nM (SD 5.8), n = 7, P = 0.0054], or a P/Q-type Ca(2+) channel antagonist omega-conotoxin MVIIC [3.8 nM (SD 2.3), n = 6, P = 0.0002] but not by local administration of an L-type Ca(2+) channel antagonist verapamil [23.5 nM (SD 6.0), n = 5, P = 0.758]. The ischemia-induced myocardial interstitial ACh release [15.0 nM (SD 8.3), n = 8] was not attenuated by local administration of the L-, N-, or P/Q-type Ca(2+) channel antagonists, by inhibition of Na(+)/Ca(2+) exchange, or by blockade of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptor but was significantly suppressed by local administration of gadolinium [2.8 nM (SD 2.6), n = 6, P = 0.0283]. In conclusion, stimulation-induced ACh release from the cardiac postganglionic nerves depends on the N- and P/Q-type Ca(2+) channels (with a dominance of P/Q-type) but probably not on the L-type Ca(2+) channels in cats. In contrast, ischemia-induced ACh release depends on nonselective cation channels or cation-selective stretch activated channels but not on L-, N-, or P/Q type Ca(2+) channels, Na(+)/Ca(2+) exchange, or Ins(1,4,5)P(3) receptor-mediated pathway.  相似文献   

13.
Li J  Wu M  Que L  Wang Y  Xu X  Hu Y  Ha T  Li C  Chen Q  Li Y 《Steroids》2008,73(7):720-726
This study was to examine the effect of estrogen on mechanical stretching-induced cardiac dysfunction in an isolated heart model. The isolated rat hearts were perfused via the Langendorff system and exposed to left ventricular stretching. One group hearts (n=6) were perfused with 17beta-estradiol (100nM) and the other group hearts (n=6) were perfused with estrogen plus its receptor antagonist ICI182,780 (1microM) before myocardial stretching was performed. Control hearts (n=6) were perfused with perfusion buffer. Cardiac functions were recorded. At the end of perfusion, the hearts were harvested and the levels of tumor necrosis factor-alpha (TNF-alpha), phospho-p38 mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-kappaB) binding activity were examined. Acute ventricular stretching resulted in significantly decrease in left ventricular developed pressure (LVDP) by 42.7%, maximal positive and negative values of the first derivative of pressure (+dP/dt and -dP/dt) by 43.2%, and 43.5%, respectively. The levels of TNF-alpha, phospho-p38 MAPK and NF-kappaB DNA binding activity were significantly increased following myocardial stretching. In 17beta-estradiol treated hearts, the myocardial functions were significantly improved. The levels of TNF-alpha, phospho-p38 MAPK, and NF-kappaB binding activity in myocardium were also significantly reduced by 35.7%, 56.9%, and 50%, respectively, compared with untreated stretched hearts. The beneficial effects of 17beta-estradiol on the stretched hearts were abolished by ICI182,780. The results suggest that pharmacological dose of 17beta-estradiol will attenuate stretching-induced cardiac dysfunction in an isolated heart model. The mechanisms could involve in blunting p38 MAPK and NF-kappaB signaling.  相似文献   

14.
Myocardial ischemia-reperfusion (I/R) injury is associated with contractile dysfunction, arrhythmias, and myocyte death. Intracellular Ca(2+) overload with reduced activity of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is a critical mechanism of this injury. Although upregulation of SERCA function is well documented to improve postischemic cardiac function, there are conflicting reports where pharmacological inhibition of SERCA improved postischemic function. SERCA2a is the primary cardiac isoform regulating intracellular Ca(2+) homeostasis; however, SERCA1a has been shown to substitute SERCA2a with faster Ca(2+) transport kinetics. Therefore, to further address this issue and to evaluate whether SERCA1a expression could improve postischemic cardiac function and myocardial salvage, in vitro and in vivo myocardial I/R studies were performed on SERCA1a transgenic (SERCA1a(+/+)) and nontransgenic (NTG) mice. Langendorff-perfused hearts were subjected to 30 min of global ischemia followed by reperfusion. Baseline preischemic coronary flow and left ventricular developed pressure were significantly greater in SERCA1a(+/+) mice compared with NTG mice. Independent of reperfusion-induced oxidative stress, SERCA1a(+/+) hearts demonstrated greatly improved postischemic (45 min) contractile recovery with less persistent arrhythmias compared with NTG hearts. Morphometry showed better-preserved myocardial structure with less infarction, and electron microscopy demonstrated better-preserved myofibrillar and mitochondrial ultrastructure in SERCA1a(+/+) hearts. Importantly, intraischemic Ca(2+) levels were significantly lower in SERCA1a(+/+) hearts. The cardioprotective effect of SERCA1a was also observed during in vivo regional I/R with reduced myocardial infarct size after 24 h of reperfusion. Thus SERCA1a(+/+) hearts were markedly protected against I/R injury, suggesting that expression of SERCA 1a isoform reduces postischemic Ca(2+) overload and thus provides potent myocardial protection.  相似文献   

