首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In boar spermatozoa incubated with 0.1 mM-glucose about 20 nmol glucose were converted to lactate and CO2 and the rate of futile substrate cycling between glucose and glucose 6-phosphate was about 6 nmol/10(8) spermatozoa/30 min. Futile cycling was increased in the presence of 0.05 or 1 mM-alpha-chlorohydrin but not to an extent sufficient to account for the rapid decline in ATP concentration observed under these conditions. These estimates include a substantial rate of fructose formation from fructose phosphates. The addition of 10 mM-L-lactate plus 1 mM-pyruvate protected the spermatozoa against the effect of alpha-chlorohydrin and glucose on the ATP concentration but increased futile substrate cycling. Substrate cycling between fructose 6-phosphate and fructose 1,6-bisphosphate could not be measured in boar spermatozoa but in rat spermatozoa its rate (nmol/10(8) spermatozoa/30 min) was about 10 under control condition and about 25 in the presence of 1 mM-alpha-chlorohydrin. This increase was insufficient to account for the decline in ATP concentration. In both species futile substrate cycling consumed a significant proportion of the ATP synthesis during lactate production but only about 5% of that produced in the oxidation of glucose to acetyl carnitine and CO2.  相似文献   

2.
The (S)-isomer of the male antifertility agent alpha-chlorohydrin was metabolized by mature boar spermatozoa in vitro to (S)-3-chlorolactaldehyde. This oxidative process, which did not occur when (R)-alpha-chlorohydrin was offered as a substrate, was catalysed by an NADP+-dependent dehydrogenase that converts glycerol to glyceraldehyde. (S)-3-chlorolactaldehyde, produced by this metabolic reaction or when added to suspensions of boar spermatozoa, was a specific inhibitor of glyceraldehyde 3-phosphate dehydrogenase as assessed by the accumulation of fructose 1,6-bisphosphate and the triosephosphates. When glycerol and (S)-alpha-chlorohydrin were added concomitantly to boar spermatozoa in vitro, the presence of glycerol decreased the degree of inhibition of glyceraldehyde 3-phosphate dehydrogenase. Extracts of glyceraldehyde 3-phosphate dehydrogenase that were obtained from boar spermatozoa incubated with (S)-alpha-chlorohydrin or (R,S)-3-chlorolactaldehyde showed significant reductions in their enzymic activity.  相似文献   

3.
Mature epididymal boar spermatozoa converted fructose and glycerol to carbon dioxide but in the presence of 3-chloro-1-hydroxyacetone these oxidations were inhibited. When the substrate was fructose, there was an increase in the amounts of fructose 1,6-bisphosphate and dihydroxyacetone phosphate but these glycolytic intermediates did not accumulate when glycerol was the substrate. Examination of enzyme activities in mature boar spermatozoa incubated with 3-chloro-1-hydroxyacetone, which is metabolised in vitro to (S)-3-chlorolactaldehyde, confirmed that glyceraldehyde 3-phosphate dehydrogenase and triosephosphate isomerase were both inhibited to equivalent degrees by this metabolite.  相似文献   

4.
(S)-alpha-Chlorohydrin and 3-chloro-1-hydroxyacetone inhibited the oxidative metabolism of fructose by boar spermatozoa only after a period of incubation in which they presumably underwent conversion to (S)-3-chlorolactaldehyde, an inhibitor of sperm glyceraldehyde 3-phosphate dehydrogenase. With glycerol as substrate, 3-chloro-1-hydroxyacetone had a similar effect, (S)-alpha-chlorohydrin was ineffective while (R,S)-3-chlorolactaldehyde was immediately effective with either substrate. All three compounds caused the accumulation of fructose 1,6-bisphosphate and dihydroxyacetone phosphate from fructose but not from glycerol which led to the conclusion that inhibition of triosephosphate isomerase was also associated with the anti-glycolytic action of (S)-3-chlorolactaldehyde. (S)-3-Chlorolactaldehyde caused the depletion of ATP in incubates of boar spermatozoa metabolizing fructose but not glycerol. This suggests that futile substrate cycling may play an important function in the anti-glycolytic action of (S)-3-chlorolactaldehyde and/or that boar spermatozoa can synthesize ATP from glycerol by a mechanism not involving the glycolytic pathway.  相似文献   

