首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following caspase-8 mediated cleavage, a carboxyl-terminal fragment of the BH3 domain-only Bcl-2 family member Bid transmits the apoptotic signal from death receptors to mitochondria. In a screen for possible regulators of Bid, we defined Bfl-1/A1 as a potent Bid interacting protein. Bfl-1 is an anti-apoptotic Bcl-2 family member, whose preferential expression in hematopoietic cells and endothelium is controlled by inflammatory stimuli. Its mechanism of action is unknown. We find that Bfl-1 associates with both full-length Bid and truncated (t)Bid, via the Bid BH3 domain. Cellular expression of Bfl-1 confers protection against CD95- and Trail receptor-induced cytochrome c release. In vitro assays, using purified mitochondria and recombinant proteins, demonstrate that Bfl-1 binds full-length Bid, but does not interfere with its processing by caspase-8, or with its mitochondrial association. Confocal microscopy supports that Bfl-1, which at least in part constitutively localizes to mitochondria, does not impede tBid translocation. However, Bfl-1 remains tightly and selectively bound to tBid and blocks collaboration between tBid and Bax or Bak in the plane of the mitochondrial membrane, thereby preventing mitochondrial apoptotic activation. Lack of demonstrable interaction between Bfl-1 and Bak or Bax in the mitochondrial membrane suggests that Bfl-1 generally prevents the formation of a pro-apoptotic complex by sequestering BH3 domain-only proteins.  相似文献   

2.
Bcl-2 family proteins are important regulators of apoptosis. They can be pro-apoptotic (e.g. Bid, Bax, and Bak) or anti-apoptotic (e.g. Bcl-2 and Bcl-x(L)). The current study examined Bid-induced apoptosis and its inhibition by Bcl-2. Transfection of Bid led to apoptosis in HeLa cells. In these cells, Bid was processed into active forms of truncated Bid or tBid. Following processing, tBid translocated to the membrane-bound organellar fraction. Bcl-2 co-transfection inhibited Bid-induced apoptosis but did not prevent Bid processing or tBid translocation. On the other hand, Bcl-2 blocked the release of mitochondrial cytochrome c in Bid-transfected cells, suggesting actions at the mitochondrial level. Alkaline treatment stripped off tBid from the membrane-bound organellar fraction of Bid plus Bcl-2-co-transfected cells, but not from cells transfected with only Bid, suggesting inhibition of tBid insertion into mitochondrial membranes by Bcl-2. Bcl-2 also prevented Bid-induced Bax translocation from cytosol to the membrane-bound organellar fraction. Finally, Bcl-2 diminished Bid-induced oligomerization of Bax and Bak within the membrane-bound organellar fraction, shown by cross-linking experiments. In conclusion, Bcl-2 inhibited Bid-induced apoptosis at the mitochondrial level by blocking cytochrome c release, without suppressing Bid processing or activation. Critical steps blocked by Bcl-2 included tBid insertion, Bax translocation, and Bax/Bak oligomerization in the mitochondrial membranes.  相似文献   

3.
Glucocorticoids (GCs) represent an important component of modern treatment regimens for fludarabine-refractory or TP53-defective chronic lymphocytic leukemia (CLL). However, GC therapy is not effective in all patients. The molecular mechanisms responsible for GC-induced apoptosis and resistance were therefore investigated in primary malignant cells obtained from a cohort of 46 patients with CLL. Dexamethasone-induced apoptosis was unaffected by p53 dysfunction and more pronounced in cases with unmutated IGHV genes. Cross-resistance was observed between dexamethasone and other GCs but not fludarabine, indicating non-identical resistance mechanisms. GC treatment resulted in the upregulation of Bim mRNA and protein, but to comparable levels in both GC-resistant and sensitive cells. Pre-incubation with Bim siRNAs reduced GC-induced upregulation of Bim protein and conferred resistance to GC-induced apoptosis in previously GC-sensitive cells. GC-induced upregulation of Bim was associated with the activation of Bax and Bak in GC-sensitive but not -resistant CLL samples. Co-immunoprecipitation experiments showed that Bim does not interact directly with Bax or Bak, but is almost exclusively bound to Bcl-2 regardless of GC treatment. Taken together, these findings suggest that the GC-induced killing of CLL cells results from the indirect activation of Bax and Bak by upregulated Bim/Bcl-2 complexes, and that GC resistance results from the failure of such activation to occur.  相似文献   

