共查询到20条相似文献,搜索用时 15 毫秒
1.
Primary deuterium kinetic isotope and pH effects on the reduction of D-amino acid oxidase by amino acid substrates were determined using steady-state and rapid reaction methods. With D-serine as substrate, reduction of the enzyme-bound FAD requires that a group with a pKa value of 8.7 be unprotonated and that a group with a pKa value of 10.7 be protonated. The DV/Kser value of 4.5 is pH-independent, establishing that these pKa values are intrinsic. The limiting rate of reduction of the enzyme shows a kinetic isotope effect of 4.75, consistent with this as the intrinsic value. At high enzyme concentration (approximately 15 microM) at pH 9,D-serine is slightly sticky (k3/k2 = 0.8), consistent with a decrease in the rate of substrate dissociation. With D-alanine as substrate, the pKa values are perturbed to 8.1 and 11.5. The DV/Kala value increases from 1.3 at pH 9.5 to 5.1 at pH 4, establishing that D-alanine is sticky with a forward commitment of approximately 10. The effect of pH on the DV/Kala value is consistent with a model in which exchange with solvent of the proton from the group with pKa 8.7 is hindered and is catalyzed by H2O and OH- above pH 7 and by H3O+ and H2O below pH 7. With glycine, the pH optimum is shifted to a more basic value, 10.3. The DV/Kgly value increases from 1.26 at pH 6.5 to 3.1 at pH 10.7, consistent with fully reversible CH bond cleavage followed by a pH-dependent step. At pH 10.5, the kinetic isotope effect on the limiting rate of reduction is 3.4. 相似文献
2.
Nitroalkane oxidase catalyzes the oxidation of nitroalkanes to aldehydes or ketones with production of nitrite and hydrogen peroxide. pH and kinetic isotope effects with [1, 1-(2)H(2)]nitroethane have been used to study the mechanism of this enzyme. The V/K(ne) pH profile is bell-shaped. A group with a pK(a) value of about 7 must be unprotonated and one with a pK(a) value of 9.5 must be protonated for catalysis. The lower pK(a) value is seen also in the pK(is) profile for the competitive inhibitor valerate, indicating that nitroethane has no significant external commitments to catalysis. The (D)(V/K)(ne) value is pH-independent with a value of 7.5, whereas the (D)V(max) value increases from 1.4 at pH 8.2 to a limiting value of 7.4 below pH 5. The V(max) pH profile decreases at low and high pH, with pK(a) values of 6.6 and 9.5, respectively. Imidazole, which activates the enzyme, affects the V(max) but not the V/K(ne) pH profile. In the presence of imidazole at pH 7 the (D)V(max) value increases to a value close to the intrinsic value, consistent with cleavage of the carbon-hydrogen bond of the substrate being fully rate-limiting for catalysis in the presence of imidazole. 相似文献
3.
N-Methyltryptophan oxidase (MTOX), a flavoenzyme from Escherichia coli, catalyzes the oxidative demethylation of secondary amino acids such as N-methyltryptophan or N-methylglycine (sarcosine). MTOX is one of several flavin-dependent amine oxidases whose chemical mechanism is still debated. The kinetic properties of MTOX with the slow substrate sarcosine were determined. Initial rate data are well-described by the equation for a ping-pong kinetic mechanism, in that the V/K(O)()2 value is independent of the sarcosine concentration at all accessible concentrations of oxygen. The k(cat)/K(sarc) pH profile is bell-shaped, with pK(a) values of 8.8 and about 10; the latter value matches the pK(a) value of the substrate nitrogen. The k(cat) pH profile exhibits a single pK(a) value of 9.1 for a group that must be unprotonated for catalysis. There is no significant solvent isotope effect on the k(cat)/K(sarc) value. With N-methyl-(2)H(3)-glycine as the substrate, there is a pH-independent kinetic isotope effect on k(cat), k(cat)/K(sarc), and the rate constant for flavin reduction, with an average value of 7.2. Stopped-flow spectroscopy with both the protiated and deuterated substrate failed to detect any intermediates between the enzyme-substrate complex and the fully reduced enzyme. These results are used to evaluate proposed chemical mechanisms. 相似文献
4.