5.
B Philippe  G G Rousseau  L Hue 《FEBS letters》1986,200(1):169-172
Epididymal bovine sperm contain fructose-1,6-bisphosphatase activity which is inhibited by AMP and by fructose 2,6-bisphosphate. Sperm phosphofructokinase displays kinetic characteristics that are typical of the F-type and it is stimulated by fructose 2,6-bisphosphate. The concentration of sperm fructose 2,6-bisphosphate remained unaffected at 1-2 microM when the glycolytic rate was either increased by glucose, caffeine or antimycin, or decreased by alpha-chlorohydrin or 6-chloro-6-deoxyglucose.  相似文献   

6.
1. The existing procedures for extraction of oxidized and reduced nicotinamide coenzymes were adapted to spermatozoa to overcome the coenzyme-degrading activity of seminal plasma. 2. The content of total NAD(+) and NADH was determined in the spermatozoa of ram, bull, boar, stallion and cock. NADP(+) and NADPH were not detected in ram spermatozoa. 3. The oxidation state of sperm NAD depended on the seminal plasma, the removal of which produced a change in the percentage oxidation state of the coenzyme, 100x[NAD(+)/(NAD(+)+NADH)], without altering the total content of NAD(+)+NADH. 4. In suspensions of washed ram spermatozoa, incubated anaerobically at 25 degrees C, the percentage oxidation state of NAD declined with increasing spermatozoa concentration. 5. When ram or boar spermatozoa that had been previously washed and resuspended in Ringer phosphate medium, were incubated anaerobically at 25 degrees C with various substances, pronounced effects on the percentage oxidation state of NAD could be observed with l-lactate, pyruvate, oxaloacetate, dihydroxyacetone, formaldehyde and glyceraldehyde; sorbitol and acetoacetate acted only on ram spermatozoa; fructose, glucose, mannose and acetaldehyde acted predominantly on boar spermatozoa. Formaldehyde lowered the (NAD(+)+NADH) content of ram spermatozoa, but none of the other substances had a comparable effect. 6. The percentage oxidation state of sperm NAD was not influenced by exogenous cysteine, cystine, ergothioneine or ascorbate. 7. A highly active sorbitol dehydrogenase could be prepared from ram, but not from boar, spermatozoa. 8. Sorbitol, acetoacetate and 3-hydroxybutyrate effectively supported the respiration of ram, but not boar, spermatozoa. 9. ;Cold shock', resulting from sudden cooling of spermatozoa, abolished motility completely and irreversibly but produced only a slow and partial decrease in the total NAD content. Slight over-heating, sufficient to produce loss of motility, had no adverse effect on the total NAD content. 10. Storage of ram sperm at 14 degrees C produced only a small decrease of NAD after 2 days, but subsequently the loss became greater.  相似文献   

