首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thrombin (Thromb), activated as part of the clotting cascade, dilates conduit arteries through an endothelial pertussis toxin (PTX)-sensitive G-protein receptor and releases nitric oxide (NO). Thromb also acts on downstream microvessels. Therefore, we examined whether Thromb dilates human coronary arterioles (HCA). HCA from right atrial appendages were constricted by 30-50% with endothelin-1. Dilation to Thromb (10(-4)-1 U/ml) was assessed before and after inhibitors with videomicroscopy. There was no tachyphylaxis to Thromb dilation (maximum dilation = 87.0%, ED(50) = 1.49 x 10(-2)). Dilation to Thromb was abolished with either hirudin or denudation but was not affected by PTX. Neither N(omega)-nitro-l-arginine methyl ester (n = 7), indomethacin (n = 9), (1)H-[1,2,4] oxadiazolo-[4,3-a]quinoxalin-1-one (n = 6), tetraethylammonium chloride (n = 5), nor iberiotoxin (n = 4) reduced dilation to Thromb. However, KCl (maximum dilation = 89 +/- 5 vs. 20 +/- 10%; P < 0.05; n = 7), tetrabutylammonium chloride (maximum dilation = 79 +/- 7 vs. 21 +/- 4%; P < 0.05; n = 5), and charybdotoxin (maximum dilation = 89 +/- 4 vs. 10 +/- 2%; P < 0.05; n = 4) attenuated dilation to Thromb. In contrast to animal models, Thromb-induced dilation in human arterioles is independent of G(i)-protein activation and NO release. However, Thromb dilation is endothelium dependent, is maintained on consecutive applications, and involves activation of K(+) channels. We speculate that an endothelium-derived hyperpolarizing factor contributes to Thromb-induced dilation in HCA.  相似文献   

2.
We tested whether reactive oxygen species (ROS) generated from treatment with xanthine (XA) and xanthine oxidase (XO) alter vascular tone of human coronary arterioles (HCA). Fresh human coronary arterioles (HCA) from right atrial appendages were cannulated for video microscopy. ROS generated by XA (10(-4) M) + XO (10 mU/ml) dilated HCA (99 +/- 1%, 20 min after application of XA/XO). This dilation was not affected by denudation or superoxide dismutase (150 U/ml). Catalase (500 U/ml or 5,000 U/ml) attenuated the dilation early on, but a significant latent vasodilation appeared after 5 min peaking at 20 min (51 +/- 1%, 20 min after application of XA/XO + 500 U/ml catalase, P < 0.01 vs. control). KCl (40 mM) reduced the early and sustained vasodilation to XA/XO in the absence of catalase but 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 5 x 10(-5) M), diethyldithiocarbamate trihydrate (DDC, 10(-2) M), and deferoxamine (DFX, 10(-3) M) had no effect. In contrast, the catalase-resistant vasodilation was significantly attenuated by DDC, ODQ, and DFX as well as polyethylene-glycolated catalase (5,000 U/ml), but KCl had no effect. Confocal microscopy revealed that even in the presence of catalase, 2',7'-dichlorodihydrofluoresein diacetate fluorescence was observed in the vascular smooth muscle, but this was abolished by DDC. These data indicate that the exogenously generated superoxide anion (O2-*) by XA/XO is spontaneously converted to H2O2, which dilates HCA through vascular smooth muscle hyperpolarization. O2-* is also converted to H2O2 likely by superoxide dismustase within vascular cells and dilates HCA through a different pathway involving the activation of guanylate cyclase. These findings suggest that exogenously and endogenously produced H2O2 may elicit vasodilation by different mechanisms.  相似文献   