1. A sensitive fluorimetric procedure for the assay of d-amino acid oxidase has been developed. 2. The method depends on the formation of a fluorescent derivative, 2-hydroxy-3-methylquinoxaline, on condensation of pyruvate with o-phenylenediamine in acid medium. 3. 2-Hydroxy-3-methylquinoxaline fluoresces strongly in 50% (v/v) sulphuric acid after excitation at 375mmu. A single emission peak is observed at 480mmu. 4. Formation of the quinoxaline is dependent on time, temperature, acidity and relative concentration of reactants. 5. A particulate preparation from mouse kidney required FAD for optimum activity at pH8.5; K(m) was 3.8x10(-3)m; K(FAD) was 1.4x10(-7)m and the reaction was strongly inhibited by p-chloromercuribenzoate and phenylmercuric acetate. 6. Subcellular fractionation on a sucrose density gradient confirmed that the d-amino acid oxidase was localized on small granules. 相似文献
5.
6.
《Biochimica et Biophysica Acta (BBA) - Enzymology》1978,522(1):43-48
- 1.1. Progesterone hibited d-amino acid oxidase (d-amino acid : O2 oxidoreductase (deaminating), EC 1.4.3.3.) in competition with its substrate, d-alanine, Binding of progesterone brought about the increase in both fluorescence intensity and fluorescence polarization of FAD, which indicates that the environment surrounding FAD chromophore is modified due to a conformational change in the apoenzyme.
- 2.2. Ethinyl estradiol testosterone, testosterone propionate, corticosterone and aldosterone also inhibited the enzyme slightly in the same manner. Their binding also produced a slight increase in FAD fluorescence without decreasing the fluorescence polarization.
- 3.3. Cholesterol did not inhibit the enzyme, though it increased the fluorescence polarization of FAD. This indicates the binding of cholesterol with the enzyme at a site other than the substrate binding site.
7.
Gadda G 《Biochimica et biophysica acta》2003,1650(1-2):4-9
The FAD-dependent choline oxidase catalyzes the four-electron oxidation of choline to glycine-betaine, with betaine-aldehyde as intermediate. The enzyme is capable of accepting either choline or betaine-aldehyde as a substrate, allowing the investigation of the reaction mechanism for both the conversion of choline to betaine-aldehyde and of betaine-aldehyde to glycine-betaine. In the present study, pH and deuterium kinetic isotope effects with [1,2-2H(4)]-choline were used to study the mechanism of oxidation of choline to betaine-aldehyde. The V/K and V(max) pH-profiles increased to limiting values with increasing pH, suggesting the presence of a catalytic base essential for catalysis at the enzyme active site. From the V/K pH-profile with [1,2-2H(4)]-choline, a pK(a) of 8.0 was determined for the catalytic base. This pK(a) was shifted to 7.5 in the V/K pH-profile with choline, indicating a significant commitment to catalysis with this substrate. In agreement with this conclusion, the D(V/K) values decreased from a limiting value of 12.4 below pH 6.5 to a limiting value of 4.1 above pH 9.5. The large D(V/K) values at low pH are consistent with carbon-hydrogen bond cleavage of choline being nearly irreversible and fully rate-limiting at low pH. Based on comparison of amino acid sequences and previous structural and mechanistic studies on other members of the GMC oxidoreductase superfamily, the identity of the catalytic base of choline oxidase is proposed. 相似文献
8.
9.
Moreno Sandra Nardacci Roberta Cimini AnnaMaria Cer` Maria Paola 《Brain Cell Biology》1999,28(3):169-185
d-amino acid oxidase (d-AAO) is a peroxisomal flavoenzyme, the physiological substrate and the precise function of which are still unclear. We have investigated D-AAO distribution in rat brain, by immunocytochemistry, with an affinity-purified polyclonal antibody. Immunoreactivity occurred in both neuronal and glial cells, albeit at different densities. Glial immunostaning was strongest in the caudal brainstem and cerebellar cortex, particularly in astrocytes, Golgi-Bergmann glia, and tanycytes. Hindbrain neurons were generally more immunoreactive than those in the forebrain. Immunopositive forebrain cell populations included mitral cells in the olfactory bulb, cortical and hippocampal neurons, ventral pallidum, and septal, reticular thalamic, and paraventricular hypothalamic nuclei. Within the positive regions, not all the neuronal populations were equally immunoreactive; for example, in the thalamus, only the reticular and anterodorsal nuclei showed intense labelling. In the hindbrain, immunopositivity was virtually ubiquitous, and was especially strong in the reticular formation, pontine, ventral and dorsal cochlear, vestibular, cranial motor nuclei, deep cerebellar nuclei, and the cerebellar cortex, especially in Golgi and Purkinje cells. 相似文献
10.
