首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
M J Lewis  J C Rayner    H R Pelham 《The EMBO journal》1997,16(11):3017-3024
Intracellular vesicular traffic is controlled in part by v- and t-SNAREs, integral membrane proteins which allow specific interaction and fusion between vesicles (v-SNAREs) and their target membranes (t-SNAREs). In yeast, retrograde transport from the Golgi complex to the ER is mediated by the ER t-SNARE Ufe1p, and also requires two other ER proteins, Sec20p and Tip20p, which bind each other. Although Sec20p is not a typical SNARE, we show that both it and Tip20p can be co-precipitated with Ufe1p, and that a growth-inhibiting mutation in Ufe1p can be compensated by a mutation in Sec20p. Furthermore, Sec22p, a v-SNARE implicated in forward transport from ER to Golgi, co-precipitates with Ufe1p and Sec20p, and SEC22 acts as an allele-specific multicopy suppressor of a temperature-sensitive ufe1 mutation. These results define a new functional SNARE complex, with features distinct from the plasma membrane and cis-Golgi complexes previously identified. They also show that a single v-SNARE can be involved in both anterograde and retrograde transport, which suggests that the mere presence of a particular v-SNARE may not be sufficient to determine the preferred target for a transport vesicle.  相似文献   

2.
Dietary lipid absorption is dependent on chylomicron production whose rate-limiting step across the intestinal absorptive cell is the exit of chylomicrons from the endoplasmic reticulum (ER) in its ER-to-Golgi transport vesicle, the prechylomicron transport vesicle (PCTV). This study addresses the composition of the budding complex for PCTV. Immunoprecipitation (IP) studies from rat intestinal ER solubilized in Triton X-100 suggested that vesicle-associated membrane protein 7 (VAMP7), apolipoprotein B48 (apoB48), liver fatty acid-binding protein (L-FABP), CD36, and the COPII proteins were associated on incubation of the ER with cytosol and ATP. This association was confirmed by chromatography of the solubilized ER over Sephacryl S400-HR in which these constituents cochromatographed with an apparent kDa of 630. No multiprotein complex was detected when the ER was chromatographed in the absence of PCTV budding activity (resting ER or PKCζ depletion of ER and cytosol). Treatment of the ER with anti-apoB48 or anti-VAMP7 antibodies or using gene disrupted L-FABP or CD36 mice all significantly inhibited PCTV generation. A smaller complex (no COPII proteins) was formed when only rL-FABP was used to bud PCTV. The data support the conclusion that the PCTV budding complex in intestinal ER is composed of VAMP7, apoB48, CD36, and L-FABP, plus the COPII proteins.  相似文献   

3.
The cytosolic coat-protein complex COP-I interacts with cytoplasmic 'retrieval' signals present in membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi complex, and is required for both anterograde and retrograde transport in the secretory pathway. Here we study the role of COP-I in Golgi-to-ER transport of several distinct marker molecules. Microinjection of anti-COP-I antibodies inhibits retrieval of the lectin-like molecule ERGIC-53 and of the KDEL receptor from the Golgi to the ER. Transport to the ER of protein toxins, which contain a sequence that is recognized by the KDEL receptor, is also inhibited. In contrast, microinjection of anti-COP-I antibodies or expression of a GTP-restricted Arf-1 mutant does not interfere with Golgi-to-ER transport of Shiga toxin/Shiga-like toxin-1 or with the apparent recycling to the ER of Golgi-resident glycosylation enzymes. Overexpression of a GDP-restricted mutant of Rab6 blocks transport to the ER of Shiga toxin/Shiga-like toxin-1 and glycosylation enzymes, but not of ERGIC-53, the KDEL receptor or KDEL-containing toxins. These data indicate the existence of at least two distinct pathways for Golgi-to-ER transport, one COP-I dependent and the other COP-I independent. The COP-I-independent pathway is specifically regulated by Rab6 and is used by Golgi glycosylation enzymes and Shiga toxin/Shiga-like toxin-1.  相似文献   