3.
The heart constitutively expresses heme oxygenase (HO)-2, which catabolizes heme-containing proteins to produce biliverdin and carbon monoxide (CO). The heart also contains many possible substrates for HO-2 such as heme groups of myoglobin and cytochrome P-450s, which potentially could be metabolized into CO. As a result of observations that CO activates guanylyl cyclase and induces vascular relaxation and that HO appears to confer protection from ischemic injury, we hypothesized that the HO-CO pathway is involved in ischemic vasodilation in the coronary microcirculation. Responses of epicardial coronary arterioles to ischemia (perfusion pressure approximately 40 mmHg; flow velocity decreased by approximately 50%; dL/dt reduced by approximately 60%) were measured using stroboscopic fluorescence microangiography in 34 open-chest anesthetized dogs. Ischemia caused vasodilation of coronary arterioles by 36 +/- 6%. Administration of N(G)-monomethyl-L-arginine (L-NMMA, 3 micromol.kg(-1).min(-1) intracoronary), indomethacin (10 mg/kg iv), and K(+) (60 mM, epicardial suffusion) to prevent the actions of nitric oxide, prostaglandins, and hyperpolarizing factors, respectively, partially inhibited dilation during ischemia (36 +/- 6 vs. 15 +/- 4%; P < 0.05). The residual vasodilation during ischemia after antagonist administration was inhibited by tin mesoporphyrin IX (SnMP, 10 mg/kg iv), which is an inhibitor of HO (15 +/- 4 vs. 7 +/- 2%; P < 0.05 vs. before SnMP). The guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (10(-5) M, epicardial suffusion) also inhibited vasodilation during ischemia in the presence of L-NMMA with indomethacin and KCl. Moreover, administration of heme-L-arginate, which is a substrate for HO, produced dilation after ischemia but not after control conditions. We conclude that during myocardial ischemia, HO-2 activation can produce cGMP-mediated vasodilation presumably via the production of CO. This vasodilatory pathway appears to play a backup role and is activated only when other mechanisms of vasodilation during ischemia are exhausted.  相似文献   

4.
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g (n = 52-56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the K(Ca) blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. L-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca(2+)-activated K(+) channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.  相似文献   

5.
Carbon monoxide (CO) and nitric oxide (NO) are important paracrine messengers in the newborn cerebrovasculature that may act as comessengers. Here, we investigated the role of NO in CO-mediated dilations in the newborn cerebrovasculature. Arteriolar branches of the middle cerebral artery (100-200 microm) were isolated from 3- to 7-day-old piglets and cannulated at each end in a superfusion chamber, and intravascular pressure was elevated to 30 mmHg, which resulted in the development of myogenic tone. Endothelium removal abolished dilations of pressurized pial arterioles to bradykinin and to the CO-releasing molecule Mn(2)(CO)(10) [dimanganese decacarbonyl (DMDC)] but not dilations to isoproterenol. With endothelium intact, N(omega)-nitro-l-arginine (l-NNA), 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), or tetraethylammonium chloride (TEA(+)), inhibitors of NO synthase (NOS), guanylyl cyclase, and large-conductance Ca(2+)-activated K(+) (K(Ca)) channels, respectively, also blocked dilation induced by DMDC. After inhibition of NOS, a constant concentration of sodium nitroprusside (SNP), a NO donor that only dilated the vessel 6%, returned dilation to DMDC. The stable cGMP analog 8-bromo-cGMP also restored dilation to DMDC in endothelium-intact, l-NNA-treated, or endothelium-denuded arterioles, and this effect was blocked by TEA(+). Similarly, in the continued presence of ODQ, 8-bromo-cGMP restored DMDC-induced dilations. These findings suggest that endothelium-derived NO stimulates guanylyl cyclase in vascular smooth muscle cells and, thereby, permits CO to cause dilation by activating K(Ca) channels. Such a requirement for NO could explain the endothelium dependency of CO-induced dilation in piglet pial arterioles.  相似文献   

