首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, has long been thought to be mediated by Th1 CD4(+) T cells. Using adoptive transfer techniques, transfer of CNS specific Th1 T cells was sufficient to induce EAE in naive mice. However, recent studies found a vital role for IL-17 in induction of EAE. These studies suggested that a fraction of IL-17-producing T cells that contaminate Th1 polarized cell lines are largely responsible for initiation of EAE. In this study, we tracked the appearance and cytokine production capacity of adoptively transferred cells within the CNS of mice throughout EAE disease. IL-17-producing, adoptively transferred cells were not enriched over the low percentages present in vitro. Thus, there was no selective recruitment and/or preferential proliferation of adoptively transferred IL-17-producing cells during the induction of EAE. Instead a large number of CNS infiltrating host T cells in mice with EAE were capable of producing IL-17 following ex vivo stimulation. The IL-17-producing T cells contained both alphabeta and gammadelta TCR(+) T cells with a CD4(+)CD8(-) or CD4(-)CD8(-) phenotype. These cells concentrated within the CNS within 3 days of adoptive transfer, and appeared to play a role in EAE induction as adoptive transfer of Th1 lines derived from wild-type mice into IL-17-deficient mice induced reduced EAE clinical outcomes. This study demonstrates that an encephalitogenic Th1 cell line induces recruitment of host IL-17-producing T cells to the CNS during the initiation of EAE and that these cells contribute to the incidence and severity of disease.  相似文献   

2.
During experimental autoimmune encephalomyelitis (EAE), autoreactive Th1 T cells invade the CNS. Before performing their effector functions in the target organ, T cells must recognize Ag presented by CNS APCs. Here, we investigate the nature and activity of the cells that present Ag within the CNS during myelin oligodendrocyte glycoprotein-induced EAE, with the goal of understanding their role in regulating inflammation. Both infiltrating macrophages (Mac-1(+)CD45(high)) and resident microglia (Mac-1(+)CD45(int)) expressed MHC-II, B7-1, and B7-2. Macrophages and microglia presented exogenous and endogenous CNS Ags to T cell lines and CNS T cells, resulting in IFN-gamma production. In contrast, Mac-1(-) cells were inefficient APCs during EAE. Late in disease, after mice had partially recovered from clinical signs of disease, there was a reduction in Ag-presenting capability that correlated with decreased MHC-II and B7-1 expression. Interestingly, although CNS APCs induced T cell cytokine production, they did not induce proliferation of either T cell lines or CNS T cells. This was attributable to production by CNS cells (mainly by macrophages) of NO. T cell proliferation was restored with an NO inhibitor, or if the APCs were obtained from inducible NO synthase-deficient mice. Thus, CNS APCs, though essential for the initiation of disease, also play a down-regulatory role. The mechanisms by which CNS APCs limit the expansion of autoreactive T cells in the target organ include their production of NO, which inhibits T cell proliferation, and their decline in Ag presentation late in disease.  相似文献   