4.
COPI and COPII are vesicle coat complexes whose assembly is regulated by the ARF1 and Sar1 GTPases, respectively. We show that COPI and COPII coat complexes are recruited separately and independently to ER (COPII), pre-Golgi (COPI, COPII), and Golgi (COPI) membranes of mammalian cells. To address their individual roles in ER to Golgi transport, we used stage specific in vitro transport assays to synchronize movement of cargo to and from pre-Golgi intermediates, and GDP- and GTP-restricted forms of Sar1 and ARF1 proteins to control coat recruitment. We find that COPII is solely responsible for export from the ER, is lost rapidly following vesicle budding and mediates a vesicular step required for the build-up of pre-Golgi intermediates composed of clusters of vesicles and small tubular elements. COPI is recruited onto pre-Golgi intermediates where it initiates segregation of the anterograde transported protein vesicular stomatitis virus glycoprotein (VSV-G) from the retrograde transported protein p58, a protein which actively recycles between the ER and pre-Golgi intermediates. We propose that sequential coupling between COPII and COPI coats is essential to coordinate and direct bi-directional vesicular traffic between the ER and pre-Golgi intermediates involved in transport of protein to the Golgi complex.  相似文献   

5.
The cellular machinery responsible for conveying proteins between the endoplasmic reticulum and the Golgi is being investigated using genetics and biochemistry. A role for vesicles in mediating protein traffic between the ER and the Golgi has been established by characterizing yeast mutants defective in this process, and by using recently developed cell-free assays that measure ER to Golgi transport. These tools have also allowed the identification of several proteins crucial to intracellular protein trafficking. The characterization and possible functions of several GTP-binding proteins, peripheral membrane proteins, and an integral membrane protein during ER to Golgi transport are discussed here.  相似文献   

6.
Actin is involved in the organization of the Golgi complex and Golgi-to-ER protein transport in mammalian cells. Little, however, is known about the regulation of the Golgi-associated actin cytoskeleton. We provide evidence that Cdc42, a small GTPase that regulates actin dynamics, controls Golgi-to-ER protein transport. We located GFP-Cdc42 in the lateral portions of Golgi cisternae and in COPI-coated and non-coated Golgi-associated transport intermediates. Overexpression of Cdc42 and its activated form Cdc42V12 inhibited the retrograde transport of Shiga toxin from the Golgi complex to the ER, the redistribution of the KDEL receptor, and the ER accumulation of Golgi-resident proteins induced by the active GTP-bound mutant of Sar1 (Sar1[H79G]). Coexpression of wild-type or activated Cdc42 and N-WASP also inhibited Golgi-to-ER transport, but this was not the case in cells expressing Cdc42V12 and N-WASP(Delta WA), a mutant form of N-WASP that lacks Arp2/3 binding. Furthermore, Cdc42V12 recruited GFP-N-WASP to the Golgi complex. We therefore conclude that Cdc42 regulates Golgi-to-ER protein transport in an N-WASP-dependent manner.  相似文献   

7.
8.
Antibodies to the Golgi complex and the rough endoplasmic reticulum   总被引:120,自引:78,他引:42       下载免费PDF全文
Rabbits were immunized with membrane fractions from either the Golgi complex or the rough endoplasmic reticulum (RER) by injection into the popliteal lymph nodes. The antisera were then tested by indirect immunofluorescence on tissue culture cells or frozen, thin sections of tissue. There were may unwanted antibodies to cell components other than the RER or the Golgi complex, and these were removed by suitable absorption steps. These steps were carried out until the pattern of fluorescent labeling was that expected for the Golgi complex or RER. Electron microscopic studies, using immunoperoxidase labeling of normal rat kidney (NRK) cells, showed that the anti-Golgi antibodies labeled the stacks of flattened cisternae that comprise the central feature of the Golgi complex, many of the smooth vesicles around the stacks, and a few coated vesicles. These antibodies were directed, almost entirely, against a single polypeptide with an apparent molecular weight of 135,000. The endoplasmic reticulum (ER) in NRK cells is an extensive, reticular network that pervades the entire cell cytoplasm and includes the nuclear membrane. The anit-RER antibodies labeled this structure alone at the light and electron microscopic levels. They were largely directed against four polypeptides with apparent molecular weights of 29,000, 58,000, 66,000, and 91,000. Some examples are presented, using immunofluorescence microscopy, where these antibodies have been used to study the Golgi complex and RER under a variety of physiological and experimental condition . For biochemical studies, these antibodies should prove useful in identifying the origin of isolated membranes, particularly those from organelles such as the Golgi complex, which tend to lose their characteristic morphology during isolation.  相似文献   