6.
Lo YC  Tsou HH  Lin RJ  Wu DC  Wu BN  Lin YT  Chen IJ 《Life sciences》2005,76(8):931-944
The vasorelaxation activities of MCPT, a newly synthesized xanthine derivative, were investigated in this study. In phenylephrine (PE)-precontracted rat aortic rings with intact endothelium, MCPT caused a concentration-dependent relaxation, which was inhibited by endothelium removed. This relaxation was also reduced by the presence of nitric oxide synthase inhibitor Nomega-nitro-L-arginine methylester (L-NAME, 100 microM), soluble guanylyl cyclase (sGC) inhibitors methylene blue (10 microM), 1 H-[1,2,4] oxidazolol [4,3-a] quinoxalin-1-one (ODQ, 1 microM), adenylyl cyclase (AC) blocker SQ 22536 (100 microM), ATP-sensitive K+ channel blocker (KATP) glibenclamide (1 microM), a Ca2+ activated K+ channels blocker tetraethylammonium (TEA, 10 mM) and a voltage-dependent potassium channels blocker 4-aminopyridine (4-AP, 100 microM). The vasorelaxant effects of MCPT together with IBMX (0.5 microM) had an additive action. In PE-preconstricted endothelium-denuded aortic rings, the vasorelaxant effects of MCPT were attenuated by pretreatments with glibenclamide (1 microM), SQ 22536 (100 microM) or ODQ (1 microM), respectively. MCPT enhanced cAMP-dependent vasodilator isoprenaline- and NO donor/cGMP-dependent vasodilator sodium nitroprusside-induced relaxation activities in endothelium-denuded aortic rings. In A-10 cell and washed human platelets, MCPT induced a concentration-dependent increase in intracellular cyclic GMP and cyclic AMP levels. In phosphodiesterase assay, MCPT displayed inhibition effects on PDE 3, PDE 4 and PDE 5. The inhibition % were 52 +/- 3.9, 32 +/- 2.6 and 8 +/- 1.1 respectively. The Western blot analysis on HUVEC indicated that MCPT increased the expression of eNOS. It is concluded that the vasorelaxation by MCPT may be mediated by the inhibition of phosphodiesterase, stimulation of NO/sGC/ cGMP and AC/cAMP pathways, and the opening of K+ channels.  相似文献   

7.
Current literature suggests that chronic nitric oxide synthase (NOS) inhibition has differential effects on endothelium-dependent dilation (EDD) of conduit arteries vs. arterioles. Therefore, we hypothesized that chronic inhibition of NOS would impair EDD of porcine left anterior descending (LAD) coronary arteries but not coronary arterioles. Thirty-nine female Yucatan miniature swine were included in the study. Animals drank either tap water or water with N(G)-nitro-L-arginine methyl ester (L-NAME; 100 mg/l), resulting in control and chronic NOS inhibition (CNI) groups, respectively. Treatment was continued for 1-3 mo (8.3 +/- 0.6 mg x kg(-1) x day(-1)). In vitro EDD of coronary LADs and arterioles was assessed via responses to ADP (LADs only) and bradykinin (BK), and endothelium-independent function was assessed via responses to sodium nitroprusside (SNP). Chronic NOS inhibition diminished coronary artery EDD to ADP and BK. Incubating LAD rings with L-NAME decreased relaxation responses of LADs from control pigs but not from CNI pigs such that between-group differences were abolished. Neither indomethacin (Indo) nor sulfaphenazole incubation significantly affected relaxation responses of LAD rings to ADP or BK. Coronary arteries from CNI pigs showed enhanced relaxation responses to SNP. In contrast to coronary arteries, coronary arterioles from CNI pigs demonstrated preserved EDD to BK and no increase in dilation responses to SNP. L-NAME, Indo, and L-NAME + Indo incubation did not result in significant between-group differences in arteriole dilation responses to BK. These results suggest that although chronic NOS inhibition diminishes EDD of LAD rings, most likely via a NOS-dependent mechanism, it does not affect EDD of coronary arterioles.  相似文献   

