首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
动脉粥样硬化发生发展与免疫细胞参与的免疫反应密切相关,其中自然杀伤细胞主要是通过释放IFN-γ、穿孔素和颗粒酶等方式发挥生物学作用,自然杀伤T细胞通过释放多种细胞因子影响动脉粥样硬化形成,但其具体机制未明。本文就自然杀伤细胞和自然杀伤T细胞对动脉粥样硬化的影响做一综述,为动脉粥样硬化及其相关疾病的防治研究提供新的思路。  相似文献   

2.
The trophoblast, the outermost layer of the human placenta, lacks expression of the classical human leukocyte antigen (HLA) class I molecules. This prevents allorecognition by T cells but raises the question of what protects the trophoblast from natural killer (NK) cells. In a previous study, we have shown that choriocarcinoma cell (CC) resistance to NK lysis was mainly independent of HLA class I molecules. In the present study, we postulated that CC may prevent activation of NK cells by failing to stimulate their triggering receptors (TR). To test this hypothesis, we evaluated the lysis of JAR and JEG-3 CC after effective cross-linking and activation of NK cells by means of lectins or antibodies. Our results show that NK-resistant CC were sensitive to lysis by unstimulated peripheral blood lymphocytes in the presence of phytohemagglutin (PHA), to antibody-dependent cell cytotoxicity in presence of anti-Tja antibodies, and to monoclonal antibody redirected killing using anti-TR antibodies anti-CD16 and anti-CD244/2B4. Finally, CC fail to express CD48, the ligand for CD244/2B4. These results indicate that the resistance of CC to lysis results primarily from defective NK cell activation, at least partially due to the lack of expression of ligands, such as CD48, involved in the triggering of NK cells.  相似文献   

3.
S E Randolph 《Parasitology》1979,79(1):141-156
Attachment, engorgement and subsequent development of successive infestations of Ixodes trianguliceps larvae and nymphs on natural hosts, Apodemus sylvaticus, and unnatural hosts, laboratory mice, are compared. In laboratory mice, primary infestations above a threshold level of about 10 ticks elicit an immunological response which reduces, in a density-dependent manner, the rate of successful tick engorgement during subsequent infestations. In contrast, in A. sylvaticus successive infestations of larvae result in unchanged or slightly improved survival through to nymphs. The relevance of these results to the concept of host-parasite co-evolution and to tick population regulation is discussed.  相似文献   

4.
Using a cloned murine cell line, NKB61A2, that concomitantly exhibits both NK and natural cytotoxic (NC) activities, we investigated the biochemical mechanisms involved in natural cell mediated cytotoxicity against NK-sensitive YAC-1 tumor cells and against the NC-sensitive WEHI-164 tumor cells. Recent reports have suggested that target cell lysis by cytotoxic lymphocytes occurs by either a calcium dependent and/or a calcium-independent mechanism(s). To determine the role of calcium in NK and NC activities of the NKB61A2 cell line, we evaluated the effect of: 1) extracellular Ca2+ depletion by the divalent cation chelator, EGTA, 2) Ca2+ influx blockade by the Ca2+ channel blocker verapamil, and 3) blocking of intracellular Ca2+ mobilization by 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8). We found that EGTA, verapamil, and TMB-8 were all capable of inhibiting NK activity, but they had little effect on NC activity of the NKB61A2 cells. Using 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide which are inhibitors of protein kinase C and calmodulin respectively, we determined that protein kinase C and calmodulin do play a role in the NK activity of NKB61A2 cells. 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine and N-(6-aminohexyl)-5-chloro-1-naphthalanesulfonamide, similar to Verapamil and TMB-8, had no effect on NC activity. Thus, the data indicate that the NK activity of NKB61A2 cells is calcium dependent whereas NC activity is not. These results may explain the disparate reports seen in the literature of calcium-dependent and -independent lysis of tumor cells.  相似文献   