3.
4.
Development of a C57BL/6-+/+ TCR transgenic mouse containing the rearranged TCR alpha- and beta-chain specific for the Db + HY male Ag results in production of a nearly monoclonal population of early thymocytes expressing the Db + HY reactive TCR. These thymocytes are autoreactive in H-2Db male mice and undergo clonal deletion and down-regulation of CD8. To study the effect of the lpr gene on development of autoreactive T cells, these transgenic mice were backcrossed with C57BL/6-lpr/lpr mice. T cell populations in the thymus and spleen were analyzed by three-color flow cytometry for expression of CD4, CD8, and TCR. The thymus of TCR transgenic H-2b/b lpr/lpr male mice had an increase in percent and absolute number of CD8dull thymocytes compared to TCR transgenic H-2b/b +/+ male mice. However, there was not a complete defect in clonal deletion, because clonal deletion and down-regulation of CD8 was apparent in both +/+ and lpr/lpr H-2Db HY+ male mice compared to H-2Db HY- female mice. The phenotype of splenic T cells was almost identical in TCR transgenic +/+ and lpr/lpr males with about 50% CD4-CD8- T cells and 50% CD8+ T cells. However, there was a dramatic increase in the SMLR proliferative response of splenic T cells from TCR transgenic lpr/lpr males compared to TCR transgenic +/+ males. To determine the specificity of this response, spleen cells from TCR transgenic lpr/lpr and +/+ mice were cultured with irradiated H-2b/b and H-2k/k male and female spleen cells. T cells from TCR transgenic C57BL/6-lpr/lpr male mice had an increased proliferative response to H-2b/b male spleen cells compared to T cells from TCR transgenic C57BL/6(-)+/+ male mice, but both lpr/lpr and +/+ mice had a minimal response to irradiated H-2b/b female or H-2k/k male or female stimulator cells. The splenic T cells from TCR transgenic lpr/lpr mice also had an increased specific cytotoxic activity against H-2b/b male target cells compared to TCR transgenic +/+ mice. These results demonstrate that there is a defect in negative selection of self-reactive T cells in the thymus of lpr/lpr mice and a defect in induction or maintenance of clonal anergy of self-reactive T cells in the periphery of lpr/lpr mice.  相似文献   

5.
The T cell marker CD26/dipeptidyl peptidase (DP) IV is associated with an effector phenotype and markedly elevated in the human CNS disorder multiple sclerosis. However, little is known about the in vivo role of CD26/DP IV in health and disease, and the underlying mechanism of its function in CNS inflammation. To directly address the role of CD26/DP IV in vivo, we examined Th1 immune responses and susceptibility to experimental autoimmune encephalomyelitis in CD26(-/-) mice. We show that gene deletion of CD26 in mice leads to deregulation of Th1 immune responses. Although production of IFN-gamma and TNF-alpha by pathogenic T cells in response to myelin Ag was enhanced in CD26(-/-) mice, production of the immunosuppressive cytokine TGF-beta1 was diminished in vivo and in vitro. In contrast to the reduction in TGF-beta1 production, responsiveness to external TGF-beta1 was normal in T cells from CD26(-/-) mice, excluding alterations in TGF-beta1 sensitivity as a mechanism causing the loss of immune regulation. Natural ligands of CD26/DP IV induced TGF-beta1 production in T cells from wild-type mice. However, natural ligands of CD26/DP IV failed to elicit TGF-beta1 production in T cells from CD26(-/-) mice. The striking functional deregulation of Th1 immunity was also seen in vivo. Thus, clinical experimental autoimmune encephalomyelitis scores were significantly increased in CD26(-/-) mice immunized with peptide from myelin oligodendrocyte glycoprotein. These results identify CD26/DP IV as a nonredundant inhibitory receptor controlling T cell activation and Th1-mediated autoimmunity, and may have important therapeutic implications for the treatment of autoimmune CNS disease.  相似文献   

6.
Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, is primarily mediated by CD4 T cells specific for Ags in the CNS. Using MHC class II tetramers, we assessed expansion and phenotypic differentiation of polyclonal self-reactive CD4 T cells during EAE after primary and secondary challenge with the specific Ag. After EAE induction in SJL mice with proteolipid protein 139-151, CNS-specific T cells up-regulated activation markers and expanded in the draining lymph nodes and in the spleen. Less than 20% of total autoreactive T cells entered the CNS simultaneously with Th cells of other specificities. Almost all tetramer-positive cells in the CNS were activated and phenotypically distinct from the large peripheral pool. When EAE was induced in Ag-experienced mice, disease symptoms developed earlier and persisted longer; autoreactive T cells were more rapidly activated and invaded the CNS earlier. In striking contrast to specific CTLs that respond after secondary viral challenge, the absolute numbers of autoreactive CD4 T cells were not increased, indicating that the accelerated autoreactivity in Ag-experienced mice is not related to higher frequencies of autoreactive CD4 T cells.  相似文献   

