首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methanol Accumulation in Maturing Seeds   总被引:6,自引:2,他引:4  
During in vitro growth and maturation of soybean seeds, cessationof embryo growth and dry weight accumulation occurred in thepresence of abundant C and N nutrients. Axis followed by cotyledontissues changed from green to yellow, and post-harvest germinationpotential declined if cultured after yellowing of axis tissues.A tissue specific accumulat;on of methanol occurred during thein vitro culture of immature seeds (i.e. initially 50 to 70mg fresh weight) to maturity in liquid medium. Methanol accumulatedto 3.0 g m–3 or 50 µg seed–1 in the medium,while methanol decreased from 37 to about 3.0 µg g–1fresh weight in cotyledons. By contrast, axis tissues increased20-fold in methanol concentration to 90 µg g–1 during20 d in culture. Ethanol was present only in trace amounts inaxis tissues and medium. Addition of exogenous methanol vapourto in situ grown seeds during precocious maturation decreasedsubsequent seedling vigour and germination with increasing levelsof exposure. Methanol accumulation in axis tissues during thegermination phase was not correlated with high temperature andtissue water content treatments which simulated pre-harvestdeterioration of seeds. However, the accumulation of methanolduring in vitro seed development and maturation in liquid culturemay contribute to reduced post-harvest germination performance. Key words: Soybean, Glycine max, seed maturation, in vitro, methanol  相似文献   

2.
3.
In this paper we report for the first time the occurrence ofan inducible weak CAM in leaves of Talinwn triangulare (Jacq.)Willd. This plant is a terrestrial perennial deciduous herbwith woody stems and succulent leaves which grows under fullexposure and in the shade in northern Venezuela. Plants grownin a greenhouse (‘sun’ plants) and a growth cabinet(‘shade’ plants) with daily irrigation showed CO2uptake only during the daytime (maximum rate, 4?0 µmolm–2 s–1) and a small acid accumulation during thenight (6?0 µmol H+g–1 FW). Twenty-four hours aftercessation of irrigation, no CO2 exchange was observed duringpart of the night. Dark fixation reached a maximum (1?0 µmolCO2 m–2 s–1, 100 µmol H+ g–1 FW) onday 9 of drought. By day 30 almost no gas exchange was observed,while acid accumulation was still 10 µmol H+ g–1FW. Rewatering reverted the pattern of CO2 exchange to thatof a C3 plant within 24 h. Daytime and night-time phosphoenolpyruvatecarboxylase activity increased up to 100% (shade) and 62% (sun)of control values after 10 and 15 d of drought, respectively.Light compensation point and saturating irradiance were similarin well-watered sun and shade plants, values being characteristicof sun plants. CAM seems to be important for the tolerance ofplants of this species to moderately prolonged (up to 2 months)periods of drought in conditions of full exposure as well asshade, and also for regaining high photosynthetic rates shortlyafter irrigation. Key words: Talinum triwigulare, inducible CAM, PEP-C activity, recycling  相似文献   