5.
The relative roles of interferon (IFN) and natural killer (NK) cells in herpes simplex virus type 1 (HSV-1) infection of mice were examined. Adoptive transfer of adult mouse leukocytes into 4- to 6-day-old suckling mice protected the recipients from HSV-1 infection, as judged by viral titers in the spleen 2 days postinfection. Protection was mediated by several classes of leukocytes, including those depleted of NK cell activity by antibody to asialo GM1 and those depleted of macrophages by size separation. Mice receiving these leukocytes produced significantly higher levels of IFN 6 hr postinfection (early IFN) than did HSV-1-infected mice not receiving donor leukocytes. Antibody to IFN, under conditions that blocked early but not late IFN synthesis, greatly enhanced HSV-1 synthesis in mice receiving leukocytes and completely removed the protective effect mediated by leukocytes. High doses of anti-asialo GM1 blocked both NK cell activity and early IFN production and resulted in high titers of HSV-1. This effect on virus synthesis was not seen if mice were given antibody 1 day postinfection. Lower doses of anti-asialo GM1, which still depleted NK cell activity but had no effect on early IFN production, did not enhance HSV-1 synthesis. Depletion of NK cell activity with a low dose of antibody had no effect on the reduced HSV-1 synthesis resulting from prophylactic IFN treatment or on the enhanced HSV-1 synthesis resulting from antibody to IFN treatment. Thus, resistance to acute HSV-1 infection in mice correlates with early IFN production but not with NK cell activity, suggesting that NK cells are not major mediators of natural resistance in this model and that the antiviral effect of IFN is not mediated by NK cells.  相似文献   

6.
Chinese hamster ovary cell lines with specific lesions in the formation of glycoconjugates were tested for their sensitivity to lysis by interferon-boosted human natural killer cells. We report here that the type of asparagine-linked carbohydrate present on target cell glycoproteins determines their susceptibility to natural killer lysis. The targets tested were Chinese hamster ovary parent cells and Lec1, Lec2, and Lec8 mutants. Lec8 and Lec2 cells show an overall reduction of galactose and/or sialic acid in their glycoconjugates due to defects in the translocation of UDP-galactose and CMP-sialic acid, respectively. Due to a specific block in N-linked carbohydrate processing, Lec1 cells produce only high mannose-type oligosaccharides, but their glycolipids are identical to those of the parent. Both Lec2 and Lec8 mutants are more sensitive to natural killer lysis than the parent cells. This is consistent with their extensive reduction in cell surface sialic acid. Furthermore, Lec1 mutants are more susceptible to natural killer lysis than the parent cells. To confirm that the increased natural killer sensitivity of Lec1 cells was due to the modification of N-linked carbohydrate, parent cells were treated with swainsonine, a specific inhibitor of N-linked oligosaccharide processing. Swainsonine-treated parent cells are nearly as sensitive to natural killer lysis as the Lec1 mutants.  相似文献   

7.
The sensitivity of human natural killer (NK) cell activities (both binding and killing) after exposure of peripheral blood mononuclear cells to different doses of gamma radiation was studied. A panel of monoclonal antibodies was used to identify the NK and T-lymphocyte subsets and to evaluate their radiosensitivity. Peripheral blood mononuclear cells were irradiated with low (2-6 Gy) and high (10-30 Gy) doses and NK cell binding and cytotoxic activity against K562 target cells were studied after 3 h and 48 h in culture. The primary damage to NK cell activity was identified at the postbinding level and affected mainly the lytic machinery. After 48 h culture postirradiation, an overall depression of cytotoxic activity was observed, but ionizing radiation produced either a selection of the more cytotoxic NK cell subsets, which therefore might be considered more resistant to radiation damage than the less cytotoxic NK cells, or a long-term stimulation of cytotoxic activity in surviving cells.  相似文献   