7.
Our previous studies demonstrated that oligomeric recombinant TCR ligands (RTL) can treat clinical signs of experimental autoimmune encephalomyelitis (EAE) and induce long-term T cell tolerance against encephalitogenic peptides. In the current study, we produced a monomeric I-A(s)/PLP 139-151 peptide construct (RTL401) suitable for use in SJL/J mice that develop relapsing disease after injection of PLP 139-151 peptide in CFA. RTL401 given i.v. or s.c. but not empty RTL400 or free PLP 139-151 peptide prevented relapses and significantly reduced clinical severity of EAE induced by PLP 139-151 peptide in SJL/J or (C57BL/6 x SJL)F(1) mice, but did not inhibit EAE induced by PLP 178-191 or MBP 84-104 peptides in SJL/J mice, or MOG 35-55 peptide in (C57BL/6 x SJL/J)F(1) mice. RTL treatment of EAE caused stable or enhanced T cell proliferation and secretion of IL-10 in the periphery, but reduced secretion of inflammatory cytokines and chemokines. In CNS, there was a modest reduction of inflammatory cells, reduced expression of very late activation Ag-4, lymphocyte function-associated Ag-1, and inflammatory cytokines, chemokines, and chemokine receptors, but enhanced expression of Th2-related factors, IL-10, TGF-beta3, and CCR3. These results suggest that monomeric RTL therapy induces a cytokine switch that curbs the encephalitogenic potential of PLP 139-151-specific T cells without fully preventing their entry into CNS, wherein they reduce the severity of inflammation. This mechanism differs from that observed using oligomeric RTL therapy in other EAE models. These results strongly support the clinical application of this novel class of peptide/MHC class II constructs in patients with multiple sclerosis who have focused T cell responses to known encephalitogenic myelin peptides.  相似文献   

8.
The MOG35-55 peptide-induced experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice is a useful animal model to explore therapeutic approaches to T cell-mediated autoimmune diseases because the dominant T-cell epitope(s) have been defined. It is rational that antigen-specific immunosuppression can be induced by using MHC-peptide complexes as specific TCR ligand(s) that interact with autoreactive T cells in the absence of co-stimulation. In this study, a soluble divalent MOG35-55/I-Ab fusion protein (MOG35-55/I-Ab dimer) was constructed to specifically target the autoreactive CD4+ T cells in the EAE mouse. Intraperitoneal administration of the MOG35-55/I-Ab dimer significantly delayed and ameliorated EAE symptoms by reducing EAE-related inflammation in the mouse CNS and reducing encephalitogenic Th1 and Th17 cells in the peripheral lymphoid organs. We observed that dimer intervention at a concentration of 1.2 nM suppressed MOG35-55 peptide-specific 2D2 transgenic T cells (2D2 T cells) proliferation by over 90% after in vitro activation with MOG35-55 peptide. The mechanisms involved in this antigen-specific dimer-mediated suppression were found to be downregulated TCR-CD3 expression as well as upregulated expression of membrane-bound TGF-β (mTGF-β) and IL-10 suppressive cytokines by the autoreactive CD4+ T cells. Collectively, our data demonstrates that soluble divalent MHC class II molecules can abrogate pathogenic T cells in EAE. Furthermore, our data suggests that this strategy may provide an efficient and clinically useful option to treat autoimmune diseases.  相似文献   