7.
1. The effect of alpha-chlorohydrin on the metabolism of glycolytic and tricarboxylate-cycle substrates by ram spermatozoa was investigated. The utilization and oxidation of fructose and triose phosphate were much more sensitive to inhibition by alpha-chlorohydrin (0.1-1.0mm) than lactate or pyruvate. Inhibition of glycolysis by alpha-chlorohydrin is concluded to be between triose phosphate and pyruvate formation. Oxidation of glycerol was not as severely inhibited as that of the triose phosphate. This unexpected finding can be explained in terms of competition between glycerol and alpha-chlorohydrin. A second, much less sensitive site, of alpha-chlorohydrin inhibition appears to be associated with production of acetyl-CoA from exogenous and endogenous fatty acids. 2. Measurement of the glycolytic intermediates after incubation of spermatozoal suspensions with 15mm-fructose in the presence of 3mm-alpha-chlorohydrin showed a ;block' in the conversion of glyceraldehyde 3-phosphate into 3-phosphoglycerate. alpha-Chlorohydrin also caused conversion of most of the ATP in spermatozoa into AMP. After incubation with 3mm-alpha-chlorohydrin, glyceraldehyde 3-phosphate dehydrogenase and triose phosphate isomerase activities were decreased by approx. 90% and 80% respectively, and in some experiments aldolase was also inhibited. Other glycolytic enzymes were not affected by a low concentration (0.3mm) of alpha-chlorohydrin. Loss of motility of spermatozoa paralleled the decrease in glyceraldehyde 3-phosphate dehydrogenase activity. alpha-Chlorohydrin, however, did not inhibit glyceraldehyde 3-phosphate dehydrogenase or triose phosphate isomerase in sonicated enzyme preparations when added to the assay cuvette. 3. Measurement of intermediates and glycolytic enzymes in ejaculated spermatozoa before, during and after injection of rams with alpha-chlorohydrin (25mg/kg body wt.) confirmed a severe block in glycolysis in vivo at the site of triose phosphate conversion into 3-phosphoglycerate within 24h of the first injection. Glyceraldehyde 3-phosphate dehydrogenase activity was no longer detectable and both aldolase and triose phosphate isomerase were severely inhibited. Spermatozoal ATP decreased by 92% at this time, being quantitatively converted into AMP. At 1 month after injection of alpha-chlorohydrin glycolytic intermediate concentrations returned to normal in the spermatozoa but ATP was still only 38% of the pre-injection concentration. Motility of spermatozoa was, however, as good as during the pre-injection period. The activity of the inhibited enzymes also returned to normal during the recovery period and 26 days after injection were close to pre-injection values. 4. An unknown metabolic product of alpha-chlorohydrin is suggested to inhibit glyceraldehyde 3-phosphate dehydrogenase and triose phosphate isomerase of spermatozoa. This results in a lower ATP content, motility and fertility of the spermatozoa. Glycidol was shown not to be an active intermediate of alpha-chlorohydrin in vitro.  相似文献   

8.
Chloroplast fructose-1,6-bisphosphatase (D-fructose 1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) isolated from spinach leaves, was activated by preincubation with fructose 1,6-bisphosphate. The rate of activation was slower than the rate of catalysis, and dependent upon the temperature and the concentration of fructose 1,6-bisphosphate. The addition of other sugar diphosphates, sugar monophosphates or intermediates of the reductive pentose phosphate cycle neither replaced fructose 1,6-bisphosphate nor modified the activation process. Upon activation with the effector the enzyme was less sensitive to trypsin digestion and insensitive to mercurials. The activity of chloroplast fructose-1,6-bisphosphatase, preincubated with fructose 1,6-bisphosphate, returned to its basal activity after the concentration of the effector was lowered in the preincubation mixture. The results provide evidence that fructose-1,6-bisphosphatase resembles other regulatory enzymes involved in photosynthetic CO2 assimilation in its activation by chloroplast metabolites.  相似文献   

9.
L Hue  F Sobrino    L Bosca 《The Biochemical journal》1984,224(3):779-786
Incubation of isolated rat hepatocytes from fasted rats with 0-6 mM-glucose caused an increase in [fructose 2,6-bisphosphate] (0.2 to about 5 nmol/g) without net lactate production. A release of 3H2O from [3-3H]glucose was, however, detectable, indicating that phosphofructokinase was active and that cycling occurred between fructose 6-phosphate and fructose 1,6-bisphosphate. A relationship between [fructose 2,6-bisphosphate] and lactate production was observed when hepatocytes were incubated with [glucose] greater than 6 mM. Incubation with glucose caused a dose-dependent increase in [hexose 6-phosphates]. The maximal capacity of liver cytosolic proteins to bind fructose 2,6-bisphosphate was 15 nmol/g, with affinity constants of 5 X 10(6) and 0.5 X 10(6) M-1. One can calculate that, at 5 microM, more than 90% of fructose 2,6-bisphosphate is bound to cytosolic proteins. In livers of non-anaesthetized fasted mice, the activation of glycogen synthase was more sensitive to glucose injection than was the increase in [fructose 2,6-bisphosphate], whereas the opposite situation was observed in livers of fed mice. Glucose injection caused no change in the activity of liver phosphofructokinase-2 and decreased the [hexose 6-phosphates] in livers of fed mice.  相似文献   