4.
The relationships between CO2 concentrating mechanisms, photosyntheticefficiency and inorganic carbon supply have been investigatedfor the aquatic macrophyte Littorella uniflora. Plants wereobtained from Esthwaite Water or a local reservoir, with thelatter plants transplanted into a range of sediment types toalter CO2 supply around the roots. Free CO2 in sediment-interstitial-waterranged from 1–01 mol m–3 (Esthwaite), 0.79 mol m–3(peat), 0.32 mol m–3 (silt) and 0–17 mol m–3(sand), with plants maintained under PAR of 40 µmol m–2s–1. A comparison of gross morphology of plants maintained underthese conditions showed that the peat-grown plants with highsediment CO2 had larger leaf fresh weight (0–69 g) andtotal surface area (223 cm2 g–1 fr. wt. including lacunalsurface area) than the sand-grown plants (0.21 g and 196 cm2g–1 fr. wt. respectively). Root fresh weights were similarfor all treatments. In contrast, leaf internal CO2 concentration[CO2], was highest in the sand-grown plants (2–69 molm–3, corresponding to 6.5% CO2 in air) and lowest inthe Esthwaite plants (1–08 mol m–3). Expressionof CAM in transplants was also greatest in the low CO2 regime,with H+ (measured as dawn-dusk titratable acidity) of 50µmolg fr. wt., similar to Esthwaite plants in natural sediment.Assuming typical CAM stoichiometry, decarboxylation of malatecould account largely for the measured [CO2]1 and would makea major contribution to daytime CO2 fixation in vivo. A range of leaf sections (0–2, 1–0, 5–0 and17–0 mm) was used to evaluate diffusion limitation andto select a suitable size for comparative studies of photosyntheticO2 evolution. The longer leaf sections (17.0 mm), which weresealed and included the leaf tip, were diffusion-limited witha linear response to incremental addition of CO2 and 1–0mol m–3 exogenous CO2 was required to saturate photosynthesis.Shorter leaf sections were less diffusion-limited, with thegreatest photosynthetic capacity (36 µmol O2 g–1 fr. wt. h–1) obtainedfrom the 1.0 mm size and were not infiltrated by the incubatingmedium. Comparative studies with 1.0 mm sections from plants grown inthe different sediment types revealed that the photosyntheticcapacity of the sand-grown plants was greatest (45 µmolO2 g–1 fr. wt. h–1) with a K0.5 of 80 mmol m–3.In terms of light response, saturation of photosynthesis intissue slices occurred at 850–1000 µmol m–2s–1 although light compensation points (6–11 µmolm–2s–1) and chlorophyll a: b ratios (1.3) were low.While CO2 and PAR responses were obtained using varying numbersof sections with a constant fresh weight, the relationshipsbetween photosynthetic capacity and CO2 supply or PAR were maintainedwhen the data were expressed on a chlorophyll basis. It is concludedthat under low PAR, CO2 concentrating mechanisms interact inintact plants to maintain saturating CO2 levels within leaflacunae, although the responses of the various components ofCO2 supply to PAR require further investigation. Key words: Key words-Uttorella uniflora, internal CO2 concentration, crassulacean acid metabolism, root inorganic carbon supply, CO2 concentrating mechanism  相似文献   

5.
For decades frequent mass mortalities of Lesser Flamingos (Phoeniconaiasminor Geoffroy) have been observed at alkaline-saline KenyanRift Valley lakes. To estimate the potential influence of toxiccyanobacteria on these mass deaths, the phytoplankton communitieswere investigated in Lakes Bogoria, Nakuru and Elmenteita. Cyanobacterialtoxins were analyzed both in the phytoplankton from the threelakes and in isolated monocyanobacterial strains of Arthrospirafusiformis, Anabaenopsis abijatae, Spirulina subsalsa and Phormidiumterebriformis. Lake Bogoria was dominated by the cyanobacteriumA. fusiformis. In L. Nakuru and L. Elmenteita the phytoplanktonmainly consisted of A. fusiformis, A. abijatae and Anabaenopsisarnoldii, and in L. Nakuru an unknown Anabaena sp. was alsofound. Furthermore, this is the first time A. abijatae and theunknown Anabaena sp. have been found in Kenyan lakes. Phytoplanktonwet weight biomass was found to be high, reaching 777 mg L–1in L. Bogoria, 104 mg L–1 in L. Nakuru and 202 mg L–1in L. Elmenteita. Using HPLC, the cyanobacterial hepatotoxinsmicrocystin-LR, -RR -YR, -LF and -LA and the neurotoxin anatoxin-awere detected in phytoplankton samples from L. Bogoria and L.Nakuru. Total microcystin concentrations amounted to 155 µgmicrocystin-LR equivalents g–1 DW in L. Bogoria, and 4593µg microcystin-LR equivalents g–1 DW in L. Nakuru,with anatoxin-a concentrations at 9 µg g–1 DW inL. Bogoria and 223 µg g–1 DW in L. Nakuru. In L.Elmenteita phytoplankton, no cyanobacterial toxins were found.A. fusiformis was identified as one source of the toxins. Theisolated strain of A. fusiformis from L. Bogoria was found toproduce both microcystin-YR (15.0 µg g–1 DW) andanatoxin-a (10.4 µg g–1 DW), whilst the A. fusiformisstrain from L. Nakuru was found to produce anatoxin-a (0.14µg g–1 DW). Since A. fusiformis mass developmentsare characteristic of alkaline-saline lakes, health risks towildlife, especially the Arthrospira-consuming Lesser Flamingo,may be expected.  相似文献   