9.
Dynamic interplay between cytokines and chemokines directs trafficking of leukocyte subpopulations to tissues in autoimmune inflammation. We have examined the role of IFN-gamma in directing chemokine production and leukocyte infiltration to the CNS in experimental autoimmune encephalomyelitis (EAE). BALB/c and C57BL/6 mice are resistant to induction of EAE by immunization with myelin basic protein. However, IFN-gamma-deficient (BALB/c) and IFN-gammaR-deficient (C57BL/6) mice developed rapidly progressing lethal disease. Widespread demyelination and disseminated leukocytic infiltration of spinal cord were seen, unlike the focal perivascular infiltrates in SJL/J mice. Gr-1+ neutrophils predominated in CNS, and CD4+ T cells with an activated (CD69+, CD25+) phenotype and eosinophils were also present. RANTES and macrophage chemoattractant protein-1, normally up-regulated in EAE, were undetectable in IFN-gamma- and IFN-gammaR-deficient mice. Macrophage inflammatory protein-2 and T cell activation gene-3, both neutrophil-attracting chemokines, were strongly up-regulated. There was no induction of the Th2 cytokines, IL-4, IL-10, or IL-13. RNase protection assays and RT-PCR showed the prevalence of IL-2, IL-3, and IL-15, but no increase in IL-12p40 mRNA levels in IFN-gamma- or IFN-gammaR-deficient mice with EAE. Lymph node cells from IFN-gamma-deficient mice proliferated in response to myelin basic protein, whereas BALB/c lymph node cells did not. These findings show a regulatory role for IFN-gamma in EAE, acting on T cell proliferation and directing chemokine production, with profound implications for the onset and progression of disease.  相似文献   

10.
Encephalitogenic T cells that mediate experimental autoimmune encephalomyelitis (EAE) are commonly assumed to be exclusively CD4+, but formal proof is still lacking. In this study, we report that synthetic peptides 35-55 from myelin oligodendrocyte glycoprotein (pMOG(35-55)) consistently activate a high proportion of CD8+ alphabetaTCR+ T cells that are encephalitogenic in C57BL/6 (B6) mice. The encephalitogenic potential of CD8+ MOG-specific T cells was established by adoptive transfer of CD8-enriched MOG-specific T cells. These cells induced a much more severe and permanent disease than disease actively induced by immunization with pMOG(35-55). CNS lesions in pMOG(35-55) CD8+ T cell-induced EAE were progressive and more destructive. The CD8+ T cells were strongly pathogenic in syngeneic B6 and RAG-1(-/-) mice, but not in isogeneic beta2-microglobulin-deficient mice. MOG-specific CD8+ T cells could be repeatedly reisolated for up to 287 days from recipient B6 or RAG-1(-/-) mice in which disease was induced adoptively with <1 x 10(6) T cells sensitized to pMOG(35-55). It is postulated that MOG induces a relapsing and/or progressive pattern of EAE by eliciting a T cell response dominated by CD8+ autoreactive T cells. Such cells appear to have an enhanced tissue-damaging effect and persist in the animal for long periods.  相似文献   

11.
IL-1 beta breaks tolerance through expansion of CD25+ effector T cells   总被引:1,自引:0,他引:1  
IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn's disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1beta drives proliferation and cytokine production by CD4(+)CD25(+)FoxP3(-) effector/memory T cells, attenuates CD4(+)CD25(+)FoxP3(+) regulatory T cell function, and allows escape of CD4(+)CD25(-) autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.  相似文献   

12.
We demonstrate the absolute requirement for a functioning class II-restricted Ag processing pathway in the CNS for the initiation of experimental autoimmune encephalomyelitis (EAE). C57BL/6 (B6) mice deficient for the class II transactivator, which have defects in MHC class II, invariant chain (Ii), and H-2M (DM) expression, are resistant to initiation of myelin oligodendrocyte protein (MOG) peptide, MOG(35-55)-specific EAE by both priming and adoptive transfer of encephalitogenic T cells. However, class II transactivator-deficient mice can prime a suboptimal myelin-specific CD4(+) Th1 response. Further, B6 mice individually deficient for Ii and DM are also resistant to initiation of both active and adoptive EAE. Although both Ii-deficient and DM-deficient APCs can present MOG peptide to CD4(+) T cells, neither is capable of processing and presenting the encephalitogenic peptide of intact MOG protein. This phenotype is not Ag-specific, as DM- and Ii-deficient mice are also resistant to initiation of EAE by proteolipid protein peptide PLP(178-191). Remarkably, DM-deficient mice can prime a potent peripheral Th1 response to MOG(35-55), comparable to the response seen in wild-type mice, yet maintain resistance to EAE initiation. Most striking is the demonstration that T cells from MOG(35-55)-primed DM knockout mice can adoptively transfer EAE to wild-type, but not DM-deficient, mice. Together, these data demonstrate that the inability to process antigenic peptide from intact myelin protein results in resistance to EAE and that de novo processing and presentation of myelin Ags in the CNS is absolutely required for the initiation of autoimmune demyelinating disease.  相似文献   