9.
Neo1p from Saccharomyces cerevisiae is an essential P-type ATPase and potential aminophospholipid translocase (flippase) in the Drs2p family. We have previously implicated Drs2p in protein transport steps in the late secretory pathway requiring ADP-ribosylation factor (ARF) and clathrin. Here, we present evidence that epitope-tagged Neo1p localizes to the endoplasmic reticulum (ER) and Golgi complex and is required for a retrograde transport pathway between these organelles. Using conditional alleles of NEO1, we find that loss of Neo1p function causes cargo-specific defects in anterograde protein transport early in the secretory pathway and perturbs glycosylation in the Golgi complex. Rer1-GFP, a protein that cycles between the ER and Golgi complex in COPI and COPII vesicles, is mislocalized to the vacuole in neo1-ts at the nonpermissive temperature. These phenotypes suggest that the anterograde protein transport defect is a secondary consequence of a defect in a COPI-dependent retrograde pathway. We propose that loss of lipid asymmetry in the cis Golgi perturbs retrograde protein transport to the ER.  相似文献   

10.
Modification by ubiquitin plays a major role in a broad array of cellular functions. Although reversal of this process, deubiquitination, likely represents an important regulatory step contributing to cellular homeostasis, functions of deubiquitination enzymes still remain poorly characterized. We have previously shown that the ubiquitin protease Ubp3p requires a co-factor, Bre5p, to specifically deubiquitinate the coat protein complex II (COPII) subunit Sec23p, which is involved in anterograde transport between endoplasmic reticulum and Golgi compartiments. In the present report, we show that disruption of BRE5 gene also led to a defect in the retrograde transport from the Golgi to the endoplasmic reticulum. Further analysis indicate that the COPI subunit beta'-COP represents another substrate of the Ubp3p.Bre5p complex. All together, our results indicate that the Ubp3p.Bre5p deubiquitination complex co-regulates anterograde and retrograde transports between endoplasmic reticulum and Golgi compartments.  相似文献   

11.
The morphology and subcellular positioning of the Golgi complex depend on both microtubule and actin cytoskeletons. In contrast to microtubules, the role of actin cytoskeleton in the secretory pathway in mammalian cells has not been clearly established. Using cytochalasin D, we have previously shown that microfilaments are not involved in the endoplasmic reticulum–Golgi membrane dynamics. However, it has been reported that, unlike botulinum C2 toxin and latrunculins, cytochalasin D does not produce net depolymerization of actin filaments. Therefore, we have reassessed the functional role of actin microfilaments in the early steps of the biosynthetic pathway using C2 toxin and latrunculin B. The anterograde endoplasmic reticulum-to-Golgi transport monitored with the vesicular stomatitis virus-G protein remained unaltered in cells treated with cytochalasin D, latrunculin B or C2 toxin. Conversely, the brefeldin A-induced Golgi membrane fusion into the endoplasmic reticulum, the Golgi-to-endoplasmic reticulum transport of a Shiga toxin mutant form, and the subcellular distribution of the KDEL receptor were all impaired when actin microfilaments were depolymerized by latrunculin B or C2 toxin. These findings, together with the fact that COPI-coated and uncoated vesicles contain β/γ-actin isoforms, indicate that actin microfilaments are involved in the endoplasmic reticulum/Golgi interface, facilitating the retrograde Golgi-to-endoplasmic reticulum membrane transport, which could be mediated by the orchestrated movement of transport intermediates along microtubule and microfilament tracks.  相似文献   

12.
Membrane-bound soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins form heteromeric complexes that are required for intracellular membrane fusion and are proposed to encode compartmental specificity. In yeast, the R-SNARE protein Sec22p acts in transport between the endoplasmic reticulum (ER) and Golgi compartments but is not essential for cell growth. Other SNARE proteins that function in association with Sec22p (i.e., Sed5p, Bos1p, and Bet1p) are essential, leading us to question how transport through the early secretory pathway is sustained in the absence of Sec22p. In wild-type strains, we show that Sec22p is directly required for fusion of ER-derived vesicles with Golgi acceptor membranes. In sec22Delta strains, Ykt6p, a related R-SNARE protein that operates in later stages of the secretory pathway, is up-regulated and functionally substitutes for Sec22p. In vivo combination of the sec22Delta mutation with a conditional ykt6-1 allele results in lethality, consistent with a redundant mechanism. Our data indicate that the requirements for specific SNARE proteins in intracellular membrane fusion are less stringent than appreciated and suggest that combinatorial mechanisms using both upstream-targeting elements and SNARE proteins are required to maintain an essential level of compartmental organization.  相似文献   