6.
Increase in fluence rates of white light over the range of 5to 80 µmol m–2 s–1 brought about a correspondingincrease in amounts of anthocyanin production in shoots of Zeamays L. seedlings. Roots also exhibited a similar relationshipbetween increased fluence rate and increased anthocyanin productionover the range of 5 to 40 µmol m–2 s–1 whereasfluence rates above 40 µmol m–2 s–1 broughtabout decreases in anthocyanin production. Rates of productionand amounts of accumulation of anthocyanin in both shoots androots were found to vary with the age of the seedlings at thetime of exposure to light. Age, fluence rates, anthocyanin, seedlings, Zea mays  相似文献   

7.
Glycinebetaine, proline, asparagine, sucrose, glucose, and dimethylsulphoniopropionate(DMSP) were the major organic solutes in Spartina alternifloraleaf blades. To investigate the physiological role(s) of thesesolutes, the effects of salinity, nitrogen, and sulphur treatmentson leaf blade solute levels were examined. Glycinebetaine wasthe major organic solute accumulated in leaf blades grown at500 mol m–3 NaCl, although asparagine and proline alsoaccumulated when the supply of nitrogen was sufficient. Thesesolutes may play a role in osmotic adjustment. In contrast,DMSP levels either did not change or were reduced in responseto the 500 mol m–3 NaCl treatment. Furthermore, elevatednitrogen supply decreased leaf blade DMSP levels, which wasopposite to the response of glycinebetaine, proline, and asparagine.A 1000-fold increase in external sulphate concentration hadno effect on the leaf blade levels of DMSP, glycinebetaine,proline, or asparagine. These findings suggest that the majorphysiological role of DMSP in S. alterniflora leaf blades isnot for osmotic adjustment, even under conditions of nitrogendeficit and excess sulphur. Instead, DMSP which was presentat 45—130 µmol g–1 dry weight, may play arole as a constitutive organic osmoticum. Key words: Spartina alterniflora, dimethylsulphoniopropionate, glycinebetaine, nitrogen, salinity  相似文献   

8.
For Gyrodinium aureolum significant irradiance and daylengtheffects were found on the division rate and on the growth-relevantChla-normalized photosynthetic rate (gPB). Optimum conditionsof irradiance and daylength were found at 230 µmol m–2s–1 and 14 h for the division rate, and at >260 µmolm–2 s–1 and <6 h for gPB.gPB showed no photoinhibition,while the division rate decreased markedly at irradiances abovesaturation. This difference and the difference in optimum irradiancebetween the division rate and gPB are explained by a decreasein cellular Chla/carbon ratio with increasing irradiance. Thecellular content of carbon and nitrogen decreased significantlywith increasing irradiance. Total phosphorus was independentof irradiance and daylength. Below the saturation irradiancefor gPB the daily Chla-normalized carbon yield may be describedas an exponential function of the daily irradiance (irradiancex daylength).  相似文献   