13.
EBV-induced gene 3 (EBI3)-encoded protein can form heterodimers with IL-27P28 and IL-12P35 to form IL-27 and IL-35. IL-27 and IL-35 may influence autoimmunity by inhibiting Th17 differentiation and facilitating the inhibitory roles of Foxp3(+) regulatory T (Treg) cells, respectively. In this study, we have evaluated the development of experimental autoimmune encephalomyelitis (EAE) in EBI3-deficient mice that lack both IL-27 and IL-35. We found that myelin oligodendrocyte glycoprotein peptide immunization resulted in marginally enhanced EAE development in EBI3-deficient C57BL6 and 2D2 TCR-transgenic mice. EBI3 deficiency resulted in significantly increased Th17 and Th1 responses in the CNS and increased T cell production of IL-2 and IL-17 in the peripheral lymphoid organs. EBI3-deficient and -sufficient 2D2 T cells had equal ability in inducing EAE in Rag1(-/-) mice; however, more severe disease was induced in EBI3(-/-)Rag1(-/-) mice than in Rag1(-/-) mice by 2D2 T cells. EBI3-deficient mice had increased numbers of CD4(+)Foxp3(+) Treg cells in peripheral lymphoid organs. More strikingly, EBI3-deficient Treg cells had more potent suppressive functions in vitro and in vivo. Thus, our data support an inhibitory role for EBI3 in Th17, Th1, IL-2, and Treg responses. Although these observations are consistent with the known functions of IL-27, the IL-35 contribution to the suppressive functions of Treg cells is not evident in this model. Increased Treg responses in EBI3(-/-) mice may explain why the EAE development is only modestly enhanced compared with wild-type mice.  相似文献   

14.
Experimental autoimmune encephalomyelitis (EAE) is a Th1 cell-mediated autoimmune disease that can be protected against by stimulating regulatory cells. Here we examined whether EAE can be purposefully modulated by stimulating Valpha14 NK T cells with the CD1d-restricted ligand alpha-galactosylceramide (alpha-GC). EAE induced in wild-type C57BL/6 (B6) mice was not appreciably altered by injection of alpha-GC. However, EAE induced in IL-4 knockout mice and IFN-gamma knockout mice was enhanced or suppressed by alpha-GC, respectively. This indicates that the IL-4 and IFN-gamma triggered by alpha-GC may play an inhibitory or enhancing role in the regulation of EAE. We next studied whether NK T cells of wild-type mice may switch their Th0-like phenotype toward Th1 or Th2. Notably, in the presence of blocking B7.2 (CD86) mAb, alpha-GC stimulation could bias the cytokine profile of NK T cells toward Th2, whereas presentation of alpha-GC by CD40-activated APC induced a Th1 shift of NK T cells. Furthermore, transfer of the alpha-GC-pulsed APC preparations suppressed or enhanced EAE according to their ability to polarize NK T cells toward Th2 or Th1 in vitro. These results have important implications for understanding the role of NK T cells in autoimmunity and for designing a therapeutic strategy targeting NK T cells.  相似文献   

