首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanobacteria are suspected to be responsible for a number of diseases, i.e., kidney stones, heart disease, ovarian cancer, peripheral neuropathy, and reduced bone mineral density. Being protected by a mineral shell consisting of apatite, the nanovesicles can enter eukaryotic cells. Depending on the host's stress level, nanobacteria may carry a substantial layer of a protein based slime, instrumental in collecting calcium phosphate from the environment. Calcium phosphate is known to mediate the uptake of nucleic acids by eukaryotic cells. Surprisingly, a pathogenic effect of nanobacteria in HIV can be derived primarily from the trafficking of calcium phosphate in HIV infected cells, performed by primordial proteins. The inescapable conclusion is that nanobacteria could promote genetic diversity in HIV.  相似文献   

2.
Detection of nanobacteria-like particles in human atherosclerotic plaques   总被引:8,自引:0,他引:8  
Recent and historical evidence is consistent with the view that atherosclerosis is an infectious disease or microbial toxicosis impacted by genetics and behavior. Because small bacterial-like particles, also known as nanobacteria have been detected in kidney stones, kidney and liver cyst fluids, and can form a calcium apatite coat we posited that this agent is present in calcified human atherosclerotic plaques. Carotid and aortic atherosclerotic plaques and blood samples collected at autopsy were examined for nanobacteria-like structures by light microscopy (hematoxylin-eosin and a calcium-specific von Kossa staining), immuno-gold labeling for transmission electron microscopy (TEM) for specific nanobacterial antigens, and propagation from homogenized, filtered specimens in culture medium. Nanobacterial antigens were identified in situ by immuno-TEM in 9 of 14 plaque specimens, but none of the normal carotid or aortic tissue (5 specimens). Nanobacteria-like particles were propagated from 26 of 42 sclerotic aorta and carotid samples and were confirmed by dot immunoblot, light microscopy and TEM. [3H]L-aspartic acid was incorporated into high molecular weight compounds of demineralized particles. PCR amplification of 16S rDNA sequences from the particles was unsuccessful by traditional protocols. Identification of nanobacteria-like particles at the lesion supports, but does not by itself prove the hypothesis that these agents contribute to the pathogenesis of atherosclerosis, especially vascular calcifications.  相似文献   

3.
From the observations of different research groups reporting on reduced bone mineral density (BMD) and on a pronounced tendency for kidney stone formation, both in HIV-infected patients, and from results achieved in the treatment of severest peripheral neuropathy with lasers, it is concluded that nanobacteria (NB) could actively contribute to the reduction of BMD. A reduced BMD could primarily stem from NB, extracting calcium and phosphate from blood, affecting the calcium and phosphate homeostasis in humans.  相似文献   

4.
Encrusted cystitis is a subtype of chronic cystitis characterized by multiple calcifications in the form of plaques located in the interstitium of the urinary bladder mucosa and frequently associated with mucosal ulcers. It is a very rare disease of controversial etiology. Our transmission electron microscopy of the calcified plaques of encrusted cystitis has revealed that the smallest formed particles (elementary units) of these calcifications are electron-dense shells surrounding an electron lucent core, diagnostic of calcifying nanoparticles (previously called nanobacteria). We pioneer the notion that calcifying nanoparticles are the causative agents of encrusted urinary bladder cystitis.  相似文献   

5.

Objectives

Randall initially described calcified subepithelial papillary plaques, which he hypothesized as nidi for urinary calculi. The discovery of calcifying nanoparticles (CNP), also referred to as nanobacteria, in calcified soft tissues has raised another hypothesis about their possible involvement in urinary stone formation. This research is the first attempt to investigate the potential association of these two hypotheses.

Methods

We collected renal papilla and blood samples from 17 human patients who had undergone laparoscopic nephrectomy. Immunohistochemical staining (IHS) was applied using monoclonal antibody (mAb) against CNP. Homogenized papillary tissues and serum samples were cultured for CNP. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were performed on papillary samples. Serum samples were tested for CNP antigen and antibody with enzyme-linked immunosorbent assay (ELISA).

Results

Randall’s plaques (RP) were visible on gross inspection in 11 out of 17 samples. IHS was positive for CNP antigen in 8 of the visually positive samples, but in only 1 of the remaining samples. SEM revealed spherical apatite-formations in 14 samples confirmed by EDS analysis. In cultures, all serum samples and 13 tissue homogenates grew CNP. In ELISA, 14 samples were positive for CNP-antigen and 11 samples were positive for CNP-antibody.