8.
In isolated coronary arteries, hypoxia induces an increase in tone by releasing an unidentified endothelium-derived contracting factor (EDCF). Isometric force was measured in an isolated rabbit coronary artery ring at 37 degrees C in control and high K+ (40 mM) pre-contracted conditions. Hypoxia (15 mmHg pO2) induced by equilibrating the perfusate with nitrogen. Hypoxia did not affect the resting tone but induced an endothelium-dependent contraction on pre-contracted rings. Inhibitors of nitric oxide (NO) were tested, L-NAME (10(-4) M) totally and L-NMMA (10(-4) M) partially convert the hypoxic contraction to an hypoxic relaxation. The addition of L-arginine (10(-4) or 10(-3) M) did not restore the response. Methylene blue (10( -5) M) and ODQ (1 H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one, 10(-5) M), both inhibitors of guanylate cyclase, also changed the hypoxic contraction into a hypoxic relaxation. Catalase (1200 U/ml), which decomposes hydrogen peroxide (H2O2), and superoxide dismutase (150 U/ml, SOD), a free radical scavenger, did not change the hypoxic response but quinacrine (50 microM), an inhibitor of phospholipase A2, significantly decreased it. Inhibitors of arachidonic acid metabolism (indomethacin, diethylcarbamazine, miconazole) however did not affect the hypoxic response. We conclude that in K+ pre-contracted rabbit coronary artery rings, hypoxia induces a contraction which is nitric oxide and arachidonic acid dependent.  相似文献   

9.
We examined the influence of gender and climacteric status, two coronary risk factors, on bradykinin (BK)-induced dilation in adipose arterioles from men and women of different ages [premenopausal women (Pre-W), postmenopausal women (Post-W), and similar aged men (Y-M and O-M), respectively]. We examined the responses from both omental (more closely associated with coronary disease) and subcutaneous fat. Tissues were obtained at surgery and cannulated (60 mmHg) for measurement of internal diameter. In vessels from omental tissue, dilation to BK was more sensitive in Pre-W than other groups, whereas in vessels from subcutaneous tissue, sensitivity to BK was greater in both Pre-W and Post-W compared with Y-M and O-M. Maximal dilation was similar among groups. Indomethacin (Indo; 10(-5) M) alone had no effect on dilation to BK in any groups, but Indo and N(omega)-nitro-L-arginine methyl ester (L-NAME; 10(-4) M) reduced dilation to BK in Pre-W more than in Y-M. L-NAME increased dilation to BK in subcutaneous fat from Y-M but had no effect in Post-W and O-M. Indo- and L-NAME-resistant dilation in all vessels was markedly reduced by 30 mM KCl. There was no difference in sodium nitroprusside-induced dilation among groups. We conclude that gender and climacteric state contribute to mechanisms of microvascular regulation in humans. Functional vascular differences in visceral and subcutaneous fat may underlie the proposed differential influence of these tissues on cardiovascular risk.  相似文献   

10.
Nitric oxide (NO) donors generally relax vascular preparations through cGMP-mediated mechanisms. Relaxation of endothelium-denuded bovine pulmonary arteries (BPA) and coronary arteries to the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) is almost eliminated by inhibition of soluble guanylate cyclase activation with 10 microM 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), whereas only a modest inhibition of relaxation is observed under hypoxia (PO2 = 8-10 Torr). This effect of hypoxia is independent of the contractile agent used and is also observed with NO gas. ODQ eliminated SNAP-induced increases in cGMP under hypoxia in BPA. cGMP-independent relaxation of BPA to SNAP was not attenuated by inhibition of K+ channels (10 mM tetraethylammonium), myosin light chain phosphatase (0.5 microM microcystin-LR), or adenylate cyclase (4 microM 2',5'-dideoxyadenosine). SNAP relaxed BPA contracted with serotonin under Ca2+-free conditions in the presence of hypoxia and ODQ, and contraction to Ca2+ readdition was also attenuated. The sarcoplasmic reticulum Ca2+-reuptake inhibitor cyclopiazonic acid (0.2 mM) attenuated SNAP-mediated relaxation of BPA in the presence of ODQ. Thus hypoxic conditions appear to promote a cGMP-independent relaxation of BPA to NO by enhancing sarcoplasmic reticulum Ca2+ reuptake.  相似文献   