4.
Glucocorticoids (GCs) are used for treatment of various hematopoietic malignancies owing to their ability to induce apoptosis. A major obstacle in leukemia therapy is the emergence of GC-resistant cells. Hence, combinatory treatment protocols should be developed that convert GC-resistant leukemia cells into sensitive ones. Here we demonstrate that the broad-acting kinase inhibitor staurosporine (STS) confers GC-sensitivity on GC-resistant T lymphoma cells expressing elevated levels of either Bcl-2 or Bcl-XL, but not on GC-resistant myelogenic leukemia cells expressing Mcl-1 in addition to Bcl-2 and/or Bcl-XL. In T lymphoma cells, STS induces the expression of the pro-apoptotic orphan receptor Nur77 that overcomes the anti-apoptotic effect of Bcl-2, thus enabling GC-induced apoptosis. However, in the myelogenic leukemia cells, STS does not up-regulate Nur77. In these cells, the glucocorticoid receptor (GR) is rapidly downregulated by GC and the anti-apoptotic Mcl-1 protein is upregulated by STS, thereby leading to an even more resistant phenotype. Altogether, our data provide a molecular basis for the differential apoptotic response of T lymphoma versus myelogenic leukemia cells to STS and GC. The former being sensitized to GC-induced apoptosis by STS, whereas in the latter, STS intensifies GC resistance. The cell type specific responses should be taken into consideration when combinatory therapy is used for treating hematopoietic malignancies.  相似文献   

5.
This study was undertaken to determine whether the Bcl-2 family proteins and Smac are regulators of aspirin-mediated apoptosis in a gastric mucosal cell line known as AGS cells. Cells were incubated with varying concentrations of acetylsalicylic acid (ASA; 2-40 mM), with or without preincubation of caspase inhibitors. Apoptosis was characterized by Hoechst staining and DNA-histone-associated complex formation. Antiapoptotic Bcl-2, proapoptotic Bax and Bid, Smac, and cytochrome-c oxidase (COX IV) were analyzed by Western blot analyses from cytosol and mitochondrial fractions. ASA downregulated Bcl-2 protein expression and induced Bax translocation into the mitochondria and cleavage of Bid. In contrast, expression of Smac was significantly decreased in mitochondrial fractions of ASA-treated cells. Bax and Bid involvement in apoptosis regulation was dependent on caspase activation, because caspase-8 inhibition suppressed Bax translocation and Bid processing. Caspase-9 inhibition prevented Smac release from mitochondria. Additionally, increased expression of the oxidative phosphorylation enzyme COX IV was observed in mitochondrial fractions exposed to ASA at concentrations >5 mM. Although caspase-8 inhibition had no effect on aspirin-induced apoptosis and DNA-histone complex formation, caspase-9 inhibition significantly decreased both of these events. We conclude that Bcl-2 protein family members and Smac regulate the apoptotic pathway in a caspase-dependent manner. Our results indicate also that mitochondrial integration and oxidative phosphorylation play a critical role in the pathogenesis of apoptosis in human gastric epithelial cells.  相似文献   

6.
The novel anticancer drug ABT-737 is a Bcl-2 Homology 3 (BH3)-mimetic that induces apoptosis by inhibiting pro-survival Bcl-2 proteins. ABT-737 binds with equal affinity to Bcl-2, Bcl-xL and Bcl-w in vitro and is expected to overrule apoptosis resistance mediated by these Bcl-2 proteins in equal measure. We have profiled ABT-737 specificity for all six pro-survival Bcl-2 proteins, in p53 wild-type or p53-mutant human T-leukemic cells. Bcl-B was untargeted, like Bfl-1 and Mcl-1, in accord with their low affinity for ABT-737 in vitro. However, Bcl-2 proved a better ABT-737 target than Bcl-xL and Bcl-w. This was reflected in differential apoptosis-sensitivity to ABT-737 alone, or combined with etoposide. ABT-737 was not equally effective in displacing BH3-only proteins or Bax from Bcl-2, as compared with Bcl-xL or Bcl-w, offering an explanation for the differential ABT-737 sensitivity of tumor cells overexpressing these proteins. Inducible expression demonstrated that BH3-only proteins Noxa, but not Bim, Puma or truncated Bid could overrule ABT-737 resistance conferred by Bcl-B, Bfl-1 or Mcl-1. These data identify Bcl-B, Bfl-1 and Mcl-1, but also Bcl-xL and Bcl-w as potential mediators of ABT-737 resistance and indicate that target proteins can be differentially sensitive to BH3-mimetics, depending on the pro-apoptotic Bcl-2 proteins they are complexed with.  相似文献   