Conclusion

There was evidence of a link between detection of CNP and presence of RP. Although causality was not demonstrated, these results suggest that further studies with negative control samples should be made to explore the etiology of RP formation, thus leading to a better understanding of the pathogenesis of stone formation.  相似文献   

6.
Nanobacteria may cause peripheral neuropathy by adhesion to the perineurium. This hypothesis receives support from five independent observations: (1) identification of perineurial apatite in diabetic patients with peripheral neuropathy, (2) massive presence of nanobacteria in a diabetic patient, (3) beneficial effect of lasers on peripheral neuropathy, (4) model simulation indicating that perineurial deposition and attachment of nanobacteria is encouraged by both their size and chemical nature, and (5) transient inhibition of neural function by apatite. Initial deposition of (stressed) nanobacteria is promoted by a slime thought to consist of proteins, calcium, and phosphate, and is most likely followed by an immobilization phase, mediated by a bioadhesive capacity of the apatite. Proteomics may hold the key to control both attachment processes.  相似文献   

7.
We have been studying the potential of human fibroblastic cells (HFC) from periapical granulation tissue to form a calcified matrix. Recently, we reported that inflamed periapical granulation tissue contains osteogenic cells. In the present study, we tested the hypothesis that HFC, cultured with decalcified bone (DB) of rat, might form much greater calcified matrices than with rat decalcified boiled bone (DBB), which was originally prepared as a negative control. HFC were cultured with DB or DBB in the presence or absence of 2 mM -glycerophosphate (-GP) and 50 g/ml ascorbic acid. After six weeks of culture, a number of von Kossa-positive globular structures were unexpectedly observed inside DBB, but not DB. Without HFC, such structures were never seen in DBB incubated with 2 mM -GP and 50 g/ml ascorbic acid. DB cultured with HFC under the same conditions did not show these structures. Electron-microscopic observation revealed that matrix vesicles aggregated on collagen fibrils around globular structures in DBB. Energy dispersive X-ray microanalysis confirmed that these structures were calcified matrices composed of calcium and phosphate. These results suggest that human periapical granulation tissue contains cells responsible for the formation of calcified matrices in DBB, and that DBB could serve as an excellent scaffold for the calcification of HFC, rather than DB.This work was supported by grant-in-aid (project 15689024) for scientific research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.  相似文献   

8.
The in vivo regulation of circulating 1,25(OH)2D3 concentrations by vitamin D status and by dietary calcium and phosphate deficiency was studied. Adult rats were cannulated in the jugular vein and the clearance of physiological doses of 1,25(OH)2D3 monitored. In vitamin D-replete rats we investigated the effects of dietary calcium and phosphate deficiency on the elimination half life of 1,25(OH)2D3 The results showed no effect of dietary phosphate deficiency on the elimination half life of 1,25(OH)2D3. Dietary calcium deficiency resulted in a small increase of the 1,25(OH)2D3 elimination half life (P = 0.04) (normal diet: 16.3 +/- 1.8 hrs, n = 6; -Ca diet: 18.6 +/- 1.1 hrs, n = 5; -P diet: 16.0 +/- 1.4 hrs, n = 6; mean +/- SD). The experiments with the vitamin D deficient rats showed a marked increase in the elimination half life of 1,25(OH)2D3 (36.4 +/- 6.8 hrs, n = 7), when compared to the rats on the normal diet (P = 0.001). From the experiments in the vitamin D replete rats one can infer that regulation of circulating 1,25(OH)2D3 concentrations by dietary calcium or phosphate takes place at the production site and not by changes in elimination rate. However, vitamin D status appears to regulate circulating 1,25(OH)2D3 concentrations also through an effect on the elimination rate.  相似文献   

9.
γ-Carboxyglutamic acid (Gla) is identified in the proteins associated with several types of ectopic calcifications in which hydroxyapatite is the major mineral component. These included the calcified skin and subcutaneous plaques from a patient with dermatomyositis, the calcium containing material extruded from the skin of a patient with scleroderma, and the calcified, atheromatous plaques from aorta. Alkaline hydrolysis of biopsy material from these and from normal tissue revealed the presence of Gla only in the plaque specimens. Since a γ-carboxyglutamic acid-containing protein is normally present in bone and absent in unmineralized tissues, the presence of Gla in soft tissue calcifications is a potentially significant finding, especially in view of its known calcium and phospholipid binding properties.  相似文献   