15.
CD24 is a cell surface glycoprotein that is expressed on both immune cells and cells of the CNS. We have previously shown that CD24 is required for the induction of experimental autoimmune encephalomyelitis (EAE), an experimental model for the human disease multiple sclerosis (MS). The development of EAE requires CD24 expression on both T cells and non-T host cells in the CNS. To understand the role of CD24 on the resident cells in the CNS during EAE development, we created CD24 bone marrow chimeras and transgenic mice in which CD24 expression was under the control of a glial fibrillary acidic protein promotor (AstroCD24TG mice). We showed that mice lacking CD24 expression on the CNS resident cells developed a mild form of EAE; in contrast, mice with overexpression of CD24 in the CNS developed severe EAE. Compared with nontransgenic mice, the CNS of AstroCD24TG mice had higher expression of cytokine genes such as IL-17 and demyelination-associated marker P8; the CNS of AstroCD24TG mice accumulated higher numbers of Th17 and total CD4+ T cells, whereas CD4+ T cells underwent more proliferation during EAE development. Expression of CD24 in CD24-deficient astrocytes also enhanced their costimulatory activity to myelin oligodendrocyte glycoprotein-specific, TCR-transgenic 2D2 T cells. Thus, CD24 on the resident cells in the CNS enhances EAE development via costimulation of encephalitogenic T cells. Because CD24 is increased drastically on resident cells in the CNS during EAE, our data have important implications for CD24-targeted therapy of MS.  相似文献   

16.
Hormones can exert significant protective effects on autoimmune diseases by activating immunoregulatory mechanisms. One of the possible mechanisms of hormonal protection might be through the anti-inflammatory effects of the TGF-beta molecule. The present study investigated the changes in expression of two TGF-beta isoforms, TGF-beta1 and TGF-beta3, in C57BL/6 and TCR transgenic (T/R+) B10.PL mice that manifested or were protected against clinical signs of experimental autoimmune encephalomyelitis (EAE) with 17beta-estradiol (E2) treatment. We here demonstrate an inverse relationship between expression of TGF-beta1 that is enhanced in mice with EAE, and TGF-beta3 that is enhanced in E2-protected mice. The differential expression of TGF-beta isoforms was observed in spinal cord tissue but not spleen. Additionally TGF-beta1 expression was evident both in whole spinal cord tissue and mononuclear cells isolated from inflamed tissue, in contrast to TGF-beta3 that was only detected in spinal cord tissue but not in mononuclear cells. Further studies revealed that CD3 and especially MAC-1 positive cells were the main source of TGF-beta1 in the mononuclear CNS population. Of crucial importance, the TGF-beta3 isoform displayed anti-proliferative properties towards encephalitogenic cells in vitro. We propose that the TGF-beta1 and TGF-beta3 isoforms play opposing roles in the expression of EAE.  相似文献   

17.
Recombinant T cell receptor ligands (RTLs) that target encephalitogenic T-cells can reverse clinical and histological signs of EAE, and are currently in clinical trials for treatment of multiple sclerosis. To evaluate possible regulatory mechanisms, we tested effects of RTL therapy on expression of pathogenic and effector T-cell maturation markers, CD226, T-bet and CD44, by CD4+ Th1 cells early after treatment of MOG-35-55 peptide-induced EAE in C57BL/6 mice. We showed that 1-5 daily injections of RTL551 (two-domain I-A(b) covalently linked to MOG-35-55 peptide), but not the control RTL550 ("empty" two-domain I-A(b) without a bound peptide) or Vehicle, reduced clinical signs of EAE, prevented trafficking of cells outside the spleen, significantly reduced the frequency of CD226 and T-bet expressing CD4+ T-cells in blood and inhibited expansion of CD44 expressing CD4+ T-cells in blood and spleen. Concomitantly, RTL551 selectively reduced CNS inflammatory lesions, absolute numbers of CNS infiltrating T-bet expressing CD4+ T-cells and IL-17 and IFN-γ secretion by CNS derived MOG-35-55 reactive cells cultured ex vivo. These novel results demonstrate that a major effect of RTL therapy is to attenuate Th1 specific changes in CD4+ T-cells during EAE and prevent expansion of effector T-cells that mediate clinical signs and CNS inflammation in EAE.  相似文献   