7.
8.
9.
10.
11.
Glucocorticoid (GC) steroid hormones induce apoptosis in acute lymphoblastic leukemia (ALL). Autoup-regulation of human GC receptor (hGR) levels is associated with sensitivity to GC-mediated apoptosis. Among the major hGR promoters expressed in 697 pre-B-ALL cells (1A, 1B, 1C, and 1D), only promoters 1C and 1D are selectively activated by the hormone. Promoter 1B is unresponsive, and promoter 1A is down-regulated by dexamethasone (Dex) in 697 cells, whereas they are both up-regulated in CEM-C7 T-ALL cells. Autoup-regulation of promoter 1C and 1D in 697 cells requires sequences containing GC response units (GRUs) (1C GRU, -2915/-2956; 1D GRU, -4525/-4559) that were identified previously in CEM-C7 cells. These GRUs potentially bind GR, c-myeloblastosis (c-Myb), and E-twenty six (Ets) proteins; 697 cells express high levels of c-Myb protein, as well as the E-twenty six family protein members, PU.1 and Spi-B. Dex treatment in 697 cells elevates the expression of c-Myb and decreases levels of both Spi-B and PU.1. Chromatin immunoprecipitation assays revealed the specific recruitment of GR, c-Myb, and cAMP response element-binding protein binding protein to the 1C and 1D GRUs upon Dex treatment, correlating to observed autoup-regulated activity in these two promoters. These data suggest a hormone activated, lineage-specific mechanism to control the autoup-regulation of hGR gene expression in 697 pre-B-ALL cells via steroid-mediated changes in GR coregulator expression. These findings may be helpful in understanding the mechanism that determines the sensitivity of B-ALL leukemia cells to hormone-induced apoptosis.  相似文献   

12.
Glucocorticoids (GC) control cell cycle progression and induce apoptosis in cells of the lymphoid lineage. Physiologically, these phenomena have been implicated in regulating immune functions and repertoire generation. Clinically, they form the basis of inclusion of GC in essentially all chemotherapy protocols for lymphoid malignancies. In spite of their significance, the molecular mechanisms underlying the anti-leukemic GC effects and the clinically important phenomenon of GC resistance are still unknown. This review summarizes recent findings related to GC-induced apoptosis, cell cycle arrest, and GC resistance with particular emphasis on acute lymphoblastic leukemia (ALL). We hypothesize that under conditions of physiological Bcl-2 expression, GC might induce classical programmed cell death by directly perturbing the Bcl-2 rheostat. In the presence of anti-apoptotic Bcl-2 proteins, cell death might result from accumulating catabolic and/or other detrimental GC effects driven by, and critically dependent on, GC receptor (GR) autoinduction. Although still controversial, there is increasing evidence for release of apoptogenic factors through pores in the outer mitochondrial membrane, rather than deltapsiloss-dependent membrane rupture, with maintenance of mitochondrial function at least in the early phase of the death response. GC-induced cell cycle arrest in ALL cells appears to be independent of apoptosis induction and vice versa, and critically depends on repression of both cyclin-D3 and c-myc followed by increased expression of the cyclin-dependent kinase inhibitor, p27Kip1. Since development of GC-resistant clones requires both cell cycle progression and survival, GC resistance might frequently result from structural or regulatory defects in GR expression, perhaps the most efficient means to target both pathways concurrently.  相似文献   

13.
Bfl-1, an anti-apoptotic protein of the Bcl-2 family, has been identified as a potential therapeutic target for B-cell malignancies. We describe herein the first characterization of peptide aptamers selected against Bfl-1. We show that most of the Bfl-1 peptide aptamers do not interact with Bcl-2, Bcl-xL, or Mcl-1 in yeast and that some of them restore the pro-apoptotic activity of Bax in yeast in which Bax and Bfl-1 proteins are coexpressed. When expressed in mammalian cells, peptide aptamers interact with Bfl-1 and sensitize B-cell lines to apoptosis induced by chemotherapeutic agents. We further demonstrate that a nonconstrained peptide derived from one aptamer variable region reverses Bfl-1 anti-apoptotic activity in HeLa cells through disruption of Bax-Bfl-1 interaction. This peptide also promotes cell death in lymphoma B-cell lines expressing a high level of Bfl-1 and sensitizes these cells to drug-induced apoptosis. Taken together, these results further validate Bfl-1 as a therapeutic target for malignant B-cells and suggest that peptide aptamers may be a useful tool for guiding the identification of small compounds that target the anti-apoptotic Bfl-1 protein.  相似文献   