13.
In plant cells, the organization of the Golgi apparatus and its interrelationships with the endoplasmic reticulum differ from those in mammalian and yeast cells. Endoplasmic reticulum and Golgi apparatus can now be visualized in plant cells in vivo with green fluorescent protein (GFP) specifically directed to these compartments. This makes it possible to study the dynamics of the membrane transport between these two organelles in the living cells. The GFP approach, in conjunction with a considerable volume of data about proteins participating in the transport between endoplasmic reticulum and Golgi in yeast and mammalian cells and the identification of their putative plant homologues, should allow the establishment of an experimental model in which to test the involvement of the candidate proteins in plants. As a first step towards the development of such a system, we are using Sar1, a small G-protein necessary for vesicle budding from the endoplasmic reticulum. This work has demonstrated that the introduction of Sar1 mutants blocks the transport from endoplasmic reticulum to Golgi in vivo in tobacco leaf epidermal cells and has therefore confirmed the feasibility of this approach to test the function of other proteins that are presumably involved in this step of endomembrane trafficking in plant cells.  相似文献   

14.
《The Journal of cell biology》1989,109(4):1439-1444
We have previously shown that Xenopus oocytes arrested at second meiotic metaphase lost their characteristic multicisternal Golgi apparati and cannot secrete proteins into the surrounding medium. In this paper, we extend these studies to ask whether intracellular transport events affecting the movement of secretory proteins from the endoplasmic reticulum to the Golgi apparatus are also similarly inhibited in such oocytes. Using the acquisition of resistance to endoglycosidase H (endo H) as an assay for movement to the Golgi, we find that within 6 h, up to 66% of the influenza virus membrane protein, hemagglutinin (HA), synthesized from injected synthetic RNA, can move to the Golgi apparati in nonmatured oocytes; indeed after longer periods some correctly folded HA can be detected at the cell surface where it distributes in a nonpolarized fashion. In matured oocytes, up to 49% of the HA becomes endo H resistant in the same 6-h period. We conclude that movement from the endoplasmic reticulum to the Golgi can occur in matured oocytes despite the dramatic fragmentation of the Golgi apparati that we observe to occur on maturation. This observation of residual protein movement during meiotic metaphase contrasts with the situation at mitotic metabphase in cultured mammalian cells where all movement ceases, but resembles that in the budding yeast Saccharomyces cerevisiae where transport is unaffected.  相似文献   

15.
Secretory proteins are transported from the endoplasmic reticulum to the Golgi apparatus via COPII-coated intermediates. Yeast Erv29p is a transmembrane protein cycling between these compartments. It is conserved across species, with one ortholog found in each genome studied, including the surf-4 protein in mammals. Yeast Erv29p acts as a receptor, loading a specific subset of soluble cargo, including glycosylated alpha factor pheromone precursor and carboxypeptidase Y, into vesicles. As the eukaryotic secretory pathway is highly conserved, mammalian surf-4 may perform a similar role in the transport of unknown substrates. Here we report the membrane topology of yeast Erv29p, which we solved by minimally invasive cysteine accessibility scanning using thiol-specific biotinylation and fluorescent labeling methods. Erv29p contains four transmembrane domains with both termini exposed to the cytosol. Two luminal loops may contain a recognition site for hydrophobic export signals on soluble cargo.  相似文献   

16.
Secretory proteins are transported from the endoplasmic reticulum to the Golgi apparatus via COPII-coated intermediates. Yeast Erv29p is a transmembrane protein cycling between these compartments. It is conserved across species, with one ortholog found in each genome studied, including the surf-4 protein in mammals. Yeast Erv29p acts as a receptor, loading a specific subset of soluble cargo, including glycosylated alpha factor pheromone precursor and carboxypeptidase Y, into vesicles. As the eukaryotic secretory pathway is highly conserved, mammalian surf-4 may perform a similar role in the transport of unknown substrates. Here we report the membrane topology of yeast Erv29p, which we solved by minimally invasive cysteine accessibility scanning using thiol-specific biotinylation and fluorescent labeling methods. Erv29p contains four transmembrane domains with both termini exposed to the cytosol. Two luminal loops may contain a recognition site for hydrophobic export signals on soluble cargo.  相似文献   