L-Histidinol dehydrogenase catalyzes the biosynthetic oxidation of L-histidinol to L-histidine with sequential reduction of two molecules of NAD. Previous isotope exchange results had suggested that the oxidation of histidinol to the intermediate histidinaldehyde occurred 2-3-fold more rapidly than overall catalysis. In this work, we present kinetic isotope effects (KIE) studies at pH 9.0 and at pH 6.7 with stereospecifically mono- and dideuterated histidinols. The data at pH 9.0 support minimal participation of the first hydride transfer and substantial participation of the second hydride transfer in the overall rate limitation. Stopped-flow experiments with protiated histidinol revealed a small burst of NADH production with stoichiometry of 0.12 per subunit, and 0.25 per subunit with dideuterated histidinol, indicating that the overall first half-reaction was not significantly faster than the second reaction sequence. Results from kcat and kcat/KM titrations with histidinol, NAD, and the alternative substrate imidazolyl propanediol demonstrated an essential base with pKa values between 7.7 and 8.4. In KIE experiments performed at pH 6.7 or with a coenzyme analogue at pH 9. 0, the first hydride transfer became more rate limiting. Kinetic simulations based on rate constants estimated from this work fit well with a mechanism that includes a relatively fast, and thermodynamically unfavorable, hydride transfer from histidinol and a slower, irreversible second hydride transfer from a histidinaldehyde derivative. Thus, although the chemistry of the first hydride transfer is fast, both partial reactions participate in the overall rate limitation. 相似文献
11.
1. Kinetic studies of lipoamide dehydrogenase and its modified enzymes catalyzing lipoamide oxidoreduction and ancillary reactions at various pH are compared. 2. The asymptotic kinetics of lipoamide oxidoreductions switch between the ping pong and ordered mechanisms by varying pH of the reactions. 3. pH-rate profiles of these reactions are bell-shaped suggesting the participation of 2 ionizable residues with pK values of 6.6 +/- 0.5 and above 8 respectively. 4. The unusually high pK value for the catalytic site histidine is attributed to its involvement in an ion-pair formation. 5. In the absence of the catalytic site histidine, the pH-rate profile for the lipoamide reduction of the photooxidized enzyme is no longer bell-shaped but it is similar to those of the transhydrogenation and NADH-oxidation of the native enzyme. 6. This implies the participation of a low-pK protonated group in these reactions. 相似文献
12.
The stereochemistry of the bovine plasma amine oxidase catalyzed oxidation of 2-(3,4-dihydroxyphenyl)-ethylamine (domapine) has been investigated by comparing 3H/14C ratios of 3,4-dibenzyloxyphenethyl alcohols, derived from 3,4-dihydroxyphenylacetaldehydes, to starting dopamines chirally labeled at C-1 and C-2. The oxidation of [2RS-3H]-, [2R-3H]-, and [2S-3H]dopamine leads to products which have retained 53, 59, and 47% of their tritium. Similarly, oxidation of [1RS-3H]-, [1R-3H]-, and [1S-3H]dopamine leads to an 80, 80, and 92% retention of tritium. The configurational purity of tritium at C-2 of dopamine and C-1 of the dopamine precursor 3-methoxy-4-hydroxyphenethylamine has been confirmed employing dopamine-beta-hydroxylase (specific for the pro-R hydrogen at C-2) and pea seedling amine oxidase (specific for the pro-S hydrogen at C-1). In addition, chromatographically resolved isozymes of bovine plasma amine oxidase have been demonstrated to lead to the same stereochemical result as pooled enzyme fractions. We have been able to rule out carbon interchange and tritium transfer in the ethylamine side chain of dopamine as the source of the apparent nonstereospecificity. Estimated primary tritium isotope effects are 1 for [2-3H]dopamines and 5--6 and 26--34 for [1R-3H]- and [1S-3H]dopamine, respectively. We propose the presence of alternate dopamine binding modes, characterized by absolute but opposing stereochemistries and differential primary tritium isotope effects at C-1. 相似文献
13.