10.
AS-30D hepatoma cells, a highly oxidative and fast-growing tumor line, showed glucose-induced and fructose-induced inhibition of oxidative phosphorylation (the Crabtree effect) of 54% and 34%, respectively. To advance the understanding of the underlying mechanism of this process, the effect of 5 mM glucose or 10 mM fructose on the intracellular concentration of several metabolites was determined. The addition of glucose or fructose lowered intracellular Pi (40%), and ATP (53%) concentrations, and decreased cytosolic pH (from 7.2 to 6.8). Glucose and fructose increased the content of AMP (30%), glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-bisphosphate (15, 13 and 50 times, respectively). The cytosolic concentrations of Ca2+ and Mg2+ were not modified. The addition of galactose or glycerol did not modify the concentrations of the metabolites. Mitochondria isolated from AS-30D cells, incubated in media with low Pi (0.6 mM) at pH 6.8, exhibited a 40% inhibition of oxidative phosphorylation. The data suggest that the Crabtree effect is the result of several small metabolic changes promoted by addition of exogenous glucose or fructose.  相似文献   

11.
1. Incubation of hepatocytes from fed or starved rats with increasing glucose concentrations caused a stimulation of lactate production, which was further increased under anaerobic conditions. 2. When glycolysis was stimulated by anoxia, [fructose 2,6-bis-phosphate] was decreased, indicating that this ester could not be responsible for the onset of anaerobic glycolysis. In addition, the effect of glucose in increasing [fructose 2,6-bisphosphate] under aerobic conditions was greatly impaired in anoxic hepatocytes. [Fructose 2,6-bisphosphate] was also diminished in ischaemic liver, skeletal muscle and heart. 3. The following changes in metabolite concentration were observed in anaerobic hepatocytes: AMP, ADP, lactate and L-glycerol 3-phosphate were increased; ATP, citrate and pyruvate were decreased: phosphoenolpyruvate and hexose 6-phosphates were little affected. Concentrations of adenine nucleotides were, however, little changed by anoxia when hepatocytes from fed rats were incubated with 50 mM-glucose. 4. The activity of ATP:fructose 6-phosphate 2-phosphotransferase was not affected by anoxia but decreased by cyclic AMP. 5. The role of fructose 2,6-bisphosphate in the regulation of glycolysis is discussed.  相似文献   

12.
Phosphoglucose isomerase negative mutant of mucoid Pseudomonas aeruginosa accumulated relatively higher concentration of fructose 1,6-bisphosphate (Fru-1,6-P2) when mannitol induced cells were incubated with this sugar alcohol. Also the toluene-treated cells of fructose 1,6-bisphosphate aldolase negative mutant of this organism produced Fru-1,6-P2 from fructose 6-phosphate in presence of ATP, but not from 6-phosphogluconate. The results together suggested the presence of an ATP-dependent fructose 6-phosphate kinase (EC 2.7.1.11) in mucoid P. aeruginosa.Abbreviations ALD Fru-1,6-P2 aldolse - DHAP dihydroxyacetone phosphate - F6P fructose 6-phosphate - G6P glucose 6-phosphate - Gly3P glyceraldehyde 3-phosphate - KDPG 2-keto 3-deoxy 6-phosphogluconate - PFK fructose 6-phosphate kinase - PGI phosphoglucose isomerase - 6PG 6-phosphogluconate  相似文献   