11.
The hypothesis was addressed that CO-induced cerebral vasodilation requires a permissive cGMP signal that can be produced by nitric oxide (NO). Anesthetized piglets were implanted with cranial windows for measurement of pial arteriolar responses to stimuli. Pial arterioles dilated in response to isoproterenol (Iso), sodium nitroprusside (SNP), and CO or the CO-releasing molecule Mn2(CO)10 [dimanganese decacarbonyl (DMDC)]. 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a soluble guanylyl cyclase inhibitor, decreased cerebrospinal fluid (CSF) cGMP and selectively inhibited dilations to SNP and DMDC without affecting the dilation to Iso. However, DMDC did not cause an increase in cortical periarachnoid CSF cGMP concentration. cGMP clamp with a threshold dilator level of 8-bromo-cGMP (10(-4) M) and ODQ restored the dilation to DMDC that had been blocked by ODQ alone. Under these conditions, cGMP was present but could not increase. Inhibition of the pial arteriolar dilation to glutamate by N-nitro-l-arginine, which blocks NO synthase, was similar to that by heme oxygenase inhibitors, which block endogenous CO production. The dilation to glutamate, similar to dilation to DMDC, was partially restored by 8-bromo-cGMP and completely restored by SNP (5 x 10(-7) M). These data suggest that the permissive role of NO in CO- and glutamate-induced vasodilation involves maintaining the minimum necessary cellular level of cGMP to allow CO to cause dilation independently of increasing cGMP.  相似文献   

12.
Endogenously produced CO is an important dilator in newborn cerebrovascular circulation. CO dilates cerebral arterioles by activating Ca2+-activated K+ channels, but modulatory actions of other effectors and second messenger inputs are unclear. Specifically, the mechanisms behind the obligatory permissive roles of prostacyclin and NO are uncertain. Therefore, the present study was performed using acutely implanted, closed cranial windows in newborn pigs to address the hypothesis that the permissive roles of NO and prostacyclin in cerebrovascular dilation in response to CO involve a common mechanism. The NO donor sodium nitroprusside restored dilation in response to CO after inhibition of that dilation with the prostaglandin cyclooxygenase inhibitor indomethacin. The stable prostacyclin analog iloprost restored CO-induced dilation blocked by the NO synthase inhibitor Nomega-nitro-L-arginine. Restoration of dilation in response to CO by the cGMP-dependent phosphodiesterase inhibitor zaprinast and blockade of CO dilation by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazole-[4,3-a]quinoxalin-1-one (ODQ) suggests involvement of the cGMP/PKG pathway. Iloprost or the cAMP-dependent dilator isoproterenol restored dilation in response to CO after ODQ administration. However, CO-induced dilation blocked by the cGMP-dependent PKG inhibitor Rp-8-[(4-chlorophenyl)thio]-cGMPS triethylamine could not be reversed by administration of sodium nitroprusside, iloprost, or isoproterenol. Conversely, PKA inhibition did not block dilation in response to CO. Overall, data indicate that activation of PKG is the predominant mechanism of the permissive actions of NO and prostacyclin for CO-induced pial arteriolar dilation.  相似文献   