15.
Phospholamban is a regulator of the Ca(2+) affinity of the cardiac sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) and of cardiac contractility. In vitro expression studies have shown that several mutant phospholamban monomers are superinhibitory, suggesting that monomeric phospholamban is the active species. However, a phospholamban Asn(27) --> Ala (N27A) mutant, which maintained a normal pentamer to monomer ratio, was shown to act as a superinhibitor of SERCA2a Ca(2+) affinity. To determine whether the pentameric N27A mutant is superinhibitory in vivo, transgenic mice with cardiac-specific overexpression of mutant phospholamban were generated. Quantitative immunoblotting revealed a 61 +/- 6% increase in total phospholamban in mutant hearts, with 90% of the overexpressed protein being pentameric. The EC(50) value for Ca(2+) dependence of Ca(2+) uptake was 0.69 +/- 0.07 microM in mutant hearts, compared with 0.29 +/- 0.02 microM in wild-type hearts or 0. 43 +/- 0.03 microM in hearts overexpressing wild-type PLB by 2-fold. Myocytes from phospholamban N27A mutant hearts also exhibited more depressed contractile parameters than wild-type phospholamban overexpressing cells. The shortening fraction was 52%, rates of shortening and relengthening were 46% and 38% respectively, and time for 80% decay of the Ca(2+) signal was 146%, compared with wild-types (100%). Langendorff-perfused mutant hearts also demonstrated depressed contractile parameters. Furthermore, in vivo echocardiography showed a depression in the ratio of early to late diastolic transmitral velocity and a 79% prolongation of the isovolumic relaxation time. Isoproterenol stimulation did not fully relieve the depressed contractile parameters at the cellular, organ, and intact animal levels. Thus, pentameric phospholamban N27A mutant can act as a superinhibitor of the affinity of SERCA2a for Ca(2+) and of cardiac contractility in vivo.  相似文献   

16.
The objective of this study was to determine whether elevated circulating levels of endothelin (ET)-1 are capable of mediating left ventricular (LV) mast cell degranulation and thereby induce matrix metalloproteinase (MMP) activation. After the administration of 20 pg/ml ET-1 to blood-perfused isolated rat hearts, LV tissue was analyzed for signs of mast cell degranulation and MMP activation. Relative to control, ET-1 produced extensive mast cell degranulation as well as a significant increase in myocardial water content (78.8 +/- 1.5% vs. 74.2 +/- 2.2%, P <0.01), a marked 107% increase in MMP-2 activity (P <0.05), and a substantial decrease in collagen volume fraction (0.69 +/- 0.09% vs. 0.99 +/- 0.04%, P <0.001). Although the myocardial edema would be expected to increase ventricular stiffness, compliance was not altered, and moderate ventricular dilatation was observed (end-diastolic volume at end-diastolic pressure of 0 mmHg of 330.2 +/- 22.1 vs. 298.9 +/- 17.4 microl in ET-1 treated vs. control, respectively, P=0.07). Additionally, pretreatment with the mast cell stabilizer nedocromil prevented ET-1-induced changes in MMP-2 activity, myocardial water content, collagen volume fraction, and end-diastolic volume. These findings demonstrate that ET-1 is a potent cardiac mast cell secretogogue and further indicate that ET-1-mediated mast cell degranulation is a potential mechanism responsible for myocardial remodeling.  相似文献   