8.
Natural killer T (NKT) cells combine features of the innate and adaptive immune systems. Recently, it has become evident that these T cells have crucial roles in the response to infectious agents. The antigen receptor expressed by NKT cells directly recognizes unusual glycolipids that are part of the membrane of certain Gram-negative bacteria and spirochetes. Moreover, even in the absence of microbial glycolipid antigens, these T cells respond to innate cytokines produced by dendritic cells that have been activated by microbes. This indirect sensing of infection, by responding to cytokines from activated dendritic cells, allows NKT cells to react to a broad range of infectious agents.  相似文献   

9.
The role of natural killer cells in experimental murine salmonellosis   总被引:1,自引:0,他引:1  
This study was designed to determine if murine natural killer (NK) cells play a role in host protection against a Salmonella typhimurium challenge infection. Outbred ICR mice injected intravenously with either attenuated (RIA strain) or virulent (SR-11 strain) salmonellae elicited enhanced killing of YAC-1 targets, which was maximal at 24 h after challenging. When NK cells were depleted with antiasialo GM1 prior to challenging, the splenic bacterial numbers were significantly less in this group of mice compared to sham-injected and challenged animals. The rabbit antiasialo GM1 sera had no detectable direct or indirect effect on the salmonellae. Our results indicate that the NK or natural suppressor cells may be functioning as down-regulators.  相似文献   

10.
Intravenous inoculation of chicken amniotic fluid (ChAmF) markedly reduced natural killer (NK) cell activity of spleen cells from Japanese quails. The reduction of NK activity was mediated by non-adherent thymus-dependent lymphoid cells which were resistant to treatment with anti-immunoglobulin serum and sensitive to treatment with anti-thymocyte serum in the presence of complement. The suppressing activity was selectively directed to NK cells, since Rous sarcoma virus-specific cytotoxicity or hemagglutinating antibody production against sheep erythrocytes was not suppressed in ChAmF-treated quails. Spleen cells from normal 1-week-old quails had similar characteristics to those from ChAmF-treated 4-week-old quails, lacking NK activity and exhibiting suppressive effect on NK activity, and were also shown to be thymus-dependent. Biological significance of the presence of NK cells and their suppressor cells is discussed in relation to embryonic development and tumor-surveillance mechanism.  相似文献   

11.
NK cells are defined here as cells, other than macrophages and polymorphonuclear leucocytes, from non-immunized animals (or humans) which are cytotoxic for neoplastic and non-neoplastic targets in the absence of specific antibody. Though not requiring antibody, they may function as K cells in ADCC. This definition includes cells activated nonspecifically by such agents as IFN and IL-2. Murine NK cells may be subdivided into two types by differences in the kinetics of target-cell lysis. Those we label Type 1 correspond roughly to what others have called NKA, NKL or simply NK cells; those of Type 2 to NKB, NKS and NC cells. Type 1 cells express various antigens, including NK-1, Thy-1 (50%), Ly-1 (25%), Qa-3, Qa-4, Qa-5, Ly-5, Ly-6, Ly-10, Ly-11 and asialo-GM1, not expressed by Type 2 cells, whereas Mac-1 may be expressed by both types. At least some NK cells appear to be pre-thymic cells which, in the presence of a thymus, can differentiate into T cells. The level of NK activity is influenced by the age and genetic background of the mouse, the organ from which the cells are obtained, and a variety of experimental manipulations. Type 1 activity is increased by IFN and IL-2; Type 2 activity by IL-3. IFN appears to be concerned in the development of spontaneous NK activity in young mice. Many experiments have shown that NK cells may inhibit the growth of tumours which are sensitive to NK cells of the same type in vitro. Inhibitory cells which suppress NK activity may play an important regulatory role in vivo. There is still uncertainty about how NK cells recognize their targets. Possibilities discussed are: (1) specific interacting molecules; (2) more diffuse properties of target cell membranes; (3) absence of MHC-coded self-recognition markers. Certainly, the presence of a Class 1 MHC molecule is not necessary. NK killing appears to be mediated by cytotoxins released by NK cells. In vivo, NK cells contribute to limiting the development of transplanted and primary tumours, and metastasis from established tumours. NK cells seem well qualified to act as a first-line defence against neoplasia, and may kill cells not killed by T cells. Transfer of NK cells may be of value in the treatment of cancer.  相似文献   