13.
Vulgarenol, a sesquiterpene isolated from Magnolia grandiflora flower petals, decreased coronary vascular resistance in the Langendorff isolated and perfused heart model, when compared to the control group [(15.2 x 10(7) +/- 1.0 x 10(7)) dyn s cm(-5) vs. (36.8 x 10(7) +/- 1.2 x 10(7)) dyn s cm(-5)]. Our data suggest that this coronary vasodilator effect probably involved inducible and endothelial nitric oxide synthase overexpression (6.8 and 4.2 times over control, respectively), which correlated with increases in nitric oxide release [(223 +/- 9) pmol mL(-1) vs. (61 +/- 11) pmol mL(-1)] and in cyclic guanosine monophosphate production [(142 +/- 8) pmol mg(-1) of tissue vs. (44 +/- 10) pmol mg(-1) of tissue], as compared to control values. This effect was antagonized by 3 microm gadolinium(III) chloride, 100 microM N-nitro-L-arginine methyl ester, and 10 microM 1H-[1,2,4]oxadiazolo[4,2-a]quinoxalin-1-one. Hence, the vulgarenol-elicited coronary vasodilator effect could be mediated by the nitric oxide-soluble guanylyl cyclase pathway.  相似文献   

14.
Information about the presence and effects of nitric oxide (NO) in fish vasculature is scant and contradictory. We have studied the NO/cGMP system in the branchial circulation of the teleost Anguilla anguilla using a branchial basket preparation under basal conditions and cholinergic stimulation. The effects of endogenous and exogenous NO were tested with L-arginine, the nitric oxide synthase (NOS) substrate, and the NO donors 3-morpholinosydnonimine (SIN-1) and sodium nitroprusside (SNP), respectively. L-arginine (from 10(-11) to 10(-6) M) and the NO donors (starting from 10(-14) M) caused dose-dependent vasoconstriction. Conversely, in the ACh-pre-contracted preparations both donors elicited vasodilation. SIN-1-induced vasoconstriction was due to NO generation: it was increased by superoxide dismutase (SOD) and blocked by NO scavenger hemoglobin. Pre-treatment with sGC inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) inhibited the effects of SIN-1 and SNP. The stable cGMP analogue 8-bromo-guanosine 3',5'-cyclic monophosphate (8-Br cGMP) induced dose-dependent vasoconstriction. Unexpectedly, three NOS inhibitors, N(G)-nitro-L-arginine methyl ester (L-NAME), N(G)-monomethyl-L-arginine (L-NMMA), L-N(5)-(1-iminoethyl) ornithine (L-NIO), caused mild vasoconstriction. ACh caused vasoconstriction, but at pico- and nanomolar concentrations it caused mild but significant vasodilation in 40% of the preparations. Both responses, blocked by atropine and pirenzepine, required an intact endothelium. The ACh-induced vasoconstriction was substantially independent of a NO-cGMP mechanism.  相似文献   

15.
Responses to human CGRP, adrenomedullin (ADM), and proadrenomedullin NH2-terminal 20 peptide (PAMP) were studied in small human thymic arteries. CGRP, ADM, and PAMP produced concentration-dependent vasodilator responses in arteries preconstricted with the thromboxane mimic U-46619. Responses to ADM and PAMP were attenuated, whereas responses to CGRP were not altered by endothelial denudation. Inhibitors of nitric oxide synthase and guanylyl cyclase attenuated responses to ADM and PAMP but not to CGRP. The CGRP1 receptor antagonist CGRP(8-37) attenuated responses to CGRP and ADM but not to PAMP. Responses to CGRP were reduced by SQ-22536 and Rp-cAMPS, inhibitors of adenylyl cyclase and PKA. These data suggest that responses to CGRP and ADM are mediated by CGRP(8-37)-sensitive receptors and that the endothelial ADM receptor induces vasodilation by a nitric oxide-guanylyl cyclase mechanism, whereas a smooth muscle CGRP receptor signals by a cAMP-dependent mechanism. A different endothelial receptor recognizes PAMP and signals by a nitric oxide-dependent mechanism.  相似文献   