10.
The effect of 1,25(OH)(2)D(3) on the intracellular calcium, (Ca(+2))i, in both cultured human keratinocytes and in cultured human dermal fibroblasts was investigated. When the intracellular calcium (Ca(+2))i in cultured human keratinocytes, grown in a serum-free medium containing 1.8 mM calcium, was measured by the fluorescent calcium-indicator, Furu-2, the (Ca(+2)i increased 154%, 202%, and 409% over the control value after incubation with 1,25(OH)(2)D(3) at 10(-10) m, 10(-8) m, and 10(-6) m, respectively. This response was immediate (15 seconds), specific (no effect with either 25(OH)D(3) at 10(-8) m or vitamin D(3) at 10(-8) m), and occurred with or without EGTA in the medium. In contrast, 1,25(OH)(2)D(3) did not increase the (Ca(2+))i in either cultured human keratinocytes that were grown in low calcium (0.05 mm), serum-free medium or in cultured human dermal fibroblasts that were grown in medium containing 0.05 mm calcium and 1% serum. The effect of 1,25(OH)(2)D(3) on the the turnover of phosphatidylinositol was investigated as a possible cause for the observed increase in (Ca(+2)i. Cultured human keratinocytes that were incubated with (3)H-inositol demonstrated a 50 % +/- 10% increase in the triphosphated, plasma membrane-bound metabolite of phosphatidylinositol, PIP(2), by 15 seconds, followed by a rapid decrease at 30 seconds, then a return toward basal levels by 1 minute. Lysophosphatidylinositol, which results from the sn-2 deacylation of phosphatidylinositol by phospholipase A(2), decreased 20% +/- 8% within 30 seconds, then increased to 200% +/- 10% of the control value by 5 minutes. The accumulation of IP(3) was increased 50% to 100% above the control value within 30 seconds and this increase was substained during the 5-minute incubation period. Stimulation of phosphatidylinositol turnover by 1,25(OH)(2)D(3) was not detected in either cultured human keratinocytes that were grown in serum-free, low calcium medium or in cultured human dermal fibroblasts that were grown in 1% serum.  相似文献   

11.
《Bioscience Hypotheses》2008,1(3):138-141
Small (50–200 nm), calcium phosphate (apatite)-covered organic particles called nanobacteria or calcifying nanoparticles (CNP) seem to be ubiquitous in kidney stones and are thought to be involved in stone formation. Although initial claims that these particles are the smallest known life forms have been somewhat softened, much controversy remains as to their involvement in kidney stone formation as well as in other pathological calcifications. I suggest that such particles are non-living and may be formed during the normal living activities of bona-fide bacteria which inhabit the kidneys. This hypothesis is based on previous observations that bacteria immersed in a supersaturated fluid produce organic globules which calcify when released to the surrounding fluid, forming CNP-like particles. The possibility that this process is responsible for the formation of CNP associated with pathological calcifications deserves greater scrutiny.  相似文献   

12.
目的分离、培养与鉴定钙化胎盘中的纳米细菌,为进一步探讨纳米细菌致胎盘钙化的机制奠定基础。方法剖腹产手术收集25份钙化胎盘组织标本,通过脱矿、过滤、离心处理,用细胞培养的方法进行纳米细菌培养,观察其生长情况。运用透射电镜、扫描电镜观察培养物形态。结果 (1)培养3~4周后,对钙化组织培养标本进行观察,发现部分培养管底部出现紧贴管壁生长的白色沉淀物。(2)扫描电镜见纳米细菌为大颗粒成簇分布。(3)透射电镜可见纳米细菌为针状物的聚集体,大小不一。结论首次从钙化胎盘组织中分离培养鉴定出纳米细菌,表明其感染与胎盘钙化有关,需进一步研究其矿化机制以及所致钙化对后代的影响。  相似文献   

