首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strength and conditioning professionals who work with collegiate football players focus much of their time and effort on developing programs to enhance athletic performance. Although there has been much speculation, there is little scientific evidence to suggest which combination of physical characteristics best predicts athletic performance in this population. The purpose of this investigation was to examine the relationship among 6 physical characteristics and 3 functional measures in college football players. Data were gathered on 46 NCAA Division I college football players. The 3 response variables were 36.6-m sprint, 18.3-m shuttle run, and vertical jump. The 6 regressor variables were height, weight, percentage of body fat, hamstring length, bench press, and hang clean. A stepwise multiple regression analysis was performed to screen for variables that predict physical performance. Regression analysis revealed clear prediction models for the 36.6-m sprint and 18.3-m shuttle run. The results of this investigation will help strength and conditioning specialists better understand the variables that predict athletic performance in Division I college football players.  相似文献   

2.
3.
The purpose of this study was to compare anthropometric and athletic performance variables during the playing career of NCAA Division III college football players. Two hundred and eighty-nine college football players were assessed for height, body mass, body composition, 1-repetition-maximum (1RM) bench press, 1RM squat, vertical jump height (VJ), vertical jump peak, and vertical jump mean (VJMP) power, 40-yd sprint speed (40S), agility, and line drill (LD) over an 8-year period. All testing occurred at the beginning of summer training camp in each of the seasons studied. Data from all years of testing were combined. Players in their fourth and fifth (red-shirt year) seasons of competition were significantly (p < 0.05) heavier than first-year players. Significant increases in strength were seen during the course of the athletes' collegiate career (31.0% improvement in the 1RM bench press and 36.0% increase in squat strength). The VJ was significantly greater during the fourth year of competition compared to in the previous 3 years of play. Vertical jump peak and VJMP were significantly elevated from years 1 and 2 and were significantly higher during year 4 than during any previous season of competition. No significant changes in 40S or LD time were seen during the athletes playing career. Fatigue rate for the LD (fastest time/slowest time of 3 LD) significantly improved from the first (83.4 ± 6.4%) to second season (85.1 ± 6.5%) of competition. Fatigue rates in the fourth (88.3 ± 4.8%) and fifth (91.2 ± 5.2%) seasons were significantly greater than in any previous season. Strength and power performance improvements appear to occur throughout the football playing career of NCAA Division III athletes. However, the ability to significantly improve speed and agility may be limited.  相似文献   

4.
The present study examined whether male and female National Collegiate Athletic Association (NCAA) Division I intercollegiate volleyball players with high life stress would be at greater risk for the occurrence of injury. Life stress was measured with the Social and Athletic Readjustment Rating Scale (SARRS) and the Athletic Life Experiences Survey (ALES). Regardless of how the data were analyzed (injured v noninjured, high stress v low stress, severity of injury), no relationship was found between life stress and injury, indicating that previous findings for football players were not duplicated for intercollegiate volleyball players. Also, different levels of coping resources among volleyball players did not mediate the life stress to injury rate but did differentiate injured from noninjured players.  相似文献   

5.
ABSTRACT: Mann, JB, Stoner, JD, and Mayhew, JL. NFL-225 test to predict 1RM bench press in NCAA Division I football players. J Strength Cond Res 26(10): 2623-2631, 2012-The National Football League (NFL)-225 test has gained popularity for assessing muscular performance among college football programs. Although the test is a measure of absolute muscular endurance, it was reputed to be highly correlated with maximum muscular strength. The purposes of this study were to assess the predictive potential of the NFL-225 test for estimating 1 repetition maximum (1RM) bench press performance in National Collegiate Athletic Association Division I college football players and to evaluate the accuracy of previous NFL-225 prediction equations. Players (n = 289) in a successful Division I program were assessed over a period of 5 years for 1RM bench press and repetitions completed with 102.3 kg (225 lb). Test sessions occurred within 1 week of each other during the off-season training period. In a validation group (n = 202), repetitions were significantly correlated with 1RM (r = 0.95), producing a prediction equation (1RM [kg] = 103.5 + 3.08 Reps) with a standard error of estimate = 6.4 kg (coefficient of variation = 4.3%). In a randomly selected cross-validation group (n = 87), the new equation nonsignificantly underpredicted by 0.9 ± 7.2 kg produced a high correlation with actual 1RM (intraclass correlation coefficient [ICC] = 0.967), had a limit of agreement of -15.0 to 13.2 kg, and predicted 69% of the group within ±4.5 kg of their actual 1RM. The best previous equation was that of Slovak et al., which was nonsignificantly underpredicted by -0.5 ± 6.7 kg, produced a high correlation with actual 1RM (ICC = 0.975), and predicted 68% of the group within ±4.5 kg of their actual 1RM. The new NFL-225 test seems to be a reasonable predictor of 1RM bench press in Division I players but should be further assessed on players from other high-level programs.  相似文献   