12.
13.
Summary A concise overview of the transplantation biology of the H-Y antigen is presented with particular reference to: its prototypic behavior as a weak transplantation antigen; the facility with which mice of certain inbred strains can be rendered tolerant of H-Y incompatible skin grafts; its capacity to instigate graft-versus-host reactions; its significance in clinical transplantation; and finally, H-2 control of anti-H-Y immune responses.The role of the H-Y antigen in natural transplantation, i.e. pregnancy, is then reviewed. Evidence is presented to support the hypothesis that in certain cases maternal immune responses directed specifically to the H-Y antigen can exert selective pressures on male zygotes, producing deviant sex ratios in certain experimental and clinical situations.  相似文献   

14.
15.
Several reports have shown that human cytomegalovirus (HCMV)-infected cells are resistant to NK lysis. These studies have focused on receptor-ligand interactions, and different HCMV proteins have been indicated to mediate inhibitory NK signals. Here, we report that the HCMV protein UL16 is of major importance for the ability of HCMV-infected cells to resist NK cell-mediated cytotoxicity. Fibroblasts infected with the UL16 deletion mutant HCMV strain exhibited a 70% increased sensitivity to NK killing at 7 days postinfection compared to AD169-infected cells. Interestingly, HCMV-infected cells did not appear to engage inhibitory molecules on NK cells, since the levels of granzyme B were not reduced in supernatants obtained from NK cell cocultures with infected target cells compared to uninfected target cells. Furthermore, HCMV-infected cells, but not cells infected with the UL16 deletion mutant HCMV strain, exhibited a significantly increased resistance to the action of cytolytic proteins, including perforin, granzyme B, streptolysin O, and porcine NK lysin. In addition, fluorescence-activated cell sorting for UL16-positive transfected cells resulted in protection levels of 90% compared to control cells carrying the green fluorescent protein vector. Thus, the UL16 protein mediates an increased protection against the action of cytolytic proteins released by activated NK cells, possibly by a membrane-stabilizing mechanisms, rather than by delivering negative signals to NK cells.  相似文献   

16.
Atherosclerosis is a multifactor, highly complex disease with numerous aetiologies that work synergistically to promote lesion development. One of the emerging components that drive the development of both early- and late-stage atherosclerotic lesions is the participation of both the innate and acquired immune systems. In both humans and animal models of atherosclerosis, the most prominent cells that infiltrate evolving lesions are macrophages and T lymphocytes. The functional loss of either of these cell types reduces the extent of atherosclerosis in mice that were rendered susceptible to the disease by deficiency of either apolipoprotein E or the LDL (low density lipoprotein) receptor. In addition to these major immune cell participants, a number of less prominent leukocyte populations that can modulate the atherogenic process are also involved. This review will focus on the participatory role of two "less prominent" immune components, namely natural killer (NK) cells and natural killer T (NKT) cells. Although this review will highlight the fact that both NK and NKT cells are not sufficient for causing the disease, the roles played by both these cells types are becoming increasingly important in understanding the complexity of this disease process.  相似文献   

17.
18.
19.
20.
In several mouse models, natural killer T cells have recently been found to be required for the development of airway hyper-reactivity, a cardinal feature of asthma. Moreover, in patients with chronic asthma, natural killer T cells with a T-helper-2-like phenotype (that is, that express CD4 and produce T helper 2 cytokines) are present in the lungs in large numbers. In this Opinion article, we suggest that natural killer T cells, which express a restricted T-cell receptor and respond to glycolipids rather than protein antigens, have a previously unsuspected but crucial role, distinct from that of T helper 2 cells, in the pathogenesis of asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号