13.
In cultured endothelial cells harvested from human umbilical vein (HUVEC) or bovine aorta (BAEC) the 30 min incubation with calcium ionophore A 23187 (1 microM) or ticlopidine (100 microM) caused an increase in nitrite generation in HUVEC from basal 227 +/- 37 to 372 +/- 60 or to 325 +/- 33 pmoles per 10(6) cells, respectively, and in BAEC from basal 182 +/- 17 to 378 +/- 18 or to 423 +/- 66 pmoles per 106 cells (n = 6), respectively. Calcium ionophore A 23187 (1 microM) or ticlopidine (100 microM) next to 30 min incubation with BAEC increased release of 6-keto-PGF 1alpha from basal level of 9.4 +/- 1.8 to 96.2 +/- 5.1 or to 99.5 +/- 10.2 pmoles per 10(6) cells, respectively. The pretreatment with aspirin (300 microM) cut down this rise to 4.2 +/- 0.1 pmoles per 10(6) cells (n = 8). Basal cytoplasmic calcium levels, [Ca2+]i, in immortalised HUVEC cell line - ECV304, HUVEC and BAEC were 47.7 +/- 3.3 nM (n = 53), 68.3 +/- 5.0 nM (n = 30) and 53.1 +/- 3.0 nM (n = 15), respectively. In these cultured endothelial cells calcium ionophore A 23187 (0.1 microM) produced net maximum rise in [Ca2+]i by 157 +/-27 nM (n = 16)[ ECV304], by 107 +/- 58 nM (n=4) [HUVEC], and by 231.0 +/- 41.3 nM (n = 8) [BAEC], respectively, while ticlopidine (30 microM) produced net maximum rise in [Ca2+]i by 30.0 +/- 3.2 nM (n=9)[ECV304], 48.8 +/- 15.6 nM (n = 4)[HUVEC] and 28.4 +/- 5.4 nM (n = 8)[BAEC], respectively. Effect of ticlopidine on [Ca2+]i was not only weaker than that of calcium A 23187 but also its maximum appeared after a lag period that was 2 3 times longer than that for A23187. In ECV304 clopidogrel at concentrations of 10, 30 and 100 microM produced maximum increment of [Ca2+]i by 16.5 +/- 3.8 nM (n = 7), 47.0 +/- 6.9 nM (n = 8) and 67.2 +/- 8.3 nM (n = 8), respectively. Incubation of BAEC with A23187 (microM), ticlopidine or clopidogrel (100 microM) for 2 h did not influence viability of cultured endothelial cells. We claim that thienopyridines, independently of their delayed anti-platelet properties ex vivo do release NO and PGI2 from cultured endothelial cells in vitro. The above endothelial action of thienopyridines might be mediated by a rise in [Ca2+]i, however, this possibility has not been proved.  相似文献   

14.
X-ray diffraction, i.r. absorption, and chemical analyses have been carried out on the mineral deposits of calcified human mitral valves and glutaraldehyde-preserved porcine aortic grafts. The mineral deposits isolated from highly calcified mitral valves and porcine aortic grafts are constituted of type B-carbonate apatite. Magnesium substituted beta-tricalcium phosphate is present, together with an apatitic phase similar to dahllite, in the ashes of poorly calcified mitral valves. The contraction of the unit cell of beta-tricalcium phosphate due to magnesium incorporation is compared with the variation of the lattice constants of synthetic beta-tricalcium phosphate at different degree of magnesium substitution for calcium. The results reveal the important role of magnesium on the calcification of human valves. In fact, the apatitic phase deposited at the beginning of the calcification process, when there is a high magnesium content, converts completely into beta-tricalcium phosphate by heat treatment at 1,000 degrees C. On the other hand, when the calcification becomes massive, magnesium content appears highly reduced, and the deposited apatitic phase is characterized by a high thermal stability.  相似文献   