6.
7.
The purpose of this study was to determine the performance and hormonal responses to a 15-week off-season training program for American football. Nine skill position players from a National Collegiate Athletic Association (NCAA) Division I-A football team participated as subjects in this study. Following 4 weeks of weight training (phase I), subjects performed weight training concurrently with high-volume conditioning drills (phase II). Phase III consisted of 15 spring football practice sessions executed over a 30-day period. Performance and hormonal changes were assessed prior to phase I, and following phases I, II, and III. Maximal strength was significantly increased (p < 0.05) for all strength tests during phase I. Squat and power clean values decreased following phase II (p < 0.05), with all values returning to baseline upon completion of phase III. Sprinting speed significantly worsened during phase I (p < 0.05), but then returned to baseline during phase III. Vertical jump and agility improved during phase I (p < 0.05), with vertical jump remaining unchanged for the duration of the study and agility returning to baseline following phase II. Testosterone levels decreased during phase II (p < 0.05) prior to returning to baseline levels during phase III. Cortisol and the testosterone/cortisol ratio remained unchanged during the course of the investigation. Even though overtraining did not occur in the current investigation, a significant maladaptation in performance did occur subsequent to phase II. For this particular athletic population, a strength and conditioning program utilizing a reduced training volume-load may prove more effective for improving performance in the future.  相似文献   

8.
Previous ice hockey research has focused on physiological profiles and determinants of skating speed, but few studies have examined the association of preseason player evaluations with a measure of season-long performance. Understanding which tests are most predictive of player performance could help coaches organize practice and training more effectively. The purpose of this study was to describe physical characteristics and skill levels of 24 members of an NCAA Division I men's ice hockey team and relate them to game performance over the course of a season as measured by plus/minus (+/-) score. Subjects performed a battery of preseason tests including treadmill maximal aerobic capacity, body fat, leg press, push-ups, bench press, chin-ups, and sprinting ability both on and off ice. Pearson and Spearman correlations were used to examine correlations between preseason measures and +/- score. One coach also subjectively grouped the top and bottom 6 players, and analysis of variance was used to examine any differences in preseason measures and +/- score between these 2 groups. Leg press, chin-ups, bench press, and repeat sprint performance were significantly correlated with +/- score (r = 0.554, 0.462, 0.499, and -0.568, respectively). Teams with limited time and resources may choose to perform these tests to evaluate player potential efficiently. Only +/- score differed between top and bottom players suggesting that +/- accurately reflected the coach's perception of player success in this sample.  相似文献   

9.
The purpose of this study was to determine the effect of football equipment and running surface on sprint performance in NCAA Division II football players (n = 68). Players were timed in the 40-yd sprint on an indoor rubberized track (Day 1) and on an outdoor, natural-grass football field (Day 2) wearing either regulation football equipment or shorts and a T-shirt. Each player was assigned randomly to perform 2 trials under each condition on each surface, and the average of the 2 trials was used for analysis. Offensive backs, defensive backs, and linebackers were significantly faster than were offensive and defensive linemen in all trials, and subjects were collapsed into 2 groups, backs and linemen. Football equipment significantly impaired performance on the track (-2.8% +/- 1.7%) and the field (-2.9% +/- 1.8%). The increase in body mass due to the football equipment was significantly greater for backs (7.2% +/- 0.7%) than for linemen (6.5% +/- 1.0%), but produced a significantly greater impairment in sprint performance in linemen (-3.3% +/- 1.1%) as compared with backs (-2.5% +/- 1.5%). Sprint performance was significantly and equivalently impaired when running on grass (backs: -2.5 +/- 1.1%; linemen: -2.8 +/- 1.4%) as compared with the track. Thus, running a 40-yd sprint in football equipment on a natural grass field impairs performance by an average of 5.5% (+/- 2.3%) compared with running indoors with minimal apparel. Football equipment and running surface significantly impair sprint performance in college football players, the effect being greater in linemen than in backs, and is likely related to differences in muscle strength/power and body fat.  相似文献   