9.
Putrescine, spermidine, and spermine content were analysed inzygotic embryos of barley (Hordeum vulgare L.). Changes in polyaminecontent were observed during zygotic embryo growth. In two cultivars,‘Bomi’ and ‘Golden Promise’, the totalpolyamine content in the embryos was 2.6–2.9 nmol mg–1fresh weight 10 d after anthesis, the highest content observed.It dropped to 1.3 nmol mg–1 fresh weight 14 d after anthesis.This drop was caused by decreases in all three polyamine concentrations.From 14 to 35 d after anthesis the putrescine content continuedto decrease while the spermidine and spermine content increased,thus the total polyamine content remained constant until 35d after anthesis. The mutant ‘Ris? 1508’ showeda constant polyamine content around 1.3 nmol mg–1 freshweight from 14 to 35 d after anthesis. The polyamine patternwas conserved in all three lines throughout the period of investigationshowing a spermidine content higher than putrescine contentwhich was, in turn, higher or equal to the spermine content.The polyamine content measured as nmol µg–1 proteindecreased from 14 to 21 d post anthesis in all three lines,because the protein content (µg mg–1 fresh weight)increased during the period. In dedifferentiating zygotic embryoscultured in vitro the putrescine content (nmol mg–1 freshweight) rose by a factor of nine and the spermidine contentdoubled within the first week of cultivation, whereas sperminecontent did not change. For embryoderived calli a repeated patternof change in polyamine content was observed throughout the subculturingperiod. Key words: Polyamines, Hordeum vulgare L., embryo development  相似文献   

10.
The mechanism of SO2-induced changes in stomatal conductance(g) of alder was examined to determine if SO2 affects guardcell function directly or indirectly through the SO2-inducedchanges in photosynthesis. During experimental fumigations at SO2 concentrations of 3–3µmol m–3 (0.08 µl l–1), stomatal closurepreceded declines in net photosynthetic rate (A), indicatingthat SO2 can directly affect guard cells. From these and otherstudies it appears that the sequence of A and g responses maybe influenced by SO2 concentration as well as by species. Fumigation with SO2 did not cause increases in g, even whenthe intercellular substomatal CO2 concentration (ci) was reducedby 50 µmol mol–1. Increases in g are not attributableto SO2 effects on the CO2-based stomatal control system. Key words: Air pollution, Alnus serrulata, gas exchange, stomata, sulphur dioxide  相似文献   

11.
Species-specific differences in the assimilation of atmosphericCO2 depends upon differences in the capacities for the biochemicalreactions that regulate the gas-exchange process. Quantifyingthese differences for more than a few species, however, hasproven difficult. Therefore, to understand better how speciesdiffer in their capacity for CO2 assimilation, a widely usedmodel, capable of partitioning limitations to the activity ofribulose-1,5-bisphosphate carboxylase-oxygenase, to the rateof ribulose 1,5-bisphosphate regeneration via electron transport,and to the rate of triose phosphate utilization was used toanalyse 164 previously published A/Ci, curves for 109 C3 plantspecies. Based on this analysis, the maximum rate of carboxylation,Vcmax, ranged from 6µmol m–2 s–1 for the coniferousspecies Picea abies to 194µmol m–2 s–1 forthe agricultural species Beta vulgaris, and averaged 64µmolm–2 s–1 across all species. The maximum rate ofelectron transport, Jmax, ranged from 17µmol m–2s–1 again for Picea abies to 372µmol m–2 s–1for the desert annual Malvastrum rotundifolium, and averaged134µmol m–2 s–1 across all species. A strongpositive correlation between Vcmax and Jmax indicated that theassimilation of CO2 was regulated in a co-ordinated manner bythese two component processes. Of the A/Ci curves analysed,23 showed either an insensitivity or reversed-sensitivity toincreasing CO2 concentration, indicating that CO2 assimilationwas limited by the utilization of triose phosphates. The rateof triose phosphate utilization ranged from 4·9 µmolm–2 s–1 for the tropical perennial Tabebuia roseato 20·1 µmol m–2 s–1 for the weedyannual Xanthium strumarium, and averaged 10·1 µmolm–2 s–1 across all species. Despite what at first glance would appear to be a wide rangeof estimates for the biochemical capacities that regulate CO2assimilation, separating these species-specific results intothose of broad plant categories revealed that Vcmax and Jmaxwere in general higher for herbaceous annuals than they werefor woody perennials. For annuals, Vcmax and Jmax averaged 75and 154 µmol m–2 s–1, while for perennialsthese same two parameters averaged only 44 and 97 µmolm2 s–1, respectively. Although these differencesbetween groups may be coincidental, such an observation pointsto differences between annuals and perennials in either theavailability or allocation of resources to the gas-exchangeprocess. Key words: A/Ci curve, CO2 assimilation, internal CO2 partial pressure, photosynthesis  相似文献   