14.
In this study, we show that partial mitochondrial DNA (mtDNA) depletion (mitochondrial stress) induces resistance to staurosporine (STP)-mediated apoptosis in C2C12 myoblasts. MtDNA-depleted cells show a 3-4-fold increased proapoptotic proteins (Bax, BAD and Bid), markedly increased antiapoptotic Bcl-2, and reduced processing of p21 Bid to active tBid. The protein levels and also the ability to undergo STP-mediated apoptosis were restored in reverted cells containing near-normal mtDNA levels and restored mitochondrial transmembrane potential. Inhibition of apoptosis closely correlated with sequestration of Bax, Bid and BAD in the mitochondrial inner membrane, increased Bcl-2 and Bcl-X(L), and inability to process p21 Bid. These factors, together with the reduced activation of caspases 3, 9 and 8 are possible causes of mitochondrial stress-induced resistance to apoptosis. Our results suggest that a highly proliferative and invasive behavior of mtDNA-depleted C2C12 cells is related to their resistance to apoptosis.  相似文献   

15.
Anti-apoptotic Bfl-1 and pro-apoptotic Bax, two members of the Bcl-2 family sharing a similar structural fold, are classically viewed as antagonist regulators of apoptosis. However, both proteins were reported to be death inducers following cleavage by the cysteine protease μ-calpain. Here we demonstrate that calpain-mediated cleavage of full-length Bfl-1 induces the release of C-terminal membrane active α-helices that are responsible for its conversion into a pro-apoptotic factor. A careful comparison of the different membrane-active regions present in the Bfl-1 truncated fragments with homologous domains of Bax show that helix α5, but not α6, of Bfl-1 induces cell death and cytochrome c release from purified mitochondria through a Bax/Bak-dependent mechanism. In contrast, both helices α5 and α6 of Bax permeabilize mitochondria regardless of the presence of Bax or Bak. Moreover, we provide evidence that the α9 helix of Bfl-1 promotes cytochrome c release and apoptosis through a unique membrane-destabilizing action whereas Bax-α9 does not display such activities. Hence, despite a common 3D-structure, C-terminal toxic domains present on Bfl-1 and Bax function in a dissimilar manner to permeabilize mitochondria and induce apoptosis. These findings provide insights for designing therapeutic approaches that could exploit the cleavage of endogenous Bcl-2 family proteins or the use of Bfl-1/Bax-derived peptides to promote tumor cell clearance.  相似文献   

16.
17.
细胞凋亡, 即细胞程序性死亡, 在多细胞生物的发育和稳态调控过程中发挥关键作用。Bcl-2家族蛋白是凋亡过程中的主要调控因子, 关于Bcl-2家族蛋白在凋亡过程中的功能及其作用机制一直是研究的热点。已有研究显示Bcl-2家族蛋白不仅作用于线粒体引发凋亡, 并且参与了包括对细胞内质网Ca2+的调控、DNA损伤的修复及与自噬的相互作用等多种反应, 从多方面对细胞的生存状态进行调控。Bcl-2家族蛋白保守存在于脊椎动物和无脊椎动物中, 其功能在进化中存在异同。文章以高等脊椎动物(哺乳动物)和低等脊椎动物(硬骨鱼类)为代表, 总结了近年来Bcl-2家族蛋白在调控宿主凋亡与自噬、DNA损伤及新陈代谢等方面取得的最新进展。该研究为深入了解鱼类和哺乳类Bcl-2家族蛋白的功能和作用机制提供了重要参考。  相似文献   

18.
Using a Bax-dependent membrane-permeabilization assay, we show that peptides corresponding to the BH3 domains of Bcl-2 family "BH3-only" proteins have dual functions. Several BH3 peptides relieved the inhibition of Bax caused by the antiapoptotic Bcl-x(L) and/or Mcl-1 proteins, some displaying a specificity for either Bcl-x(L) or Mcl-1. Besides having this derepression function, the Bid and Bim peptides activated Bax directly and were the only BH3 peptides tested that could potently induce cytochrome c release from mitochondria in cultured cells. Furthermore, Bax activator molecules (cleaved Bid protein and the Bim BH3 peptide) synergistically induced cytochrome c release when introduced into cells along with derepressor BH3 peptides. These observations support a unified model of BH3 domain function, encompassing both positive and negative regulation of other Bcl-2 family members. In this model, the simple inhibition of antiapoptotic functions is insufficient to induce apoptosis unless a direct activator of Bax or Bak is present.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号