15.
Baseline levels and increases in urinary cyclic AMP excretion (UcAMP) and immunoreactive parathormone (iPTH) were studied before and during infusion of EDTA in euparathyroid patients with renal stones (n=11), patients with primary hyperparathyroidism (PHP; n=14) and patients with vitamin D deficiency (n = 12). In all three groups, EDTA evoked a significant rise in iPTH and UcAMP. In patients with PHP and in those with vitamin D deficiency, there was a sufficiently close relationship between increments in iPTH (delta iPTH) and in UcAMP (delta UcAMP) (r = 0.90, P less than 0.001 and r = 0.67, P less than 0.02, respectively) to use this model to assess renal sensitivity for changes to endogenous PTH levels. We quantified sensitivity of the kidney for PTH, by calculating the ratio delta UcAMP/delta TPTH for the three studied groups. The ratio was comparable in patients with renal stones (16.7 +/- 10.3) and PHP (13.8 +/- 4.9, P greater than 0.10), but was significantly increased in patients with vitamin D deficiency (33.2 +/- 17.9; P less than 0.01 versus patients with renal stones and P less than 0.01 versus patients with PHP). Within the group of patients with PHP there was no correlation between baseline serum calcium concentrations and the ratio delta UcAMP/delta TPTH. It is concluded that in patients with vitamin D deficiency, renal sensitivity to PTH is increased compared with patients with PHP and euparathyroid patients with renal stones, perhaps an expression of a teleological useful adaptation of end organ sensitivity.  相似文献   

16.
One of the most common types of urinary stones formed in humans and some other mammals is composed of calcium oxalate in ordered hydrated crystals. Many studies have reported a range of metals other than calcium in human stones, but few have looked at stones from animal models such as the dog. Therefore, we determined the elemental profile of canine calcium oxalate urinary stones and compared it to reported values from human stones. The content of 19 elements spanning 7-orders of magnitude was quantified in calcium oxalate stones from 53 dogs. The elemental profile of the canine stones was highly overlapping with human stones, indicating similar inorganic composition. Correlation and cluster analysis was then performed on the elemental profile from canine stones to evaluate associations between the elements and test for potential subgrouping based on elemental content. No correlations were observed with the most abundant metal calcium. However, magnesium and sulfur content correlated with the mineral hydration form, while phosphorous and zinc content correlated with the neuter status of the dog. Inter-elemental correlation analysis indicated strong associations between barium, phosphorous, and zinc content. Additionally, cluster analysis revealed subgroups within the stones that were also based primarily on barium, phosphorous, and zinc. These data support the use of the dog as a model to study the effects of trace metal homeostasis in urinary stone disease.  相似文献   

17.
Self-calcifying, self-replicating nanoparticles have been isolated from calcified human tissues. However, it is unclear if these nanoparticles participate in disease processes. Therefore, this study was designed to preliminarily test the hypothesis that human-derived nanoparticles are causal to arterial disease processes. One carotid artery of 3 kg male rabbits was denuded of endothelium; the contralateral artery remained unoperated as a control. Each rabbit was injected intravenously with either saline, calcified, or decalcified nanoparticles cultured from calcified human arteries or kidney stones. After 35 days, both injured and control arteries were removed for histological examination. Injured arteries from rabbits injected with saline showed minimal, eccentric intimal hyperplasia. Injured arteries from rabbits injected with calcified kidney stone- and arterial-derived nanoparticles occluded, sometimes with canalization. The calcified kidney stone-derived nanoparticles caused calcifications within the occlusion. Responses to injury in rabbits injected with decalcified kidney stone-derived nanoparticles were similar to those observed in saline-injected animals. However, decalcified arterial-derived nanoparticles produced intimal hyperplasia that varied from moderate to occlusion with canalization and calcification. This study offers the first evidence that there may be a causal relationship between human-derived nanoparticles and response to injury including calcification in arteries with damaged endothelium.  相似文献   