12.
Stem from three- and four-week-old Soyabean [Glycine max (L.)Merr. cv. Tracy] plants reduced from 0.3 to 0.7 µmol nitrateh–l g–l f. wt. Leaf activity was 4.7–7.6 µmolnitrate h–l g–l f. wt. Outer stem was two to fourtimes more active at reducing nitrate than was inner stem. Plantnitrate nutrition had a strong effect upon the ratio of activitypresent in stem and leaf. More nitrate increased the proportionpresent in leaves. Glycine max L., soyabean, nitrate assimilation, nitrogen metabolism, Rhizobium japonicum  相似文献   

13.
Short-day photoperiods can increase the partitioning of assimilatesto filling seeds of soybean (Glycine max L. Merr.), resultingin higher seed growth rates. The plant growth substance ABAhas been implicated in the regulation of assimilate transferwithin filling soybean seeds. Thus, we hypothesized that anincreased concentration of endogenous ABA in seeds may enhancesucrose accumulation and seed growth rate of soybeans exposedto short-day photoperiods. Plants of cv. Hood 75 were grownin a greenhouse under an 8-h short-day photoperiod (SD) until11 d after anthesis (DAA) of the first flower, when half ofthe plants were transferred to a night-interruption (NI) treatment(3 h of low-intensity light inserted into the middle of thedark period). Plants remaining in SD throughout seed developmenthad seed growth rates 43% higher than that of plants shiftedto NI (7·6 mg seed–1 d–1 vs. 5·3 mgseed–1 d–1). On a tissue-water basis, the concentrationof ABA in SD seeds increased rapidly from 7.6 µmol l–1at 11 DAA to 65·2 µmol l–1 at 18 DAA, butthen declined to 6·6 µmol l–1 by 39 DAA.In contrast, the concentration of ABA increased more slowlyin NI seeds, reaching only 47·4 µmol l–1by 18 DAA, peaking at 57·0 µmol l–1 on 25DAA, and declining to 10·2 µmol l–1 by 39DAA. The concentration of sucrose in SD embryos peaked at 73·5mmol l–1 on 25 DAA and remained relatively constant forthe remainder of the seed-filling period. In NI, the concentrationof sucrose reached only 38·3 mmol 1–1 by 25 DAA,and peaked at 61·5 µmol l–1 on 32 DAA. Thusin both SD and NI, sucrose accumulated in embryos only afterthe peak in ABA concentration, suggesting that ABA may havestimulated sucrose movement to the seeds. The earlier accumulationof ABA and sucrose in SD suggests that ABA may have increasedassimilate availability during the critical cell-division period,thus regulating cotyledon cell number and subsequent seed growthrate for the remainder of the seed-filling period. Glycine max L. Merr. cv. Hood 75, soybean, assimilate partitioning, abscisic acid, photoperiod, source-sink  相似文献   