The recent identification of the enzyme in Mycobacterium tuberculosis that catalyzes the NADPH-dependent reduction of the unique low molecular weight disulfide mycothione, mycothione reductase, has led us to examine the mechanism of catalysis in greater detail. The pH dependence of the kinetic parameters V and V/K for NADPH, NADH, and an active analogue of mycothione disulfide, des-myo-inositol mycothione disulfide, has been determined. An analysis of the pH profiles has allowed the tentative assignment of catalytically significant residues crucial to the mechanism of disulfide reduction, namely, the His444-Glu449 ion pair and Cys39. Solvent kinetic isotope effects were observed on V and V/K(DIMSSM), yielding values of 1.7 +/- 0.2 and 1.4 +/- 0.2, respectively, but not on V/K(NADPH). Proton inventory studies (V versus mole fraction of D(2)O) were linear, indicative of a single proton transfer in a solvent isotopically sensitive step. Steady-state primary deuterium kinetic isotope effects on V have been determined using NADPH and NADH, yielding values of 1.27 +/- 0.03 and 1.66 +/- 0.14, respectively. The pre-steady-state primary deuterium kinetic isotope effect on enzyme reduction has values of 1.82 +/- 0.04 and 1.59 +/- 0.06 for NADPH and NADH, respectively. The steady-state primary deuterium kinetic isotope effect using NADH coincide with that obtained under single turnover conditions, suggesting the complete expression of the intrinsic primary kinetic isotope effect. Rapid reaction studies on the reductive half-reaction using NADPH and NADH yielded maximal rates of 129 +/- 2 and 20 +/- 1 s(-1), respectively, while similar studies of the oxidation of the two-electron reduced enzyme by mycothiol disulfide yielded a maximum rate of 190 +/- 10 s(-1). These data suggest a unique flavoprotein disulfide mechanism in which the rate of the oxidative half-reaction is slightly faster than the rate of the reductive half-reaction. 相似文献
14.
《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》1991,566(2):377-382
A new procedure for the assay of d-amino acid oxidase activity has been developed. α-Ketoisovaleric acid, derived from d-valine, was estimated by high-performance liquid chromatography after reaction with o-phenylenediamine to give the corresponding quinoxalinol derivative. α-Ketovaleric acid was used as an internal standard to ensure the reproducibility of the method. As an example of application, kidney cortex homogenates were analyzed for their d-amino acid oxidase activity. The advantages of the presented procedure for the determination of the enzymatic activity in biological samples compared with previously reported procedures are discussed. 相似文献
15.
16.
A common feature of all the proposed mechanisms for monoamine oxidase is the initiation of catalysis with the deprotonated form of the amine substrate in the enzyme-substrate complex. However, recent steady-state kinetic studies on the pH dependence of monoamine oxidase led to the suggestion that it is the protonated form of the amine substrate that binds to the enzyme. To investigate this further, the pH dependence of monoamine oxidase A was characterized by both steady-state and stopped-flow techniques with protiated and deuterated substrates. For all substrates used, there is a macroscopic ionization in the enzyme-substrate complex attributed to a deprotonation event required for optimal catalysis with a pK(a) of 7.4-8.4. In stopped-flow assays, the pH dependence of the kinetic isotope effect decreases from approximately 13 to 8 with increasing pH, leading to assignment of this catalytically important deprotonation to that of the bound amine substrate. The acid limb of the bell-shaped pH profile for the rate of flavin reduction over the substrate binding constant (k(red)/K(s), reporting on ionizations in the free enzyme and/or free substrate) is due to deprotonation of the free substrate, and the alkaline limb is due to unfavourable deprotonation of an unknown group on the enzyme at high pH. The pK(a) of the free amine is above 9.3 for all substrates, and is greatly perturbed (DeltapK(a) approximately 2) on binding to the enzyme active site. This perturbation of the substrate amine pK(a) on binding to the enzyme has been observed with other amine oxidases, and likely identifies a common mechanism for increasing the effective concentration of the neutral form of the substrate in the enzyme-substrate complex, thus enabling efficient functioning of these enzymes at physiologically relevant pH. 相似文献
17.