18.
We previously showed that transgenically expressed chimeric Ag-MHC-zeta receptors can Ag-specifically redirect T cells against other T cells. When the receptor's extracellular Ag-MHC domain engages cognate TCR on an Ag-specific T cell, its cytoplasmic zeta-chain stimulates the chimeric receptor-modified T cell (RMTC). This induces effector functions such as cytolysis and cytokine release. RMTC expressing a myelin basic protein (MBP) 89-101-IAs-zeta receptor can be used therapeutically, Ag-specifically treating murine experimental allergic encephalomyelitis (EAE) mediated by MBP89-101-specific T cells. In initial studies, isolated CD8+ RMTC were therapeutically effective whereas CD4+ RMTC were not. We re-examine here the therapeutic potential of CD4+ RMTC. We demonstrate that Th2-differentiated, though not Th1-differentiated, CD4+ MBP89-101-IAs-zeta RMTC prevent actively induced or adoptively transferred EAE, and treat EAE even after antigenic diversification of the pathologic T cell response. The Th2 RMTC both Th2-deviate autoreactive T cells and suppress autoantigen-specific T cell proliferation. IL-10 is critical for the suppressive effects. Anti-IL-10R blocks RMTC-mediated modulation of EAE and suppression of autoantigen proliferation, as well as the induction of IL-10 production by autoreactive T cells. In contrast to IL-10, IL-4 is required for IL-4 production by, and hence Th2 deviation of autoreactive T cells, but not the therapeutic activity of the RMTC. These results therefore demonstrate a novel immunotherapeutic approach for the Ag-specific treatment of autoimmune disease with RMTC. They further identify an essential role for IL-10, rather than Th2-deviation itself, in the therapeutic effectiveness of these redirected Th2 T cells.  相似文献   

19.
Multiple sclerosis and an animal model resembling multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the CNS that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-gamma, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-gamma in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG). In this study, we demonstrate that intracerebral (i.c.) BCG infection prevented inflammatory cell recruitment to the spinal cord and suppressed the development of EAE. Concomitantly, there was a significant decrease in the frequency of myelin oligodendrocyte glycoprotein-specific IFN-gamma-producing CD4(+) T cells in the CNS. IL-17(+)CD4(+) T cell responses were significantly suppressed in i.c. BCG-infected mice following EAE induction regardless of T cell specificity. The frequency of Foxp3(+)CD4(+) T cells in these mice was equivalent to that of control mice. Intracerebral BCG infection-induced protection of EAE and suppression of myelin oligodendrocyte glycoprotein-specific IL-17(+)CD4(+) T cell responses were similar in both wild-type and IFN-gamma-deficient mice. These data show that live BCG infection in the brain suppresses CNS autoimmunity. These findings also reveal that the regulation of Th17-mediated autoimmunity in the CNS can be independent of IFN-gamma-mediated mechanisms.  相似文献   

20.
Studies in both humans and rodents have suggested that CD8+ T cells contribute to the development of airway hyperresponsiveness (AHR) and that leukotriene B4 (LTB4) is involved in the chemotaxis of effector CD8+ T cells (T(EFF)) to the lung by virtue of their expression of BLT1, the receptor for LTB4. In the present study, we used a mast cell-CD8-dependent model of AHR to further define the role of BLT1 in CD8+ T cell-mediated AHR. C57BL/6+/+ and CD8-deficient (CD8-/-) mice were passively sensitized with anti-OVA IgE and exposed to OVA via the airways. Following passive sensitization and allergen exposure, C57BL/6+/+ mice developed altered airway function, whereas passively sensitized and allergen-exposed CD8-/- mice failed to do so. CD8-/- mice reconstituted with CD8+ T(EFF) developed AHR in response to challenge. In contrast, CD8-/- mice reconstituted with BLT1-deficient effector CD8+ T cells did not develop AHR. The induction of increased airway responsiveness following transfer of CD8+ T(EFF) or in wild-type mice could be blocked by administration of an LTB4 receptor antagonist confirming the role of BLT1 in CD8+ T cell-mediated AHR. Together, these data define the important role for mast cells and the LTB4-BLT1 pathway in the development of CD8+ T cell-mediated allergic responses in the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号