14.
The Carbon Economy of Rubus chamaemorus L. II. Respiration   总被引:1,自引:0,他引:1  
MARKS  T. C. 《Annals of botany》1978,42(1):181-190
Respiratory activity and seasonal changes in carbohydrate contentof the storage organs of Rubus chamaemorus L. have been investigated.Leaf dark respiration rate increases in a non-linear mannerfrom 0·7 mg CO2 evolved dm–2 h–1 at 0 °Cto 4·6 rng CO2 evolved dm–2 hh–1 at 30 °C.Root and rhizome respiration rates increase from 1 µ1O2 uptake g–1 fresh weight h–1 at 0.7 ° C to10 µ10, uptake g–1 f. wt h–1 at 20 °C.Rhizome carbohydrate reserves decline from a September peakof 33 per cent alcohol insoluble d. wt to 16 per cent in May. The circumpolar distribution of R. chamaemorus is discussedin relation to the evidence presented here and in the precedingpaper of the series.  相似文献   

15.
Growth and ion accumulation were measured in callus culturesof Cicer arietinum L. cv. BG-203, grown on media supplementedwith 0–200 mol m–3 NaCl. Fresh and dry weights decreasedat concentrations ranging from 100–200 mol m–3,the reduction being greater during the third and fourth weeksof culture. Slight stimulation of growth was observed at 25and 50 mol m–3 NaCl. There was also a decrease in tissuewater content (fresh weight: dry weight) at 100–200 molm–3 NaCl. The concentration of Na+ and Cl in thetissue increased with increasing salinity of the medium. Mostof the accumulation of these ions occurred by the first weekwhile significant growth inhibition became apparent by onlythe third week of culture. Tissue K+ and Mg2+ decreased withincreasing salinization, the decrease being greater in K+ levels.Levels of Ca2+, however, were maintained throughout the experimentalrange. Key words: Cicer arietinum, NaCl stress, Callus cultures, Ion accumulation  相似文献   

16.
Barley (Hordeum vulgare L. cv. Digger) was grown for 22 d inenclosed chambers with a CO2 enrichment of 35, 155, 400 or 675µmol CO2 mol1. CO2 enrichment increased photosyntheticcapacity in the plants grown at either of the two highest levelsof pCO2. A CO2 enrichment of 675µmol CO2 caused a significantincrement of shoot dry weight, whereas no changes were observedin fresh weight, chlorophyll or protein levels. At a light intensityof 860µmol m–2s–1 CO2 enrichment caused photosyntheticcapacity to increase by 250%, whereas no effect was observedat 80 µmol m–2 s–1. Over time, photosynthesisdecreased by 70% independent of CO2. A time-dependent increasein the level of extractable fructose was observed whereas totalextractable carbohydrate only changed slightly. Key words: Carbohydrates, CO2 enrichment, Hordeum vulgare, photosynthesis, respiration  相似文献   

17.
A Novel Method for Extracting Protoplasts from Large Brown Algae   总被引:2,自引:0,他引:2  
Protoplasts have been isolated without the application of walldegrading enzymes from three large brown algal species: Macrocystisangustifolia, Ecklonia radiata and Durvillaea potatorum. Thecentral feature of this new protocol is the removal of wall-boundcalcium by substitution with sodium from the isolation medium.The new protocol is specific for cortex and inner meristodermcell walls with highest yields obtained from meristematic oryoung tissue. Protoplasts, extracted with this method, are approximately5–10 µm in diameter with viability estimates rangingfrom 73–86%. Consistent yields of 107 protoplasts g–1fresh weight have been obtained within 2–3 for all threespecies and this compares favourably with yields achieved usinga conventional enzyme-based system. Key words: Brown algae, protoplasts, alginate, calcium, enzymes  相似文献   