13.
Summary The influence of fructose 2,6-bisphosphate on the activation of purified swine kidney phosphofructokinase as a function of the concentration of fructose 6P, ATP and citrate was investigated. The purified enzyme was nearly completely inhibited in the presence of 2 mM ATP. The addition of 20 nM fructose 2,6-P2 reversed the inhibition and restored more than 80% of the activity. In the absence of fructose 2,6-P2 the reaction showed a sigmoidal dependence on fructose 6-phosphate. The addition of 10 nM fructose 2,6-bisphosphate decreased the K0.5 for fructose 6-phosphate from 3 mM to 0.4 mM in the presence of 1.5 mM ATP. These results clearly show that fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate and decreases the inhibitory effect of ATP. The extent of inhibition by citrate was also significantly decreased in the presence of fructose 2,6-phosphate.The influence of various effectors of phosphofructokinase on the binding of ATP and fructose 6-P to the enzyme was examined in gel filtration studies. It was found that kidney phosphofructokinase binds 5.6 moles of fructose 6-P per mole of enzyme, which corresponds to about one site per subunit of tetrameric enzyme. The KD for fructose 6-P was 13 µM and in the presence of 0.5 mM ATP it increased to 27 µM. The addition of 0.3 mM citrate also increased the KD for fructose 6-P to about 40 µM. AMP, 10 µM, decreased the KD to 5 µM and the addition of fructose 2,6-phosphate decreased the KD for fructose 6-P to 0.9 µM. The addition of these compounds did not effect the maximal amount of fructose 6-P bound to the enzyme, which indicated that the binding site for these compounds might be near, but was not identical to the fructose 6-P binding site. The enzyme bound a maximum of about 12.5 moles of ATP per mole, which corresponds to 3 moles per subunit. The KD of the site with the highest affinity for ATP was 4 µM, and it increased to 15 µM in the presence of fructose 2,6-bisphosphate. The addition of 50 µM fructose 1,6-bisphosphate increased the KD for ATP to 5.9 µM. AMP increased the KD to 5.9 µM whereas 0.3 mM citrate decreased the KD for ATP to about 2 µM. The KD for AMP, was 2.0 µM; the KD for cyclic AMP was 1.0 µM; the KD for ADP was 0.9 µM; the KD for fructose 1,6-bisphosphate was 0.5 µM; the KD for citrate was 0.4 µM and the KD for fructose 2,6-bisphosphate was about 0.1 µM. A maximum of about 4 moles of AMP, ADP and cyclic AMP and fructose 2,6-bisphosphate were bound per mole of enzyme. Taken collectively, these and previous studies (9) indicate that fructose 2,6-phosphate is a very effective activator of swine kidney phosphofructokinase. This effector binds to the enzyme with a very high affinity, and significantly decreases the binding of ATP at the inhibitory site on the enzyme.  相似文献   

14.
1. Pyruvate kinase purified from the hepatopancrease of Carcinus maenas exhibited sigmoidal saturation kinetics with respect to the substrate phosphoenolpyruvate in the absence of the allosteric activator fructose 1,6-bisphosphate, but normal hyperbolic saturation was seen in the presence of this activator. The activation appears to be the result of a decrease in the s0.5 (phosphoenolpyruvate) and not to a change in Vmax. 2. In the presence of ADP and ATP at a constant nucleotide-pool size the results indicate that phosphoenolpyruvate co-operativity is lost on increasing the [ATP]/[ADP] ratio. 3. Paralleling this change is the observation that the fructose 1,6-bisphosphate activation became less at the [ATP]/[ATP] ratio was increased. This was due to the enzyme exhibiting a near-maximal activity in the absence of activator. 4. L-Alanine inhibited the enzyme, but homotropic co-operative interactions were only seen with a cruder (1000000g supernatant) enzyme preparation. The inhibition by alanine could be overcome by increasing the concentration of either phosphoenolpyruvate or fructose 1,6-bisphosphate, although increasing the L-alanine concentration did not appear to be able to reverse the activation by fructose 1,6-bisphosphate. 5. In the presence of a low concentration of phosphoenolpyruvate, increasing the concentration of the product, ATP, caused an initial increase in enzyme activity, followed by an inhibitory phase. In the presence of either fructose 1,6-bisphosphate or L-alanine only inhibition was seen. 6. The inhibition by ATP could not be completely reversed by fructose 1,6-bisphosphate.  相似文献   