16.
Kandilci HB  Gumusel B  Lippton H 《Peptides》2008,29(8):1321-1328
The present study was designed to investigate the effects of rat intermedin/adrenomedullin2 (rIMD), an agonist for calcitonin-like calcitonin receptors (CRLR), on the isolated rat pulmonary arterial rings (PA). When PA were precontracted with 9,11-dideoxy-11alpha,9alpha-epoxymethanoprostaglandin F2alpha (U-46619), rIMD (10(-11) to 10(-6)M) induced concentration-dependent relaxation. The pulmonary vasorelaxant response (PVR) to rIMD in PA were completely inhibited by endothelium removal, NG-nitro-L-arginine-methyl-ester (L-NAME), l-N5-(1-iminoethyl)-ornithine hydrochloride (l-NIO) or 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The PVR to rIMD were also significantly attenuated by a protein kinase inhibitor, Rp-8-bromo-beta-phenyl-1,N2-ethenoguanosine 3':5'-cyclic monophosphorothioate sodium salt hydrate (Rp-8-Br-PETcGMPs), cholera toxin and abolished by tetraethylammonium chloride (TEA), iberiotoxin and precontraction with KCl. The relaxant effect was not affected by 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ22536), (9S,10S,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy 1H diindolo [1,2,3fg:3',2',1'kl] pyrrolo [3,4-i] [1,6] benzodiazocine-10-carboxylic acid hexyl ester (KT5720), meclofenamate, glybenclamide or apamin. In parallel with SQ22536 and KT5720 results rolipram pretreatment did not alter the rIMD-induced PVR. The PVR to rIMD was potentialized either in the presence of zaprinast or sildenafil. Since the PVR to rIMD was also significantly reduced by rCGRP(8-37) and hADM(22-52) and rIMD(17-47), the present data suggest that rIMD produces PVR by acting in an indiscriminant manner on functional, and possibly different, endothelial CRLR. In conclusion, rIMD stimulates endothelial CRLR are coupled to release of nitric oxide, activation of guanylate cyclases, and promotion of hyperpolarization through large conductance calcium-activated K(+) channels in rat main PA.  相似文献   

17.
Our experiments were designed to determine the acute effects of 17beta-estradiol on femoral veins from intact and ovariectomized female pigs. Rings of femoral veins with or without endothelium were suspended in organ chambers for measurement of isometric force. Concentration-response curves to 17beta-estradiol (10(-9) to 10(-5) M) were obtained in veins contracted with prostaglandin F(2alpha) in the absence and presence of inhibitors of either estrogen receptors (ICI-182780; 10(-5) M), nitric oxide synthase [N(G)-monomethyl-l-arginine (l-NMMA); 10(-4) M], soluble guanylate cyclase (1-H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; 10(-5) M), or potassium channels (tetraethylammonium; 10(-2) M). Estrogen receptors were identified with the use of Western blotting and immunostaining in veins of both groups. 17beta-Estradiol caused acute endothelium-dependent relaxations in both groups. Relaxations to 17beta-estradiol were inhibited by l-NMMA and 1-H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one but not ICI-182780. Tetraethylammonium inhibited relaxations only in veins with endothelium from intact females. Results indicate that 17beta-estradiol causes acute endothelium-dependent relaxations in femoral veins. The relative contribution of nitric oxide and K(+) channels as mechanisms involved in relaxations to 17beta-estradiol in femoral veins is modulated by ovarian status.  相似文献   

18.
Enterocytes maintain fluid-electrolyte homeostasis by keeping a tight barrier and regulating ion channels. Carbon monoxide (CO), a product of heme degradation, modulates electrolyte transport in kidney and lung epithelium, but its role in regulating intestinal fluid-electrolyte homeostasis has not been studied. The major source of endogenous CO formation comes from the degradation of heme via heme oxygenase. We hypothesized that heme activates electrolyte transport in intestinal epithelial cells. Basolateral hemin treatment increased baseline Caco-2 cell short-circuit currents (I(sc)) twofold (control = 1.96 +/- 0.14 microA/cm(2) vs. hemin = 4.07 +/- 0.16 microA/cm(2), P < 0.01); apical hemin had no effect. Hemin-induced I(sc) was caused by Cl- secretion because it was inhibited in Cl- -free medium, with ouabain, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), or DIDS. Apical electrogenic Na+ channel inhibitor benzamil had no effect on hemin-induced I(sc). Hemin did not alter the ability of Caco-2 cells to respond maximally to forskolin, but a soluble guanylate cyclase inhibitor, [1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) inhibited the effects of hemin. A CO-releasing molecule, tricarbonyldichlororuthenium II, induced active Cl- secretion that was also inhibited with ODQ. We conclude that hemin induces active Cl- secretion in Caco-2 cells via a cGMP-dependent pathway. These effects are probably the consequence of CO formation. Heme and CO may be important regulators of intestinal fluid-electrolyte homeostasis.  相似文献   