17.
Assembly of cognate SNARE proteins into SNARE complexes is required for many intracellular membrane fusion reactions. However, the mechanisms that govern SNARE complex assembly and disassembly during fusion are not well understood. We have devised a new in vitro cross-linking assay to monitor SNARE complex assembly during fusion of endoplasmic reticulum (ER)-derived vesicles with Golgi-acceptor membranes. In Saccharomyces cerevisiae, anterograde ER-Golgi transport requires four SNARE proteins: Sec22p, Bos1p, Bet1p, and Sed5p. After tethering of ER-derived vesicles to Golgi-acceptor membranes, SNARE proteins are thought to assemble into a four-helix coiled-coil bundle analogous to the structurally characterized neuronal and endosomal SNARE complexes. Molecular modeling was used to generate a structure of the four-helix ER-Golgi SNARE complex. Based on this structure, cysteine residues were introduced into adjacent SNARE proteins such that disulfide bonds would form if assembled into a SNARE complex. Our initial studies focused on disulfide bond formation between the SNARE motifs of Bet1p and Sec22p. Expression of SNARE cysteine derivatives in the same strain produced a cross-linked heterodimer of Bet1p and Sec22p under oxidizing conditions. Moreover, this Bet1p-Sec22p heterodimer formed during in vitro transport reactions when ER-derived vesicles containing the Bet1p derivative fused with Golgi membranes containing the Sec22p derivative. Using this disulfide cross-linking assay, we show that inhibition of transport with anti-Sly1p antibodies blocked formation of the Bet1p-Sec22p heterodimer. In contrast, chelation of divalent cations did not inhibit formation of the Bet1p-Sec22p heterodimer during in vitro transport but potently inhibited Golgi-specific carbohydrate modification of glyco-pro-alpha factor. This data suggests that Ca(2+) is not directly required for membrane fusion between ER-derived vesicles and Golgi-acceptor membranes.  相似文献   

18.
Two new members (Sar1a and Sar1b) of the SAR1 gene family have been identified in mammalian cells. Using immunoelectron microscopy, Sar1 was found to be restricted to the transitional region where the protein was enriched 20-40-fold in vesicular carriers mediating ER to Golgi traffic. Biochemical analysis revealed that Sar1 was essential for an early step in vesicle budding. A Sar1-specific antibody potently inhibited export of vesicular stomatitis virus glycoprotein (VSV-G) from the ER in vitro. Consistent with the role of guanine nucleotide exchange in Sar1 function, a trans-dominant mutant (Sar1a[T39N]) with a preferential affinity for GDP also strongly inhibited vesicle budding from the ER. In contrast, Sar1 was not found to be required for the transport of VSV-G between sequential Golgi compartments, suggesting that components active in formation of vesicular carriers mediating ER to Golgi traffic may differ, at least in part, from those involved in intra-Golgi transport. The requirement for novel components at different stages of the secretory pathway may reflect the recently recognized differences in protein transport between the Golgi stacks as opposed to the selective sorting and concentration of protein during export from the ER.  相似文献   

19.
20.
We have identified a vesicle fraction that contains alpha 1-antitrypsin and other human HepG2 hepatoma secretory proteins en route from the rough endoplasmic reticulum (RER) to the cis face of the Golgi complex. [35S]Methionine pulse-labeled cells were chased for various periods of time, and then a postnuclear supernatant fraction was resolved on a shallow sucrose-D2O gradient. This intermediate fraction has a density lighter than RER or Golgi vesicles. Most alpha 1-antitrypsin in this fraction (P1) bears N-linked oligosaccharides of composition similar to that of alpha 1-antitrypsin within the RER; mainly Man8GlcNac2 with lesser amounts of Man7GlcNac2 and Man9GlcNac2; this suggests that the protein has not yet reacted with alpha-mannosidase-I on the cis face of the Golgi complex. This light vesicle species is the first post-ER fraction to be filled by labeled alpha 1-antitrypsin after a short chase, and newly made secretory proteins enter this compartment in proportion to their rate of exit from the RER and their rate of secretion from the cells: alpha 1-antitrypsin and albumin faster than preC3 and alpha 1-antichymotrypsin, faster, in turn, then transferrin. Deoxynojirimycin, a drug that blocks removal of glucose residues from alpha 1-antitrypsin in the RER and blocks its intracellular maturation, also blocks its appearance in this intermediate compartment. Upon further chase of the cells, we detect sequential maturation of alpha 1- antitrypsin to two other intracellular forms: first, P2, a form that has the same gel mobility as P1 but that bears an endoglycosidase H- resistant oligosaccharide and is found in a compartment--probably the medial Golgi complex--of density higher than that of the intermediate that contains P1; and second, the mature sialylated form of alpha 1- antitrypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号