15.
The mechanism with which fructose augments glucose-induced insulin secretion is still unclear. The present study was aimed at examining whether the ketohexose potentiates the ATP-sensitive K(+) channel-independent pathway of glucose-induced insulin secretion and, if so, how this happens. When isolated rat islets were depolarized by incubating them with 50 mM KCl in the presence of 150 microM diazoxide (an opener of ATP-sensitive K(+) channels), 10 mM glucose plus 20 mM fructose elicited significantly higher insulin secretion than 10 mM glucose alone, whereas 20 mM fructose alone did not stimulate insulin secretion. The fructose 1,6-bisphosphate and inositol trisphosphate contents were markedly higher in islets incubated with glucose plus fructose than in islets incubated with glucose alone. The results demonstrate that fructose has the ability to potentiate the ATP-sensitive K(+) channel-independent pathway of glucose-induced insulin secretion. The increase in fructose 1,6-bisphosphate content induced by the co-presence of fructose with glucose, resulting in the rise in inositol trisphosphate content, is likely to be one of the signals involved in the fructose potentiation of glucose-induced insulin secretion.  相似文献   

16.
Effect of benzoate on the metabolism of fructose 2,6-bisphosphate in yeast   总被引:5,自引:0,他引:5  
When benzoate (2 mM, pH 3.5) was added together with glucose (0.1 M) to a suspension of Saccharomyces cerevisiae in the stationary phase, it caused a relative increase in the concentration of glucose 6-phosphate and fructose 6-phosphate and a decrease in the concentration of fructose 1,6-bisphosphate. These effects are in confirmation of similar observations made by Krebs et al. [Biochem. J. 214, 657-663 (1983)] and are indicative of an inhibition of 6-phosphofructo-1-kinase. Benzoate also caused an about fourfold relative decrease in the concentration of fructose 2,6-bisphosphate, an increase in that of cyclic AMP with no change in that of ATP. It also greatly decreased the activation of 6-phosphofructo-2-kinase, but not that of trehalase, both of which normally occur upon addition of glucose to a yeast suspension. When added 10 min after glucose, benzoate caused a rapid (within 2-3 min) decrease in fructose 2,6-bisphosphate concentration and in 6-phosphofructo-2-kinase activity. In the presence of benzoate, there was also a parallel decrease in the concentration of fructose 2,6-bisphosphate and in the rate of ethanol production when the external pH was dropped from 5.0 to 2.5, with minimal change in the concentration of ATP. Purified 6-phosphofructo-2-kinase was inhibited by benzoate and also by an acid pH. Experiments with cell-free extracts did not provide an explanation for the rapid disappearance of fructose-2,6-bisphosphate or the inactivation of 6-phosphofructo-2-kinase in yeast upon addition of benzoate.  相似文献   

17.
The binding of beta-D-fructose 2,6-bisphosphate to rabbit muscle phosphofructokinase and rabbit liver fructose-1,6-bisphosphatase was studied using the column centrifugation procedure (Penefsky, H. S., (1977) J. Biol. Chem. 252, 2891-2899). Phosphofructokinase binds 1 mol of fructose 2,6-bisphosphate/mol of protomer (Mr = 80,000). The Scatchard plots of the binding of fructose 2,6-bisphosphate to phosphofructokinase are nonlinear in the presence of three different buffer systems and appear to exhibit negative cooperativity. Fructose 1,6-bisphosphate and glucose 1,6-bisphosphate inhibit the binding of fructose-2,6-P2 with Ki values of 15 and 280 microM, respectively. Sedoheptulose 1,7-bisphosphate, ATP, and high concentrations of phosphate also inhibit the binding. Other metabolites including fructose-6-P, AMP, and citrate show little effect. Fructose-1,6-bisphosphatase binds 1 mol of fructose 2,6-bisphosphate/mol of subunit (Mr = 35,000) with an affinity constant of 1.5 X 10(6) M-1. Fructose 1,6-bisphosphate, fructose-6-P, and phosphate are competitive inhibitors with Ki values of 4, 2.7, and 230 microM, respectively. Sedoheptulose 1,7-bisphosphate (1 mM) inhibits approximately 50% of the binding of fructose 1,6-bisphosphate to fructose bisphosphatase, but AMP has no effect. Mn2+, Co2+, and a high concentration of Mg2+ inhibit the binding. Thus, we may conclude that fructose 2,6-bisphosphate binds to phosphofructokinase at the same allosteric site for fructose 1,6-bisphosphate while it binds to the catalytic site of fructose-1,6-bisphosphatase.  相似文献   