Addition of hydrogen peroxide to ascorbate oxidase results in formation of a complex which has been analyzed kinetically. Since reduction of molecular oxygen to water by this enzyme occurs in more than one step, the peroxide complex may be a mimic for a catalytic intermediate. The properties of the complex are similar to those reported for a peroxide complex with laccase. Changes in the activity of ascorbate oxidase as a function of pH indicate the presence of a group in the enzyme with an apparent pK of 7.8 which must be protonated in order for the enzyme to function. The ascorbate Km is known to be insensitive to pH in this region and the present work indicates the same to be true for the oxygen Km. It would appear that the rate determining step in the catalytic mechanism involves protonation of an intermediate. 相似文献
18.
Johansson AL Chakrabarty S Berthold CL Högbom M Warshel A Brzezinski P 《Biochimica et biophysica acta》2011,1807(9):1083-1094
Cytochrome c oxidase (CytcO) is a membrane-bound enzyme, which catalyzes the reduction of di-oxygen to water and uses a major part of the free energy released in this reaction to pump protons across the membrane. In the Rhodobacter sphaeroides aa? CytcO all protons that are pumped across the membrane, as well as one half of the protons that are used for O? reduction, are transferred through one specific intraprotein proton pathway, which holds a highly conserved Glu286 residue. Key questions that need to be addressed in order to understand the function of CytcO at a molecular level are related to the timing of proton transfers from Glu286 to a pump site and the catalytic site, respectively. Here, we have investigated the temperature dependencies of the H/D kinetic-isotope effects of intramolecular proton-transfer reactions in the wild-type CytcO as well as in two structural CytcO variants, one in which proton uptake from solution is delayed and one in which proton pumping is uncoupled from O? reduction. These processes were studied for two specific reaction steps linked to transmembrane proton pumping, one that involves only proton transfer (peroxy-ferryl, P→F, transition) and one in which the same sequence of proton transfers is also linked to electron transfer to the catalytic site (ferryl-oxidized, F→O, transition). An analysis of these reactions in the framework of theory indicates that that the simpler, P→F reaction is rate-limited by proton transfer from Glu286 to the catalytic site. When the same proton-transfer events are also linked to electron transfer to the catalytic site (F→O), the proton-transfer reactions might well be gated by a protein structural change, which presumably ensures that the proton-pumping stoichiometry is maintained also in the presence of a transmembrane electrochemical gradient. Furthermore, the present study indicates that a careful analysis of the temperature dependence of the isotope effect should help us in gaining mechanistic insights about CytcO. 相似文献
19.
Abad S Nahalka J Winkler M Bergler G Speight R Glieder A Nidetzky B 《Biotechnology letters》2011,33(3):557-563
By combining gene design and heterologous over-expression of Rhodotorula gracilis D-amino acid oxidase (RgDAO) in Pichia pastoris, enzyme production was enhanced by one order of magnitude compared to literature benchmarks, giving 350 kUnits/l of fed-batch bioreactor culture with a productivity of 3.1 kUnits/l h. P. pastoris cells permeabilized by freeze-drying and incubation in 2-propanol (10% v/v) produce a highly active (1.6 kUnits/g dry matter) and stable oxidase preparation. Critical bottlenecks in the development of an RgDAO catalyst for industrial applications have been eliminated. 相似文献
20.
A method for isolation of d-amino acid oxidase (DAAO) from disrupted Trigonopsis variabilis cells has been developed. In an aqueous two-phase system consisting of PEG6000 (220 g l–1), potassium phosphate (110 g l–1, K2HPO4 + KH2PO4 = 10.1:1, mol mol–1) and dl-methionine (11 g l–1), the major portion of cellular proteins (87%) was partitioned into the salt phase. By sequential extraction, 48% of DAAO was recovered in PEG phase, giving a yield of 211 U mg protein–1. 相似文献