19.
In addition to its known action on vascular smooth muscle, nitric oxide (NO) has been suggested to have cardiovascular effects via regulation of red blood cell (RBC) deformability. The present study was designed to further explore this possibility. Human RBCs in autologous plasma were incubated for 1 h with NO synthase (NOS) inhibitors [N(omega)-nitro-l-arginine methyl ester (l-NAME) and S-methylisothiourea], NO donors [sodium nitroprusside (SNP) and diethylenetriamine (DETA)-NONOate], an NO precursor (l-arginine), soluble guanylate cyclase inhibitors (1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one and methylene blue), and a potassium channel blocker [triethylammonium (TEA)]. After incubation, RBC deformability at various shear stresses was determined by ektacytometry. Both NOS inhibitors significantly reduced RBC deformability above a threshold concentration, whereas the NO donors increased deformability at optimal concentrations. NO donors, as well as the NO precursor l-arginine and the potassium blocker TEA, were able to reverse the effects of NOS inhibitors. Guanylate cyclase inhibition reduced RBC deformation, with both SNP and DETA-NONOate able to reverse this effect. These results thus indicate the importance of NO as a determinant of RBC mechanical behavior and suggest its regulatory role for normal RBC deformability.  相似文献   

20.
The hepatic parasympathetic nerves and hepatic nitric oxide synthase (NOS) are involved in the secretion of a hepatic insulin sensitizing substance (HISS), which mediates peripheral insulin sensitivity. We tested whether binding of ACh to hepatic muscarinic receptors is an upstream event to the synthesis of nitric oxide (NO), which, along with the activation of hepatic guanylate cyclase (GC), permits HISS release. Male Wistar rats (8-9 wk) were anesthetized with pentobarbital sodium (65 mg/kg). Insulin sensitivity was assessed using a euglycemic clamp [the rapid insulin sensitivity test (RIST)]. HISS inhibition was induced by antagonism of muscarinic receptors (atropine, 3 mg/kg i.v.) or by blockade of NOS [NG-nitro-L-arginine methyl ester (L-NAME), 1 mg/kg intraportally (i.p.v.)]. After the blockade, HISS action was tentatively restored using a NOdonor [3-morpholynosydnonimine (SIN-1), 5-10 mg/kg i.p.v.] or ACh (2.5-5 microg.kg(-1).min(-1) .i.p.v.). SIN-1 (10 mg/kg) reversed the inhibition caused by atropine (RIST postatropine 137.7 +/- 8.3 mg glucose/kg; reversed to 288.3 +/- 15.5 mg glucose/kg, n = 6) and by L-NAME (RIST post-L-NAME 152.2 +/- 21.3 mg glucose/kg; reversed to 321.7 +/- 44.7 mg glucose/kg, n = 5). ACh did not reverse HISS inhibition induced by L-NAME. The role of GC in HISS release was assessed using 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, 5 nmol/kg i.p.v.), a GC inhibitor that decreased HISS action (control RIST 237.6 +/- 18.6 mg glucose/kg; RIST post-ODQ 111.7 +/- 6.2 mg glucose/kg, n = 5). We propose that hepatic parasympathetic nerves release ACh, leading to hepatic NO synthesis, which activates GC, triggering HISS action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号