18.
To investigate the importance of glycolysable substrate for supporting the ability of human sperm to capacitate and penetrate oocytes in vitro, washed spermatozoa were incubated with or without various sugars in BWW culture medium containing pyruvate and lactate. Sperm penetration was assayed using zona-free hamster oocytes. After an 18-h preincubation, glucose (1 mg/ml) supported higher penetration of sperm into oocytes than either mannose or fructose (60.7% vs. 28.2% or 21.5%, respectively) at the same concentration. Penetration was even lower when medium contained the nonmetabolizable sugar galactose (2.1% at 1 mg/ml). On the other hand, higher concentrations (5 or 10 mg/ml) of glucose, but not fructose, suppressed penetration, provided the glucose was present throughout the 18-h preincubation. When caffeine, a stimulant of glycolysis in human sperm, was present along with glucose, sperm penetration was enhanced, but only after 6 h of sperm preincubation. This effect was not observed in glucose-free medium, however, where penetration remained low over a 10-h incubation period. In these experiments, the percentage of motile sperm was unaffected by treatment, but the quality of motility was diminished in the absence of glucose. We conclude that stimulation of glycolysis may promote capacitation of human spermatozoa in vitro and that optimization of penetrating ability of sperm is dependent upon both the type and concentration of glycolysable sugar present.  相似文献   

19.
The initial kinetics of yeast phosphofructokinase was studied by stopped-flow measurements over an enzyme concentration range from 0.5 mg/ml to 0.01 mg/ml. Before attaining the steady state the reaction showed a lag phase in the product formation, the duration of which was found to decrease with increasing enzyme concentration. The lag phase disappeared after preincubation of the enzyme for at least five minutes with either fructose 6-phosphate, fructose 1,6-bisphosphate or fructose 2,6-bisphosphate. Preincubation of the enzyme with either AMP or ADP resulted in a reduction of this phase, while ATP was without effect. Simultaneous addition of fructose 1,6-bisphosphate to the reaction mixture of the enzyme causes a significant shortening of the transient phase, whereas micromolar concentrations of fructose 2,6-bisphosphate are capable of abolishing the lag phase completely. The occurrence of an initial transient phase suggests that the enzyme after starting the reaction converts from a state of low activity to one of high activity. This conversion mainly depends on the concentration of fructose 1,6-bisphosphate generated in the course of the reaction. In addition an association reaction of the enzyme seems to be involved in the process of conversion of the phosphofructokinase during the initial transient phase.  相似文献   

20.
Inosine is a potent primary stimulus of insulin secretion from isolated mouse islets. The inosine-induced insulin secretion was totally depressed during starvation, but was completely restored by the addition of 5 mM-caffeine to the medium and partially restored by the addition of 5 mM-glucose. Mannoheptulose (3 mg/ml) potentiated the effect of 10 mM-inosine in islets from fed mice. The mechanism of the stimulatory effect of inosine was further investigated, and it was demonstrated that pancreatic islets contain a nucleoside phosphorylase capable of converting inosine into hypoxanthine and ribose 1-phosphate. Inosine at 10 mM concentration increased the lactate production and the content of ATP, glucose 6-phosphate (fructose 1,6-diphosphate + triose phosphates) and cyclic AMP in islets from fed mice. In islets from starved mice inosine-induced lactate production was decreased and no change in the concentration of cyclic AMP could be demonstrated, whereas the concentration of ATP and glucose 6-phosphate rose. Inosine (10 mM) induced a higher concentration of (fructose 1,6-diphosphate + triose phosphates) in islets from starved mice than in islets from fed mice suggesting that in starvation the activities of glyceraldehyde 3-phosphate dehydrogenase or other enzymes below this step in glycolysis are decreased. Formation of glucose from inosine was negligible. Inosine had no direct effect on adenylate cyclase activity in islet homogenates. The observed changes in insulin secretion and islet metabolism mimic what is seen when glucose and glyceraldehyde stimulate insulin secretion, and as neither ribose nor hypoxanthine-stimulated insulin release, the results are interpreted as supporting the substrate-site hypothesis for glucose-induced insulin secretion according to which glucose has to be metabolized in the beta-cells before secretion is initiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号