10.
Court sports often require more frequent changes of direction (COD) than field sports. Most court sports require 180 degrees turns over a small distance, so COD in such sports might be best evaluated with an agility test involving short sprints and sharp turns. The purposes of this study were to (a) quantify vertical and horizontal force during a COD task, (b) identify possible predictors of court-sport-specific agility performance, and (c) examine performance difference between National Collegiate Athletic Association Division I, II, and III athletes. Twenty-nine collegiate female volleyball players completed a novel agility test, countermovement (CM) and drop jump tests, and an isometric leg extensor test. The number of athletes by division was as follows: I (n = 9), II (n = 11), and III (n = 9). The agility test consisted of 4 5-meter sprints with 3 180 degrees turns, including 1 on a multiaxial force platform so that the kinetic properties of the COD could be identified. One-way analysis of variance revealed that Division I athletes had significantly greater countermovement jump heights than Division III, and the effect size comparisons (Cohen's d) showed large-magnitude differences between Division I and both Divisions II and III for jump height. No other differences in performance variables were noted between divisions, although effect sizes reached moderate values for some comparisons. Regression analysis revealed that CM displacement was a significant predictor of agility performance, explaining approximately 34% of the variance. Vertical force was found to account for much of the total force exerted during the contact phase of the COD task, suggesting that performance in the vertical domain may limit the COD task used herein. This study indicates that individuals with greater CM performance also have quicker agility times and suggests that training predominantly in the vertical domain may also yield improvements in certain types of agility performance. This may hold true even if such agility performance requires a horizontal component.  相似文献   

11.
The purpose of this study was to determine if National Collegiate Athletic Association (NCAA) Division I men's tennis programs are in compliance with suggested current preactivity and postactivity stretching protocols. Questionnaires were sent to NCAA Division I men's tennis programs in the USA. Seventy-six coaches (73 men and 3 women) participated in the study. The results of the Chi-Square analysis suggest that the number of years of head coaching experience had a significant relationship with the preactivity stretching routines employed by coaches (p = 0.029). A significant difference was found between preactivity stretching routines and the key sources of influence for the foundation of knowledge regarding preactivity stretching (p = 0.012). Some results indicate that many tennis coaches do not use current suggested practices for preactivity stretching. The results of this study indicate that certification may influence how well research guidelines are followed. Further research is needed to delineate how these factors affect coaching decisions.  相似文献   

12.
The purpose of this study was to evaluate the contribution of anthropometric dimensions to improving the accuracy of repetitions-to-fatigue (RTF) using an absolute load of 225 lbs to predict 1 repetition maximum (1RM) bench press performance in college football players. Sixty-one players from an NCAA Division II team were evaluated for 1RM bench press performance, RTF using an absolute load of 225 lbs, and measured (5 skinfolds, 2 skeletal length, and 2 muscle circumferences). Anthropometric dimensions (percent fat, lean body mass, and arm cross-sectional areas) were derived at the conclusion of 8 weeks of heavy resistance training during the off-season. None of the anthropometric dimensions made a significant additional contribution to RTF (r = 0.96, SEE = 12.3 lbs) for predicting 1RM. Of the currently available NFL-225 prediction equations found in the literature nonsignificantly underestimated 1RM from RTF by an average of 1.1 lbs (+/-12.7 lbs), whereas 5 other RTF equations significantly overpredicted by 3.5-9.0 lbs (+/-12.2-14.1 lbs). Anthropometric dimensions neither reduced the error associated with prediction of 1RM bench press using the NFL-225 test in college football players nor do they explain why some players are significantly over- or underpredicted when using muscle endurance repetitions.  相似文献   

13.
The aim of the study was to define biomotor characteristics that determine playing performance and position in female handball. A battery of 13 variables consisting of somatotype components (3 variables), basic motor abilities (5 variables) and specific motor abilities (5 variables) were applied in a sample of 52 elite female handball players. Differences in biomotor characteristics according to playing performance and position of female handball players were determined by use of the analysis of variance (ANOVA) and discriminative analysis. Study results showed the high-quality female handball players to predominantly differ from the less successful ones in the specific factor of throw strength and basic dash factor, followed by the specific abilities of movement without and with ball, basic coordination/agility and specific ability of ball manipulation, and a more pronounced mesomorphic component. Results also revealed the wing players to be superior in the speed of movement frequency (psychomotor speed), run (explosive strength) and speed of movement with ball as compared with players at other playing positions. Also, endomorphic component was less pronounced in players at the wing and back player positions as compared with goalkeeper and pivot positions, where endomorphic component was considerably more pronounced.  相似文献   

14.
Iguchi, J, Yamada, Y, Ando, S, Fujisawa, Y, Hojo, T, Nishimura, K, Kuzuhara, K, Yuasa, Y, and Ichihashi, N. Physical and performance characteristics of Japanese division 1 collegiate football players. J Strength Cond Res 25(12): 3368-3377, 2011-This study aimed to establish the physical and performance characteristics of football players in the Japanese Division 1 collegiate football program and perform a comparison of these characteristics between Japanese (n = 208) and US Division 1 football players (n = 797). The following comparisons were made: (a) between a higher-ranked university team vs. a lower-ranked university team in Japan, (b) between different playing positions in Japan, (c) between starters and nonstarters in Japan, and (d) between playing positions in Japan vs. those in the United States. The results of this study suggest that players in the higher-ranked university team were heavier, stronger in back squat, jumped higher, and had greater power than those on the lower-ranked team. Furthermore, linemen were generally characterized by larger size, greater strength, and more fat as compared with backs. On the other hand, backs tended to be faster, smaller in physical size, have higher vertical jump height, and show greater relative strength than linemen did. Starters were taller, heavier, stronger, had more powerful, and more fat-free mass than nonstarters. Finally, our results revealed that players in the United States were superior to players in Japan in all body status comparisons (p < 0.01). This study revealed that performance and superior body composition are essential for the success of a football player. Power and strength seem to be key factors in defining good football performance.  相似文献   