17.
We monitored myocardial function in postinfarcted wild-type (WT) and transgenic (TG) mouse hearts with overexpression of the cardiac Na(+)/Ca(2+) exchanger. Five weeks after infarction, cardiac function was better maintained in TG than WT mice [left ventricular (LV) systolic pressure: WT, 41 +/- 2; TG, 58 +/- 3 mmHg; P < 0.05; maximum rising rate of LV pressure (+dP/dt(max)): WT, 3,750 +/- 346; TG, 5,075 +/- 334 mmHg/s; P < 0.05]. The isometric contractile response to beta-adrenergic stimulation was greater in papillary muscles from TG than WT mice (WT, 13.2 +/- 0.9; TG, 16.3 +/- 1.0 mN/mm(2) at 10(-4) M isoproterenol). The sarcoplasmic reticulum (SR) Ca(2+) content investigated by rapid cooling contractures in papillary muscles was greater in TG than WT mouse hearts. We conclude that myocardial function is better preserved in TG mice 5 wk after infarction, which results from enhanced SR Ca(2+) content via overexpression of the Na(+)/Ca(2+) exchanger.  相似文献   

18.
Liu HT  Zhang HF  Si R  Zhang QJ  Zhang KR  Guo WY  Wang HC  Gao F 《生理学报》2007,59(5):651-659
我们前期研究表明胰岛素可激活细胞内信号转导机制如磷脂酰肌醇3.激酶.蛋白激酶B.内皮型一氧化氮合酶.一氧化氮(P13-K-Akt-eNOS-NO)信号通路,减轻心肌缺血/再灌注(ischemia/reperfusion,I/R)损伤,改善缺血后心肌功能恢复。然而c-Jun氨基末端激酶(c-JunNH2-terminal kinase,JNK)信号通路在胰岛素保护I/R心肌中的作用尚不清楚,本研究旨在探讨JNK信号通路在胰岛素保护I/R心肌中的作用及其与P13.K/Akt信号通路间的相互关系。离体Sprague-Dawley大鼠心脏缺血30min后施行2h或4h的再灌注,缺血前用LY294002(15mmol/L)和SP600125(10mmol/L)灌注15min,分别阻断P13.K/Akt和磷酸化JNK(phosphorylated.JNK,p-JNK)活化,观测心脏功能、心肌梗死、细胞凋亡和蛋白磷酸化水平。与对照组相比,胰岛素再灌注2h后,心率、左心室发展压和左心室收缩/舒张最大速率均明显增加,梗死面积减少约16.1%[(28.9±2.0)%vs(45.0±4.0)%,n=6,P〈O.01],细胞凋亡指数从(27.6±113)%减少到(16.0±0.7)%(n=6,P〈O.01),Akt的活性增加1.7倍(n=6,P〈0.05),同时JNK活性增加1.5倍铆=6,P〈O.05)。用LY294002处理后,胰岛素对I/R心肌的保护作用消失;而用SP600125处理可增强胰岛素的保护作用,且可部分逆转LY294002的抑制作用。进一步观察发现SP600125减弱了Akt的磷酸化m=6,P〈0.05)。上述结果表明,在I/R心肌中,胰岛素可同时激活P13.K/Akt及JNK信号通路,且通过后者进一步增加Akt活化,从而减轻I/R损伤,改善心肌功能。这种P13.K/Akt与JNK信号通路交互机制对胰岛素保护I/R心肌有重要意义。  相似文献   

19.
20.
We investigated the effects of PR-39, a recently discovered neutrophil inhibitor, in a murine model of myocardial ischemia-reperfusion injury. Mice were given an intravenous injection of vehicle (n = 12) or PR-39 (n = 9) and subjected to 30 min of coronary artery occlusion followed by 24 h of reperfusion. In addition, the effects of PR-39 on leukocyte rolling and adhesion were studied utilizing intravital microscopy of the rat mesentery. The area-at-risk per left ventricle was similar in vehicle- and PR-39-treated mice. However, myocardial infarct per risk area was significantly (P < 0.01) reduced in PR-39 treated hearts (21.0 +/- 3.8%) compared with vehicle (47.1 +/- 4.8%). Histological analysis of ischemic reperfused myocardium demonstrated a significant (P < 0.01) reduction in polymorphonuclear neutrophil (PMN) accumulation in PR-39-treated hearts (n = 6, 34.3 +/- 1.7 PMN/mm(2)) compared with vehicle-treated myocardium (n = 6, 59.7 +/- 3.1 PMN/mm(2)). In addition, PR-39 significantly (P < 0.05) attenuated leukocyte rolling and adherence in rat inflamed mesentery. These results indicate that PR-39 inhibits leukocyte recruitment into inflamed tissue and attenuated myocardial reperfusion injury in a murine model of myocardial ischemia-reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号