18.
Red beech (Nothofagus fusca (Hook. F.) Oerst.; Fagaceae) andradiata pine (Pinus radiata D. Don; Pinaceae) were grown for16 months in large open-top chambers at ambient (37 Pa) andelevated (66 Pa) atmospheric partial pressure of CO2, and incontrol plots (no chamber). Summer-time measurements showedthat photosynthetic capacity was similar at elevated CO2 (lightand CO2-saturated value of 17.2 µmol m–2 s–1for beech, 13.5 µmol m–2 s–1 for pine), plantsgrown at ambient CO2 (beech 21.0 µmol–2 s–1,pine 14.9 µmol m–2s–1) or control plants grownwithout chambers (beech 23.2 µmol m–2 s–1,pine 12.9 µmol m–2 s–1). However, the higherCO2 partial pressure had a direct effect on photosynthetic rate,such that under their respective growth conditions, photosynthesisfor the elevated CO2 treatment (measured at 70 Pa CO2 partialpressure: beech 14.1 µmol m–2 s–1 pine 10.3)was greater than in ambient (measured at 35 Pa CO2: beech 9.7µmol m–2 s–1, pine 7.0 µmol m–2s–1) or control plants (beech 10.8 µmol m–2s–1, pine 7.2 µmol m–2 s–1). Measurementsof chlorophyll fluorescence revealed no evidence of photodamagein any treatment for either species. The quantity of the photoprotectivexanthophyll cycle pigments and their degree of de-epoxidationat midday did not differ among treatments for either species.The photochemical efficiency of photosystem II (yield) was lowerin control plants than in chamber-grown plants, and was higherin chamber plants at ambient than at elevated CO2. These resultssuggest that at lower (ambient) CO2 partial pressure, beechplants may have dissipated excess energy by a mechanism thatdoes not involve the xanthophyll cycle pigments. Key words: Carotenoids, chlorophyll fluorescence, photosynthesis, photoinhibition, photoprotection, xanthophyll cycle  相似文献   

19.
Pith callus tissues were grown under continuous blue (450 mµ),green (545 mµ), red (650 mµ), and ‘white’(full-spectrum) light, and in the dark for 22 days at 27±2°C at energy levels of 15,000 ergs cm–2 sec–1. Mean increases in fresh weight of tissues grown under ‘white’and blue light were significantly greater than those of tissuesgrown in green and red light and in the dark. Tissues grownin the dark yielded mean fresh weight increases significantlylower than tissues grown under blue, red, and ‘white’light. No significant differences were shown between blue and‘white’, red and green, and green and dark treatmentsrespectively. Cell differentiation occurred in all treatmentsonly to the extent of vessel element formation. There were nodifferences in degree of differentiation between treatments. It was proposed that the high-energy reaction of photomorphogenesiswas in operation in the Pelargonium callus tissue. The resultsindicated the presence in the tissue of high-energy photoreceptor(s).The use of high-intensity, incandescent illumination for experimentalprocedures approximating natural conditions of irradiation wasindicated as desirable for pith callus tissues of Pelargoniumzonale var. Enchantress Fiat.  相似文献   

20.
The Occurrence of Nitrate Reduction in the Leaves of Woody Plants   总被引:13,自引:1,他引:12  
Nitrate reductase activities greater than 02 µmol h–1g–1 f. wt, measured by an in vivo assay, occurred in 41per cent of a large sample (555 species) of woody plants. Ifseveral taxonomic groups (Gymnosperms, Ericaceae and Proteaceae)with consistently low activities were discounted activitiesgreater than 02 µmol h–1 g–1 f. wt occurredin 73 per cent of the species. This compares with 93 per centin herbaceous species, suggesting that leaf nitrate reductionis of common occurrence in woody plants. In a small sample ofspecies leaf nitrate reductase activity correlated with nitrateconcentration in the xylem sap. Low activities occurred consistentlyin the Gymnosperms, Ericaceae and Proteaceae. Feeding cut shootsof representatives of these groups with nitrate caused inductionof leaf nitrate reductase activity in the Gymnosperms and Proteaceae,but only limited induction in the Ericaceae. The Ericaceae,with the exception of two species, had low activities and lownitrate reductase inducibility. Root assimilation may predominatein the Gymnosperms and Proteaceae. It is suggested that nitratereduction generally occurs in the leaves of trees from a varietyof plant communities and that this may be related to the lowerenergy cost of leaf, as opposed to root, nitrate assimilation. Nitrate reductase, trees and shrubs, leaves, nitrate assimilation, nitrate translocation, nitrate reductase induction, energy cost, plant ecology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号