15.
The purpose of this study was to compare normative data from present Division I National Collegiate Athletic Association football teams to those from 1987. Players were divided into 8 positions for comparisons: quarterbacks (QB), running backs (RB), receivers (WR), tight ends (TE), offensive linemen (OL), defensive linemen (DL), linebackers (LB), and defensive backs (DB). Comparisons included height, body mass, bench press and squat strength, vertical jump, vertical jump power, 40-yd-dash speed, and body composition. Independent t-tests were used to analyze the data with level of significance set at p < 0.01. Significant differences (p < 0.01) were found in 50 of 88 comparisons. From 1987 until 2000, Division I college football players in general have become bigger, stronger, faster, and more powerful. Further research is warranted to investigate if these trends will continue.  相似文献   

16.
Performance data for 261 NCAA Division 1A collegiate football players were analyzed to determine if player position, body weight, body fat, and training time were correlated with changes in performance in the following events: power clean (PC), bench press (BP), squat (SQ), vertical jump (VJ), 40-yd dash (40yd), and 20-yd shuttle (20yd). Individual positions were combined into the following groups: (A) wide receivers, defensive backs, and running backs, (B) linebackers, kickers, tight ends, quarterbacks, and specialists, and (C) linemen. Increases in body weight were positively correlated with increases in BP and PC performance for all groups. Increases in body fat were negatively correlated with performance in the PC and VJ for all groups. For group C, increases in body fat were also negatively correlated with performance in the 40yd and 20yd. Group and training time exhibited no linear relationship with performance in any of the tested events. No linear relationships were observed between the independent variables and performance in the SQ. When individual training data were analyzed longitudinally, a nonlinear increase in performance in the PC, BP, and SQ was observed as training time increased, with the greatest rate of change occurring between the first and second semesters of training.  相似文献   

17.
The relationships between football playing ability (FPA) and selected anthropometric and performance measures were determined among NCAA Division I-A football players (N = 40). Football playing ability (determined by the average of coaches' rankings) was significantly correlated with vertical jump (VJ) in all groups (offense, defense, and position groups of wide receiver-defensive back, offensive linemen-defensive linemen, and running back-tight end-linebacker). Eleven of 50 correlations (groups by variables), or 22%, were important for FPA. Five of the 11 relationships were related to VJ. Forward stepwise regression equations for each group explained over half of the criterion variable, FPA, as indicated by the R(2) values for each model. Vertical jump was the prime predictor variable in the equations for all groups. The findings of this study are discussed in relation to the specificity hypothesis. Strength and conditioning programs that facilitate the capacity for football players to develop forceful and rapid concentric action through plantar flexion of the ankle, as well as extension of the knee and hip, may be highly profitable.  相似文献   

18.
While the importance of physical abilities and motor coordination is non-contested in sport, more focus has recently been turned toward cognitive processes important for different sports. However, this line of studies has often investigated sport-specific cognitive traits, while few studies have focused on general cognitive traits. We explored if measures of general executive functions can predict the success of a soccer player. The present study used standardized neuropsychological assessment tools assessing players' general executive functions including on-line multi-processing such as creativity, response inhibition, and cognitive flexibility. In a first cross-sectional part of the study we compared the results between High Division players (HD), Lower Division players (LD) and a standardized norm group. The result shows that both HD and LD players had significantly better measures of executive functions in comparison to the norm group for both men and women. Moreover, the HD players outperformed the LD players in these tests. In the second prospective part of the study, a partial correlation test showed a significant correlation between the result from the executive test and the numbers of goals and assists the players had scored two seasons later. The results from this study strongly suggest that results in cognitive function tests predict the success of ball sport players.  相似文献   

19.
The present research explored the dynamics of competitive advantages in intercollegiate athletics by investigating the contribution of intangible resources (i.e., athletic and academic reputations) on the generation of more tangible resources (i.e., human and financial resources), which in turn influence the athletic performance (i.e., winning record) and academic performance (i.e., graduation rates), and gender equity. The research was based entirely on archival data of 324 NCAA Division I member institutions. The results of the SEM supported the study’s basic arguments that tangible resources are the sources of competitive advantages in Division I intercollegiate athletics, and that intangible resources contribute to the generation of tangible resources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号