18.
《Endocrine practice》2016,22(5):523-532
Objective: Hypoparathyroidism is characterized by inadequate parathyroid hormone (PTH), resulting in hypocalcemia, hyperphosphatemia, and bone abnormalities. Adults with hypoparathyroidism treated with recombinant human PTH, rhPTH(1-84), in the 24-week, phase III REPLACE study maintained serum calcium despite reductions in oral calcium and active vitamin D. This study assessed the long-term efficacy and safety of rhPTH(1-84) for hypoparathyroidism.Methods: This was a 24-week, open-label, flexible-dose extension study of REPLACE (REPEAT) conducted in 3 outpatient centers in Hungary. Patients who previously completed or enrolled in REPLACE received 50 μg/day rhPTH(1-84), escalated to 75 and then to 100 μg/day, if needed, to reduce active vitamin D and oral calcium. The primary endpoint was ≥50% reduction in oral calcium (or ≤500 mg/day) and active vitamin D (or calcitriol ≤0.25 μg/day or alfacalcidol ≤0.50 μg/day) with normocalcemia.Results: Twenty-four patients (n = 16 previously treated with rhPTH[1-84]; n = 8 rhPTH[1-84]-naïve) were enrolled and completed the study. At Week 24, 75% of patients (95% confidence interval [CI], 53.3–90.2%) achieved the study endpoint; 58% eliminated oral calcium and active vitamin D. Urinary calcium, serum phosphate, and calcium × phosphate (Ca × P) product decreased by Week 24. Mean serum bone turnover markers increased with rhPTH(1-84). Treatment-emergent adverse events (TEAEs) were reported by 92% of patients. No serious adverse events (AEs) occurred.Conclusion: This study used a simplified treatment algorithm intended to better mimic typical clinical practice and demonstrated the extended efficacy and safety of rhPTH(1-84) in patients with hypoparathyroidism and confirmed the REPLACE findings. Sustained rhPTH(1-84) efficacy up to 48 weeks was observed despite treatment interruption between studies.Abbreviations:AE = adverse eventBMD = bone mineral densityBSAP = bone-specific alkaline phosphataseBTM = bone turnover markerCa × P product = calcium × phosphate productCTX = cross-linked C-telopeptide of type 1 collagenOCN = osteocalcin25(OH)D = 25-hydroxyvitamin DP1NP = aminoterminal propeptide of type 1 collagenPTH = parathyroid hormonerhPTH(1-84) = recombinant human parathyroid hormoneTEAE = treatment-emergent adverse eventULN = upper limit of normal  相似文献   

19.
The trace elements of both calcified atherosclerotic plaques and plaque-free vessel walls of the carotid bifurcation from 31 autopsies were investigated using the proton-induced X-ray emission (PIXE) method. The trace elements studied were phosphorus (P), calcium (Ca), chrome (Cr), iron (Fe), copper (Cu), zinc (Zn), lead (Pb), selenium (Se), bromine (Br), strontium (Sr), and rubidium (Rb). All samples contained Fe and Zn. Mercury (Hg) was not detected in any of the samples studied. All plaque-free samples contained Cu and almost all Br and Ca, none Sr. All calcified atherosclerotic plaques contained Ca and almost all Br and Sr. The relative levels of Ca were higher in the calcified plaques than in the plaque-free vessel walls. The relative value of Ca in calcified and uncalcified samples was greatest in the group who had died because of cardiovascular disorders and smallest in the group who had died from other causes. There was a strong positive correlation between the Ca and Sr of the plaque samples and between the P and Br of the plaque-free samples.  相似文献   

20.
Bovine pericardium (BPC) and polytetrafluoroethylene (PTFE) have been widely used to reinforce staple lines in lung resection. Since limited information regarding the calcification of these biomaterials is available, we undertook an in vitro study to evaluate their calcification potential. Commercially available BPC and PTFE biomaterials were evaluated and compared with custom-prepared BPC tissue. In vitro calcification was performed via submersion in supersaturated solution in a double-walled glass reactor at 37.0 degrees C +/- 0.1 degrees C, pH 7.4 +/- 0.1, mimicking most ion concentrations of human blood plasma. In processing of calcification, the pH decrease of the solution simulated the addition of consumed H(+), Ca(2+), and PO(4)(3-) ions from titrant solutions, the concentrations of which were based on the stoichiometry of octacalcium phosphate. The molar ion addition with time was recorded, and the initial slope of the curve was computed for each experiment. The rate of calcification developed (molar calcium phosphate ion addition rate per time and total surface area) (R) was computed after that with respect to the relative supersaturation (sigma) used in each experiment. R for custom-prepared BPC tissues was found to be in the range of 0.19 +/- 0.08 to 0.52 +/- 0.19 (n = 17) in sigma range of 0.72 to 1.42. Commercial BPC was found to be 0.016 to 0.052 (n = 4), and PTFE was 0.005 to 0.05 (n = 8) in the same sigma range. Both clinically applied biomaterials, BPC and PTFE, seemed to be calcified with rates of at least one order of magnitude lower than the custom-prepared BPC tissue. This data suggested that BPC and PTFE biomaterials showed a similar, relatively very low tendency for calcification compared with custom-prepared BPC tissue. Although further studies are necessary, staple line reinforcement by these two biomaterials should be considered safe from the calcification point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号